1
|
Panda S, Adam SM, Phan H, Rogler PJ, Hota PK, Helms JR, Pierce BS, Wijeratne GB, Karlin KD. Reactivity of a heterobinuclear heme-peroxo-Cu complex with para-substituted catechols shows a p K a-dependent change in mechanism. Chem Sci 2025; 16:2402-2412. [PMID: 39790985 PMCID: PMC11707526 DOI: 10.1039/d4sc05623j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
In biological systems, heme-copper oxidase (HCO) enzymes play a crucial role in the oxygen reduction reaction (ORR), where the pivotal O-O bond cleavage of the (heme)FeIII-peroxo-CuII intermediate is facilitated by active-site (peroxo core) hydrogen bonding followed by proton-coupled electron transfer (PCET) from a nearby (phenolic) tyrosine residue. A useful approach to comprehend the fundamental relationships among H-bonding/proton/H-atom donors and their abilities to induce O-O bond homolysis involves the investigation of synthetic, bioinspired model systems where the exogenous substrate properties (such as pK a and bond dissociation energy (BDE)) can be systematically altered. This report details the reactivity of a heme-peroxo-copper HCO model complex (LS-4DCHIm) toward a series of substituted catechol substrates that span a range of pK a and O-H bond BDE values, exhibiting different reaction mechanisms. Considering their interactions with the bridging peroxo ligand in LS-4DCHIm, the catechol substrates are importantly capable of one or two (i) H-bonds, (ii) proton transfers, and/or (iii) net H-atom transfers, thereby making them attractive, yet complex candidates for studying the redox chemistry of the metal-bound peroxide. A combination of spectroscopic studies and kinetic analysis implies that the suitable modulation of pK a and O-H bond BDE values of catechols result in either double proton transfer with the release of H2O2 or double PCET resulting in reductive O-O bond rupture. The distinguishing role of substrate properties in directing the mechanism and outcome of O2 protonation/reduction reactions is discussed in terms of designing O2-reduction catalysts based on biological inspiration.
Collapse
Affiliation(s)
- Sanjib Panda
- Department of Chemistry, Johns Hopkins University Baltimore Maryland 21218 USA
| | - Suzanne M Adam
- Department of Chemistry, Johns Hopkins University Baltimore Maryland 21218 USA
| | - Hai Phan
- Department of Chemistry, Johns Hopkins University Baltimore Maryland 21218 USA
| | - Patrick J Rogler
- Department of Chemistry, Johns Hopkins University Baltimore Maryland 21218 USA
| | - Pradip Kumar Hota
- Department of Chemistry, Johns Hopkins University Baltimore Maryland 21218 USA
| | - Joshua R Helms
- Department of Chemistry & Biochemistry, The University of Alabama Tuscaloosa Alabama 35487 USA
| | - Brad S Pierce
- Department of Chemistry & Biochemistry, The University of Alabama Tuscaloosa Alabama 35487 USA
| | - Gayan B Wijeratne
- Department of Chemistry & Biochemistry, The University of Alabama Tuscaloosa Alabama 35487 USA
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University Baltimore Maryland 21218 USA
| |
Collapse
|
2
|
Molla M, Saha A, Barman SK, Mandal S. Monomeric Fe(III)-Hydroxo and Fe(III)-Aqua Complexes Display Oxidative Asynchronous Hydrogen Atom Abstraction Reactivity. Chemistry 2024; 30:e202401163. [PMID: 38953593 DOI: 10.1002/chem.202401163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
This paper presents the synthesis and characterization of a series of novel monomeric aqua-ligated iron(III) complexes, [FeIII(L5R)(OH2)]2+ (R=OMe, H, Cl, NO2), supported by an amide-containing pentadentate N5 donor ligand, L5R [HL5R=2-(((1-methyl-1H-imidazol-2-yl)methyl)(pyridin-2-yl-methyl)amino)-N-(5-R-quinolin-8-yl)acetamide]. The complexes were characterized by various spectroscopic and analytical techniques, including electrochemistry and magnetic measurements. The Fe(III)-hydroxo complexes, [FeIII(L5R)(OH)]1+, were generated in situ by deprotonating the corresponding aqua complexes in a pH ~7 aqueous medium. In another way, adding one equivalent of a base to a methanolic solution of the Fe(III)-aqua complexes also produced the Fe(III)-hydroxo complexes. The study uses linoleic fatty acid as a substrate to explore the hydrogen atom abstraction (HAA) reactivity of both hydroxo and aqua complexes. The investigation highlights the substitution effect of the L5R ligand on reactivity, revealing a higher rate when an electron-withdrawing group is present. Hammett analyses and(or) determination of the asynchronicity factor (η) suggest an oxidative asynchronous concerted proton-electron transfer (CPET) pathway for the HAA reactions. Aqua complexes exhibited a higher asynchronicity in CPET, resulting in higher reaction rates than their hydroxo analogs. Overall, the work provides insights into the beneficial role of a higher imbalance in electron-transfer-proton-transfer (ET-PT) contributions in HAA reactivity.
