1
|
Blanc FEC, Hummer G. Mechanism of proton-powered c-ring rotation in a mitochondrial ATP synthase. Proc Natl Acad Sci U S A 2024; 121:e2314199121. [PMID: 38451940 PMCID: PMC10945847 DOI: 10.1073/pnas.2314199121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/10/2024] [Indexed: 03/09/2024] Open
Abstract
Proton-powered c-ring rotation in mitochondrial ATP synthase is crucial to convert the transmembrane protonmotive force into torque to drive the synthesis of adenosine triphosphate (ATP). Capitalizing on recent cryo-EM structures, we aim at a structural and energetic understanding of how functional directional rotation is achieved. We performed multi-microsecond atomistic simulations to determine the free energy profiles along the c-ring rotation angle before and after the arrival of a new proton. Our results reveal that rotation proceeds by dynamic sliding of the ring over the a-subunit surface, during which interactions with conserved polar residues stabilize distinct intermediates. Ordered water chains line up for a Grotthuss-type proton transfer in one of these intermediates. After proton transfer, a high barrier prevents backward rotation and an overall drop in free energy favors forward rotation, ensuring the directionality of c-ring rotation required for the thermodynamically disfavored ATP synthesis. The essential arginine of the a-subunit stabilizes the rotated configuration through a salt bridge with the c-ring. Overall, we describe a complete mechanism for the rotation step of the ATP synthase rotor, thereby illuminating a process critical to all life at atomic resolution.
Collapse
Affiliation(s)
- Florian E. C. Blanc
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main60438, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main60438, Germany
- Institute for Biophysics, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| |
Collapse
|
2
|
Shekhar M, Gupta C, Suzuki K, Chan CK, Murata T, Singharoy A. Revealing a Hidden Intermediate of Rotatory Catalysis with X-ray Crystallography and Molecular Simulations. ACS CENTRAL SCIENCE 2022; 8:915-925. [PMID: 35912346 PMCID: PMC9336149 DOI: 10.1021/acscentsci.1c01599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanism of rotatory catalysis in ATP-hydrolyzing molecular motors remains an unresolved puzzle in biological energy transfer. Notwithstanding the wealth of available biochemical and structural information inferred from years of experiments, knowledge on how the coupling between the chemical and mechanical steps within motors enforces directional rotatory movements remains fragmentary. Even more contentious is to pinpoint the rate-limiting step of a multistep rotation process. Here, using vacuolar or V1-type hexameric ATPase as an exemplary rotational motor, we present a model of the complete 4-step conformational cycle involved in rotatory catalysis. First, using X-ray crystallography, a new intermediate or "dwell" is identified, which enables the release of an inorganic phosphate (or Pi) after ATP hydrolysis. Using molecular dynamics simulations, this new dwell is placed in a sequence with three other crystal structures to derive a putative cyclic rotation path. Free-energy simulations are employed to estimate the rate of the hexameric protein transformations and delineate allosteric effects that allow new reactant ATP entry only after hydrolysis product exit. An analysis of transfer entropy brings to light how the side-chain-level interactions transcend into larger-scale reorganizations, highlighting the role of the ubiquitous arginine-finger residues in coupling chemical and mechanical information. An inspection of all known rates encompassing the 4-step rotation mechanism implicates the overcoming of the ADP interactions with V1-ATPase to be the rate-limiting step of motor action.
Collapse
Affiliation(s)
- Mrinal Shekhar
- Center
for Development of Therapeutics, Broad Institute
of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Chitrak Gupta
- School
of Molecular Sciences, Arizona State University, 797 East Tyler Street, Tempe, Arizona 85281, United States
| | - Kano Suzuki
- Department
of Chemistry, Graduate School of Science, Chiba University, Inage-ku, Chiba, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Chun Kit Chan
- School
of Molecular Sciences, Arizona State University, 797 East Tyler Street, Tempe, Arizona 85281, United States
| | - Takeshi Murata
- Department
of Chemistry, Graduate School of Science, Chiba University, Inage-ku, Chiba, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Membrane
Protein Research and Molecular Chirality Research Centers, Chiba University, Inage-ku, Chiba, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Structure
Biology Research Center, Institute of Materials
Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, 1-1 Oho, Ibaraki 305-0801, Japan
| | - Abhishek Singharoy
- School
of Molecular Sciences, Arizona State University, 797 East Tyler Street, Tempe, Arizona 85281, United States
| |
Collapse
|
3
|
Albaugh A, Gingrich TR. Simulating a chemically fueled molecular motor with nonequilibrium molecular dynamics. Nat Commun 2022; 13:2204. [PMID: 35459863 PMCID: PMC9033874 DOI: 10.1038/s41467-022-29393-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/23/2022] [Indexed: 01/26/2023] Open
Abstract
Most computer simulations of molecular dynamics take place under equilibrium conditions-in a closed, isolated system, or perhaps one held at constant temperature or pressure. Sometimes, extra tensions, shears, or temperature gradients are introduced to those simulations to probe one type of nonequilibrium response to external forces. Catalysts and molecular motors, however, function based on the nonequilibrium dynamics induced by a chemical reaction's thermodynamic driving force. In this scenario, simulations require chemostats capable of preserving the chemical concentrations of the nonequilibrium steady state. We develop such a dynamic scheme and use it to observe cycles of a particle-based classical model of a catenane-like molecular motor. Molecular motors are frequently modeled with detailed-balance-breaking Markov models, and we explicitly construct such a picture by coarse graining the microscopic dynamics of our simulations in order to extract rates. This work identifies inter-particle interactions that tune those rates to create a functional motor, thereby yielding a computational playground to investigate the interplay between directional bias, current generation, and coupling strength in molecular information ratchets.
Collapse
Affiliation(s)
- Alex Albaugh
- grid.16753.360000 0001 2299 3507Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Todd R. Gingrich
- grid.16753.360000 0001 2299 3507Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| |
Collapse
|
4
|
Igaev M, Grubmüller H. Bending-torsional elasticity and energetics of the plus-end microtubule tip. Proc Natl Acad Sci U S A 2022; 119:e2115516119. [PMID: 35302883 PMCID: PMC8944587 DOI: 10.1073/pnas.2115516119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe mechanochemical basis of microtubule growth, which is essential for the normal function and division of eukaryotic cells, has remained elusive and controversial, despite extensive work. In particular, recent findings have created the paradox that the microtubule plus-end tips look very similar during both growing and shrinking phases, thereby challenging the traditional textbook picture. Our large-scale atomistic simulations resolve this paradox and explain microtubule growth and shrinkage dynamics as a process governed by energy barriers between protofilament conformations, the heights of which are in turn fine-tuned by different nucleotide states, thus implementing an information-driven Brownian ratchet.
Collapse
Affiliation(s)
- Maxim Igaev
- Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, D-37077 Göttingen, Germany
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, D-37077 Göttingen, Germany
| |
Collapse
|
5
|
Ji ZS, Liu QL, Zhang JF, Yang YH, Li J, Zhang GW, Tan MH, Lin HS, Guo GQ. SUMOylation of spastin promotes the internalization of GluA1 and regulates dendritic spine morphology by targeting microtubule dynamics. Neurobiol Dis 2020; 146:105133. [PMID: 33049318 DOI: 10.1016/j.nbd.2020.105133] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022] Open
Abstract
Dendritic spines are specialized structures involved in neuronal processes on which excitatory synaptic contact occurs. The microtubule cytoskeleton is vital for maintaining spine morphology and mature synapses. Spastin is related to microtubule-severing proteases and is involved in synaptic bouton formation. However, it is not yet known if spastin can be modified by Small Ubiquitin-like Modifier (SUMO) or how this modification regulates dendritic spines. Spastin was shown to be SUMOylated at K427, and its deSUMOylation promoted microtubule stability. In addition, SUMOylation of spastin was shown to affect signalling pathways associated with long term synaptic depression. SUMOylated spastin promoted the development of dendrites and dendritic spines. Moreover, SUMOylated spastin regulated endocytosis and affected the transport of the AMPA receptor, GluA1. Our findings suggest that SUMOylation of spastin promotes GluA1 internalization and regulates dendritic spine morphology through targeting of microtubule dynamics.
Collapse
Affiliation(s)
- Zhi-Sheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Qiu-Ling Liu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Ji-Feng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Yu-Hao Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Guo-Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Ming-Hui Tan
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China.
| | - Hong-Sheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China.
| | - Guo-Qing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China.
| |
Collapse
|
6
|
Abstract
Biomolecular machines are protein complexes that convert between different forms of free energy. They are utilized in nature to accomplish many cellular tasks. As isothermal nonequilibrium stochastic objects at low Reynolds number, they face a distinct set of challenges compared with more familiar human-engineered macroscopic machines. Here we review central questions in their performance as free energy transducers, outline theoretical and modeling approaches to understand these questions, identify both physical limits on their operational characteristics and design principles for improving performance, and discuss emerging areas of research.