Collapse
Affiliation(s)
- Mofijul Molla
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Anannya Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, 140306, India
| | - Suman K Barman
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, 140306, India
| | - Sukanta Mandal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
3
|
Lee Y, Moon D, Cho J. Controlling Redox Potential of a Manganese(III)-Bis(hydroxo) Complex through Protonation and the Hydrogen-Atom Transfer Reactivity. J Am Chem Soc 2024; 146:15796-15805. [PMID: 38829358 DOI: 10.1021/jacs.4c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
A series of mononuclear manganese(III)-hydroxo and -aqua complexes, [MnIII(TBDAP)(OH)2]+ (1), [MnIII(TBDAP)(OH)(OH2)]2+ (2) and [MnIII(TBDAP)(OH2)2]3+ (3), were prepared from a manganese(II) precursor and confirmed using various methods including X-ray crystallography. Thermodynamic analysis showed that protonation from hydroxo to aqua species resulted in increased redox potentials (E1/2) in the order of 1 (-0.15 V) < 2 (0.56 V) < 3 (1.11 V), while pKa values exhibited a reverse trend in the order of 3 (3.87) < 2 (11.84). Employing the Bordwell Equation, the O-H bond dissociation free energies (BDFE) of [MnII(TBDAP)(OH)(OH2)]+ and [MnII(TBDAP)(OH2)2]2+, related to the driving force of 1 and 2 in hydrogen atom transfer (HAT), were determined as 75.3 and 77.3 kcal mol-1, respectively. It was found that the thermodynamic driving force of 2 in HAT becomes greater than that of 1 as the redox potential of 2 increases through protonation from 1 to 2. Kinetic studies on electrophilic reactions using a variety of substrates revealed that 1 is only weakly reactive with O-H bonds, whereas 2 can activate aliphatic C-H bonds in addition to O-H bonds. The reaction rates increased by 1.4 × 104-fold for the O-H bonds by 2 over 1, which was explained by the difference in BDFE and the tunneling effect. Furthermore, 3, possessing the highest redox potential value, was found to undergo an aromatic C-H bond activation reaction under mild conditions. These results provide valuable insights into enhancing electrophilic reactivity by modulating the redox potential of manganese(III)-hydroxo and -aqua complexes through protonation.
Collapse
Affiliation(s)
- Yuri Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Shaik S. My Vision of Electric-Field-Aided Chemistry in 2050. ACS PHYSICAL CHEMISTRY AU 2024; 4:191-201. [PMID: 38800723 PMCID: PMC11117677 DOI: 10.1021/acsphyschemau.3c00064] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 05/29/2024]
Abstract
This manuscript outlines my outlook on the development of electric-field (EF)-mediated-chemistry and the vision of its state by 2050. I discuss applications of oriented-external electric-fields (OEEFs) on chemical reactions and proceed with relevant experimental verifications. Subsequently, the Perspective outlines other ways of generating EFs, e.g., by use of pH-switchable charges, ionic additives, water droplets, and so on. A special section summarizes conceptual principles for understanding and predicting OEEF effects, e.g., the "reaction-axis rule", the capability of OEEFs to act as tweezers that orient reactants and accelerate their reaction, etc. Finally, I discuss applications of OEEFs in continuous-flow setups, which may, in principle, scale-up to molar concentrations. The Perspective ends with the vision that by 2050, OEEF usage will change chemical education, if not also the art of making new molecules.