Collapse
Affiliation(s)
- Aidan I Brown
- Department of Physics , University of California, San Diego , La Jolla , California 92093 , United States
| | - David A Sivak
- Department of Physics , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
7
|
Insights into the origin of the high energy-conversion efficiency of F 1-ATPase. Proc Natl Acad Sci U S A 2019; 116:15924-15929. [PMID: 31341091 DOI: 10.1073/pnas.1906816116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our understanding of the rotary-coupling mechanism of F1-ATPase has been greatly enhanced in the last decade by advances in X-ray crystallography, single-molecular imaging, and theoretical models. Recently, Volkán-Kacsó and Marcus [S. Volkán-Kacsó, R. A. Marcus, Proc. Natl. Acad. Sci. U.S.A. 112, 14230 (2015)] presented an insightful thermodynamic model based on the Marcus reaction theory coupled with an elastic structural deformation term to explain the observed γ-rotation angle dependence of the adenosine triphosphate (ATP)/adenosine diphosphate (ADP) exchange rates of F1-ATPase. Although the model is successful in correlating single-molecule data, it is not in agreement with the available theoretical results. We describe a revision of the model, which leads to consistency with the simulation results and other experimental data on the F1-ATPase rotor compliance. Although the free energy liberated on ATP hydrolysis by F1-ATPase is rapidly dissipated as heat and so cannot contribute directly to the rotation, we show how, nevertheless, F1-ATPase functions near the maximum possible efficiency. This surprising result is a consequence of the differential binding of ATP and its hydrolysis products ADP and Pi along a well-defined pathway.
Collapse
|
8
|
Murcia Rios A, Vahidi S, Dunn SD, Konermann L. Evidence for a Partially Stalled γ Rotor in F 1-ATPase from Hydrogen-Deuterium Exchange Experiments and Molecular Dynamics Simulations. J Am Chem Soc 2018; 140:14860-14869. [PMID: 30339028 DOI: 10.1021/jacs.8b08692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
F1-ATPase uses ATP hydrolysis to drive rotation of the γ subunit. The γ C-terminal helix constitutes the rotor tip that is seated in an apical bearing formed by α3β3. It remains uncertain to what extent the γ conformation during rotation differs from that seen in rigid crystal structures. Existing models assume that the entire γ subunit participates in every rotation. Here we interrogated E. coli F1-ATPase by hydrogen-deuterium exchange (HDX) mass spectrometry. Rotation of γ caused greatly enhanced deuteration in the γ C-terminal helix. The HDX kinetics implied that most F1 complexes operate with an intact rotor at any given time, but that the rotor tip is prone to occasional unfolding. A molecular dynamics (MD) strategy was developed to model the off-axis forces acting on γ. MD runs showed stalling of the rotor tip and unfolding of the γ C-terminal helix. MD-predicted H-bond opening events coincided with experimental HDX patterns. Our data suggest that in vitro operation of F1-ATPase is associated with significant rotational resistance in the apical bearing. These conditions cause the γ C-terminal helix to get "stuck" (and unfold) sporadically while the remainder of γ continues to rotate. This scenario contrasts the traditional "greasy bearing" model that envisions smooth rotation of the γ C-terminal helix. The fragility of the apical rotor tip in F1-ATPase is attributed to the absence of a c10 ring that stabilizes the rotation axis in intact FoF1. Overall, the MD/HDX strategy introduced here appears well suited for interrogating the inner workings of molecular motors.