Collapse
Affiliation(s)
- Sason Shaik
- Institute of Chemistry, The
Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
5
|
Chen J, Yang T, Feng S, Wang L, Xie J, Liu Y. C-H Bond Activation by a Seven-Coordinate Bipyridine-Bipyrazole Ruthenium(IV) Oxo Complex. Inorg Chem 2024; 63:4790-4796. [PMID: 38422551 DOI: 10.1021/acs.inorgchem.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Ruthenium-oxo species with high coordination numbers have long been proposed as active intermediates in catalytic oxidation chemistry. By employing a tetradentate bipyridine-bipyrazole ligand, we herein reported the synthesis of a seven-coordinate (CN7) ruthenium(IV) oxo complex, [RuIV(tpz)(pic)2(O)]2+ (RuIVO) (tpz = 6,6'-di(1H-pyrazol-1-yl)-2,2'-bipyridine, pic = 4-picoline), which exhibits high activity toward the oxidation of alkylaromatic hydrocarbons. The large kinetic isotope effects (KIE) for the oxidation of DHA/DHA-d4 (KIE = 10.3 ± 0.1) and xanthene/xanthene-d2 (KIE = 17.2 ± 0.1), as well as the linear relationship between log (rate constants) and bond dissociation energies of alkylaromatics, confirmed a mechanism of hydrogen atom abstraction.
Collapse
Affiliation(s)
- Jing Chen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Tingting Yang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Sushan Feng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Leiyu Wang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jianhui Xie
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yingying Liu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
6
|
Dubey KD, Stuyver T, Shaik S. Local Electric Fields: From Enzyme Catalysis to Synthetic Catalyst Design. J Phys Chem B 2022; 126:10285-10294. [PMID: 36469939 DOI: 10.1021/acs.jpcb.2c06422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This Mini-Review Article outlines recent advances in the study of local electric field (LEF) governed enzyme catalysis and the application of the LEF principle in synthetic catalyst design. We start by discussing the electrostatics principles that drive enzyme catalysis, and its experimental verifications through vibrational Stark spectroscopy. Subsequently, we describe aspects of LEFs other than catalysis, i.e., induction of mechanistic crossovers, among others. Here, we focus on the early work done using computational tools, along with some recent contributions. Following an in-depth discussion of the role of LEFs in enzyme catalysis, we then highlight some recent works on designed local electric fields (D-LEF) and their applications in organic synthesis. Subsequently, we turn to D-LEFs in synthetic enzymes and supramolecular systems (cf. the work by the Head-Gordon group). We end by discussing some of the software packages that have been developed to analyze local electric fields computationally. Overall, the present Mini-Review Article paints an insightful picture of the current state of the art using LEF in enzyme catalysis and its application for further bioengineering and synthetic organic frameworks in a broad perspective.
Collapse
Affiliation(s)
- Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, Gautam Buddha Nagar, Uttar Pradesh201314, India
| | - Thijs Stuyver
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Sason Shaik
- The Hebrew University, Institute of Chemistry, Edmond J. Safra Campus at Givat Ram, Jerusalem, 9190401Israel
| |
Collapse
|
7
|
Cha J, Lee E, Yandulov DV. Mechanistic Studies for Pd(II)(O 2) Reduction Generating Pd(0) and H 2O: Formation of Pd(OH) 2 as a Key Intermediate. Inorg Chem 2022; 61:14544-14552. [PMID: 36050901 DOI: 10.1021/acs.inorgchem.2c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular oxygen (O2) remains to be an ideal yet underutilized feedstock for the oxidative transformation of organic substrates and renewable energy systems such as fuel cells. Palladium (Pd) has shown particular promise in enabling these applications. The present study describes a Pd-mediated O2 reduction to water via C-H activation of 9,10-dihydroanthracene (DHA) by a Pd(II) η2-peroxo complex 1O2. The reaction yields stoichiometric anthracene and Pd(0) product 1 and is notable in two respects. First, plots of concentrations of the reaction participants over time have distinctly sigmoidal shapes, indicating that conversion accelerates over time and implying autocatalysis. Second, the reaction proceeds via a genuine monometallic Pd(II) dihydroxide 1(OH)2 directly observed to grow and decay as an intermediate. Confirming its role as an intermediate, the dihydroxide 1(OH)2 was found to mediate C-H oxidation of DHA on par in activity with the peroxo compound 1O2. Mechanistic studies with density functional theory (DFT) calculations suggested that both 1O2 and 1(OH)2 react with DHA by hydrogen atom transfer (HAT) and that autocatalysis in the 1O2 reaction results from oxidative addition of the initial Pd(II) complex 1O2 to the Pd(0) product 1. This reaction forms a transient bis(μ-oxo) Pd(II) dimer 1O21 that is more active in the HAT oxidation of DHA than the initial 1O2.
Collapse
Affiliation(s)
- Jeongmin Cha
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea.,Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Dmitry V Yandulov
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States.,Department of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 117418, Russia
| |
Collapse
|
8
|
Wu GL, Zheng CY. MODELS FOR LIPOXYGENASE WITH TWO ALKOXIDE–Fe(III) CENTERS: SYNTHESIS, STRUCTURES, AND PROPERTIES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622040151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Weberg AB, Murphy RP, Tomson NC. Oriented internal electrostatic fields: an emerging design element in coordination chemistry and catalysis. Chem Sci 2022; 13:5432-5446. [PMID: 35694353 PMCID: PMC9116365 DOI: 10.1039/d2sc01715f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
The power of oriented electrostatic fields (ESFs) to influence chemical bonding and reactivity is a phenomenon of rapidly growing interest. The presence of strong ESFs has recently been implicated as one of the most significant contributors to the activity of select enzymes, wherein alignment of a substrate's changing dipole moment with a strong, local electrostatic field has been shown to be responsible for the majority of the enzymatic rate enhancement. Outside of enzymology, researchers have studied the impacts of "internal" electrostatic fields via the addition of ionic salts to reactions and the incorporation of charged functional groups into organic molecules (both experimentally and computationally), and "externally" via the implementation of bulk fields between electrode plates. Incorporation of charged moieties into homogeneous inorganic complexes to generate internal ESFs represents an area of high potential for novel catalyst design. This field has only begun to materialize within the past 10 years but could be an area of significant impact moving forward, since it provides a means for tuning the properties of molecular complexes via a method that is orthogonal to traditional strategies, thereby providing possibilities for improved catalytic conditions and novel reactivity. In this perspective, we highlight recent developments in this area and offer insights, obtained from our own research, on the challenges and future directions of this emerging field of research.
Collapse
Affiliation(s)
- Alexander B Weberg
- R, oy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia Pennsylvania 19104 USA
| | - Ryan P Murphy
- R, oy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia Pennsylvania 19104 USA
| | - Neil C Tomson
- R, oy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
10
|
Zhang J, Lee YM, Seo MS, Fukuzumi S, Nam W. Acid Catalysis in the Oxidation of Substrates by Mononuclear Manganese(III)-Aqua Complexes. Inorg Chem 2022; 61:6594-6603. [PMID: 35442673 DOI: 10.1021/acs.inorgchem.2c00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acids are known to enhance the reactivities of metal-oxygen intermediates, such as metal-oxo, -hydroperoxo, -peroxo, and -superoxo complexes, in biomimetic oxidation reactions. Although metal-aqua (and metal-hydroxo) complexes have been shown to be potent oxidants in oxidation reactions, acid effects on the reactivities of metal-aqua complexes have never been investigated previously. In this study, a mononuclear manganese(III)-aqua complex, [(dpaq5NO2)MnIII(OH2)]2+ (1; dpaq5NO2 = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-ylacetamidate with an NO2 substituent at the 5 position), which is relatively stable in the presence of triflic acid (HOTf), is used in the investigation of acid-catalyzed oxidation reactions by metal-aqua complexes. As a result, we report a remarkable acid catalysis in the six-electron oxidation of anthracene by 1 in the presence of HOTf; anthraquinone is formed as the product. In the HOTf-catalyzed six-electron oxidation of anthracene by 1, the rate constant increases linearly with an increase of the HOTf concentration. Combined with the observed one-electron oxidation product, anthracene (derivative) radical cation, and the substitution effect at the 5 position of the dpaq ligand in 1 on the rate constants of the oxidation of anthracene, it is concluded that the oxidation of anthracene occurs via an acid-promoted electron transfer (APET) from anthracene to 1. The dependence of the rate constants of the APET from electron donors, including anthracene derivatives, to 1 on the driving force of electron transfer is also shown to be well fitted by the Marcus equation of outer-sphere electron transfer. To the best of our knowledge, this is the first example showing acid catalysis in the oxidation of substrates by metal(III)-aqua complexes.