Collapse
Affiliation(s)
- Angela Murcia Rios
- Departments of Chemistry and Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Siavash Vahidi
- Departments of Chemistry and Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Stanley D Dunn
- Departments of Chemistry and Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Lars Konermann
- Departments of Chemistry and Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| |
Collapse
|
9
|
Huggins DJ, Biggin PC, Dämgen MA, Essex JW, Harris SA, Henchman RH, Khalid S, Kuzmanic A, Laughton CA, Michel J, Mulholland AJ, Rosta E, Sansom MSP, van der Kamp MW. Biomolecular simulations: From dynamics and mechanisms to computational assays of biological activity. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1393] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- David J. Huggins
- TCM Group, Cavendish Laboratory University of Cambridge Cambridge UK
- Unilever Centre, Department of Chemistry University of Cambridge Cambridge UK
- Department of Physiology and Biophysics Weill Cornell Medical College New York NY
| | | | - Marc A. Dämgen
- Department of Biochemistry University of Oxford Oxford UK
| | - Jonathan W. Essex
- School of Chemistry University of Southampton Southampton UK
- Institute for Life Sciences University of Southampton Southampton UK
| | - Sarah A. Harris
- School of Physics and Astronomy University of Leeds Leeds UK
- Astbury Centre for Structural and Molecular Biology University of Leeds Leeds UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology The University of Manchester Manchester UK
- School of Chemistry The University of Manchester Oxford UK
| | - Syma Khalid
- School of Chemistry University of Southampton Southampton UK
- Institute for Life Sciences University of Southampton Southampton UK
| | | | - Charles A. Laughton
- School of Pharmacy University of Nottingham Nottingham UK
- Centre for Biomolecular Sciences University of Nottingham Nottingham UK
| | - Julien Michel
- EaStCHEM school of Chemistry University of Edinburgh Edinburgh UK
| | - Adrian J. Mulholland
- Centre of Computational Chemistry, School of Chemistry University of Bristol Bristol UK
| | - Edina Rosta
- Department of Chemistry King's College London London UK
| | | | - Marc W. van der Kamp
- Centre of Computational Chemistry, School of Chemistry University of Bristol Bristol UK
- School of Biochemistry, Biomedical Sciences Building University of Bristol Bristol UK
| |
Collapse
|
10
|
A modeling and simulation perspective on the mechanism and function of respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:510-523. [DOI: 10.1016/j.bbabio.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
|
11
|
Biswas PK, Saha S, Paululat T, Schmittel M. Rotating Catalysts Are Superior: Suppressing Product Inhibition by Anchimeric Assistance in Four-Component Catalytic Machinery. J Am Chem Soc 2018; 140:9038-9041. [DOI: 10.1021/jacs.8b04437] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Thomas Paululat
- Universität Siegen, Organische Chemie II, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| |
Collapse
|
12
|
Sielaff H, Duncan TM, Börsch M. The regulatory subunit ε in Escherichia coli F OF 1-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:775-788. [PMID: 29932911 DOI: 10.1016/j.bbabio.2018.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
F-type ATP synthases are extraordinary multisubunit proteins that operate as nanomotors. The Escherichia coli (E. coli) enzyme uses the proton motive force (pmf) across the bacterial plasma membrane to drive rotation of the central rotor subunits within a stator subunit complex. Through this mechanical rotation, the rotor coordinates three nucleotide binding sites that sequentially catalyze the synthesis of ATP. Moreover, the enzyme can hydrolyze ATP to turn the rotor in the opposite direction and generate pmf. The direction of net catalysis, i.e. synthesis or hydrolysis of ATP, depends on the cell's bioenergetic conditions. Different control mechanisms have been found for ATP synthases in mitochondria, chloroplasts and bacteria. This review discusses the auto-inhibitory behavior of subunit ε found in FOF1-ATP synthases of many bacteria. We focus on E. coli FOF1-ATP synthase, with insights into the regulatory mechanism of subunit ε arising from structural and biochemical studies complemented by single-molecule microscopy experiments.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
13
|
Ma W, Whitley KD, Chemla YR, Luthey-Schulten Z, Schulten K. Free-energy simulations reveal molecular mechanism for functional switch of a DNA helicase. eLife 2018; 7:34186. [PMID: 29664402 PMCID: PMC5973834 DOI: 10.7554/elife.34186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/16/2018] [Indexed: 12/30/2022] Open
Abstract
Helicases play key roles in genome maintenance, yet it remains elusive how these enzymes change conformations and how transitions between different conformational states regulate nucleic acid reshaping. Here, we developed a computational technique combining structural bioinformatics approaches and atomic-level free-energy simulations to characterize how the Escherichia coli DNA repair enzyme UvrD changes its conformation at the fork junction to switch its function from unwinding to rezipping DNA. The lowest free-energy path shows that UvrD opens the interface between two domains, allowing the bound ssDNA to escape. The simulation results predict a key metastable 'tilted' state during ssDNA strand switching. By simulating FRET distributions with fluorophores attached to UvrD, we show that the new state is supported quantitatively by single-molecule measurements. The present study deciphers key elements for the 'hyper-helicase' behavior of a mutant and provides an effective framework to characterize directly structure-function relationships in molecular machines.