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.,Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Léonard NG, Chantarojsiri T, Ziller JW, Yang JY. Cationic Effects on the Net Hydrogen Atom Bond Dissociation Free Energy of High-Valent Manganese Imido Complexes. J Am Chem Soc 2022; 144:1503-1508. [PMID: 35041788 PMCID: PMC9118977 DOI: 10.1021/jacs.1c09583] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Local electric fields can alter energy landscapes to impart enhanced reactivity in enzymes and at surfaces. Similar fields can be generated in molecular systems using charged functionalities. Manganese(V) salen nitrido complexes (salen = N,N'-ethylenebis(salicylideneaminato)) appended with a crown ether unit containing Na+ (1-Na), K+, (1-K), Ba2+ (1-Ba), Sr2+ (1-Sr), La3+ (1-La), or Eu3+ (1-Eu) cation were investigated to determine the effect of charge on pKa, E1/2, and the net bond dissociation free energy (BDFE) of N-H bonds. The series, which includes the manganese(V) salen nitrido without an appended crown, spans 4 units of charge. Bounds for the pKa values of the transient imido complexes were used with the Mn(VI/V) reduction potentials to calculate the N-H BDFEs of the imidos in acetonitrile. Despite a span of >700 mV and >9 pKa units across the series, the hydrogen atom BDFE only spans ∼6 kcal/mol (between 73 and 79 kcal/mol). These results suggest that the incorporation of cationic functionalities is an effective strategy for accessing wide ranges of reduction potentials and pKa values while minimally affecting the BDFE, which is essential to modulating electron, proton, or hydrogen atom transfer pathways.
Collapse
Affiliation(s)
- Nadia G Léonard
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
12
|
Zhang J, Lee YM, Seo MS, Kim Y, Lee E, Fukuzumi S, Nam W. Oxidative versus basic asynchronous hydrogen atom transfer reactions of Mn(III)-hydroxo and Mn(III)-aqua complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00741j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen atom transfer (HAT) of metal-oxygen intermediates such as metal-oxo, -hydroxo and -superoxo species have so far been studied extensively. However, HAT reactions of metal-aqua complexes have yet to be...
Collapse
|
13
|
Fujimoto T, Hirata Y, Sugimoto H, Miyanishi M, Shiota Y, Yoshizawa K, Itoh S. C(sp 3)-H bond activation by the carboxylate-adduct of osmium tetroxide (OsO 4). Dalton Trans 2021; 51:1123-1130. [PMID: 34951431 DOI: 10.1039/d1dt03819b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of osmium tetroxide (OsO4) and carboxylate anions (acetate: X- = AcO- and benzoate: X- = BzO-) gave 1 : 1 adducts, [OsO4(X)]- (1X), the structures of which were determined by X-ray crystallographic analysis. In both cases, the carboxylate anion X coordinates to the osmium centre to generate a distorted trigonal bipyramidal osmium(VIII) complex. The carboxylate adducts show a negative shift of the redox potentials (E1/2) and a red shift of the νOsO stretches as compared to those of tetrahedral OsO4 itself. Despite the negative shift of E1/2, the reactivity of these adduct complexes 1X was enhanced compared to that of OsO4 in benzylic C(sp3)-H bond oxidation. The reaction obeyed the first-order kinetics on both 1X and the substrates, giving the second-order rate constant (k2), which exhibits a linear correlation with the C-H bond dissociation energy (BDEC-H) of the substrates (xanthene, 9,10-dihydroanthracene, fluorene and 1,2,3,4-tetrahydronaphthalene) and a kinetic deuterium isotope effect (KIE) of 9.7 (k2(xanthene-h2)/k2(xanthene-d2)). On the basis of these kinetic data together with the DFT calculation results, we propose a stepwise reaction mechanism involving rate-limiting benzylic hydrogen atom abstraction and subsequent rebound of the generated organic radical intermediate to a remaining oxido group on the osmium centre.