Collapse
Affiliation(s)
- Wen Ma
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Champaign, United States.,Beckman Institute for Advanced Science and Technology, Champaign, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Kevin D Whitley
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Champaign, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Yann R Chemla
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Champaign, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Champaign, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Zaida Luthey-Schulten
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Champaign, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Champaign, United States.,Beckman Institute for Advanced Science and Technology, Champaign, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Klaus Schulten
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Champaign, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Champaign, United States.,Beckman Institute for Advanced Science and Technology, Champaign, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| |
Collapse
|
14
|
Cao K, Li N, Wang H, Cao X, He J, Zhang B, He QY, Zhang G, Sun X. Two zinc-binding domains in the transporter AdcA from Streptococcus pyogenes facilitate high-affinity binding and fast transport of zinc. J Biol Chem 2018; 293:6075-6089. [PMID: 29491141 DOI: 10.1074/jbc.m117.818997] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/25/2018] [Indexed: 11/06/2022] Open
Abstract
Zinc is an essential metal in bacteria. One important bacterial zinc transporter is AdcA, and most bacteria possess AdcA homologs that are single-domain small proteins due to better efficiency of protein biogenesis. However, a double-domain AdcA with two zinc-binding sites is significantly overrepresented in Streptococcus species, many of which are major human pathogens. Using molecular simulation and experimental validations of AdcA from Streptococcus pyogenes, we found here that the two AdcA domains sequentially stabilize the structure upon zinc binding, indicating an organization required for both increased zinc affinity and transfer speed. This structural organization appears to endow Streptococcus species with distinct advantages in zinc-depleted environments, which would not be achieved by each single AdcA domain alone. This enhanced zinc transport mechanism sheds light on the significance of the evolution of the AdcA domain fusion, provides new insights into double-domain transporter proteins with two binding sites for the same ion, and indicates a potential target of antimicrobial drugs against pathogenic Streptococcus species.
Collapse
Affiliation(s)
- Kun Cao
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Nan Li
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Hongcui Wang
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Xin Cao
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Jiaojiao He
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Bing Zhang
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Qing-Yu He
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Gong Zhang
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Xuesong Sun
- From the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| |
Collapse
|
15
|
Cao K, Zhang J, Miao XY, Wei QX, Zhao XL, He QY, Sun X. Evolution and molecular mechanism of PitAs in iron transport of Streptococcus species. J Inorg Biochem 2018; 182:113-123. [PMID: 29455001 DOI: 10.1016/j.jinorgbio.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/24/2022]
Abstract
Iron is an essential element for almost all bacteria. The iron ATP-binding cassette (ABC) transporters located on the cell membrane affects bacterial virulence and infection. Although a variety of Fe3+-transporters have been found in bacteria, their evolutionary processes are rarely studied. Pneumococcal iron ABC transporter (PitA), a highly conserved Fe3+-transporter in most pathogenic bacteria, influences the capsule formation and virulence of bacteria. However, multiple sequence alignment revealed that PitA is expressed in four different variants in bacteria, and the structural complexity of these variants increases progressively. To more efficiently import Fe3+ ions into bacterial cells, bacteria have evolved a fused PitA from two separately expressed PitA-1 (SPD_0227) and PitA-2 (SPD_0226) proteins. Further biochemical characterization indicated that both PitA-1 and PitA-2 have weaker Fe3+-binding ability than their protein complex. More importantly, Glutathione S-Transferase (GST) pull-down and isothermal titration calorimetry (ITC) detection showed that PitA-1 and PitA-2 interact with each other via Tyr111-Leu37, Asn112-Gln38, Asn103-Leu33, and Asn103-Thr34. Further molecular dynamics (MD) simulations demonstrated that this interaction in full-length PitA is stronger than that in the two individual proteins. Deletion of PitA family genes could lead to decrease in the ability of iron acquisition and of adhesion and invasion of S. pneumoniae. Our study revealed the evolving state and molecular mechanism of Fe3+-transporter PitAs in bacteria and provided important information for understanding the iron transportation mechanism in bacteria and designing new antibacterial drugs.
Collapse
Affiliation(s)
- Kun Cao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xin-Yu Miao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiu-Xia Wei
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xin-Lu Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|