Collapse
Affiliation(s)
- Tomohiro Fujimoto
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuka Hirata
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideki Sugimoto
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Mayuko Miyanishi
- Institute for Material Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yoshihito Shiota
- Institute for Material Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Kazunari Yoshizawa
- Institute for Material Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Shinobu Itoh
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Panda C, Doyle LM, Gericke R, McDonald AR. Rapid Iron(III)-Fluoride-Mediated Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2021; 60:26281-26286. [PMID: 34582619 PMCID: PMC9298026 DOI: 10.1002/anie.202112683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 01/08/2023]
Abstract
We anticipate high-valent metal-fluoride species will be highly effective hydrogen atom transfer (HAT) oxidants because of the magnitude of the H-F bond (in the product) that drives HAT oxidation. We prepared a dimeric FeIII (F)-F-FeIII (F) complex (1) by reacting [FeII (NCCH3 )2 (TPA)](ClO4 )2 (TPA=tris(2-pyridylmethyl)amine) with difluoro(phenyl)-λ3 -iodane (difluoroiodobenzene). 1 was a sluggish oxidant, however, it was readily activated by reaction with Lewis or Brønsted acids to yield a monomeric [FeIII (TPA)(F)(X)]+ complex (2) where X=F/OTf. 1 and 2 were characterized using NMR, EPR, UV/Vis, and FT-IR spectroscopies and mass spectrometry. 2 was a remarkably reactive FeIII reagent for oxidative C-H activation, demonstrating reaction rates for hydrocarbon HAT comparable to the most reactive FeIII and FeIV oxidants.
Collapse
Affiliation(s)
- Chakadola Panda
- School of ChemistryTrinity College DublinThe University of Dublin, College GreenDublin 2Ireland
| | - Lorna M. Doyle
- School of ChemistryTrinity College DublinThe University of Dublin, College GreenDublin 2Ireland
| | - Robert Gericke
- School of ChemistryTrinity College DublinThe University of Dublin, College GreenDublin 2Ireland
- Current address: Helmholtz-Zentrum Dresden-Rossendorf e. V.Institute of Resource EcologyBautzner Landstrasse 40001328DresdenGermany
| | - Aidan R. McDonald
- School of ChemistryTrinity College DublinThe University of Dublin, College GreenDublin 2Ireland
| |
Collapse
|
15
|
Panda C, Doyle LM, Gericke R, McDonald AR. Rapid Iron(III)−Fluoride‐Mediated Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chakadola Panda
- School of Chemistry Trinity College Dublin The University of Dublin, College Green Dublin 2 Ireland
| | - Lorna M. Doyle
- School of Chemistry Trinity College Dublin The University of Dublin, College Green Dublin 2 Ireland
| | - Robert Gericke
- School of Chemistry Trinity College Dublin The University of Dublin, College Green Dublin 2 Ireland
- Current address: Helmholtz-Zentrum Dresden-Rossendorf e. V. Institute of Resource Ecology Bautzner Landstrasse 400 01328 Dresden Germany
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin, College Green Dublin 2 Ireland
| |
Collapse
|
16
|
Opalade AA, Hessefort L, Day VW, Jackson TA. Controlling the Reactivity of a Metal-Hydroxo Adduct with a Hydrogen Bond. J Am Chem Soc 2021; 143:15159-15175. [PMID: 34494835 DOI: 10.1021/jacs.1c06199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The enzymes manganese lipoxygenase (MnLOX) and manganese superoxide dismutase (MnSOD) utilize mononuclear Mn centers to effect their catalytic reactions. In the oxidized MnIII state, the active site of each enzyme contains a hydroxo ligand, and X-ray crystal structures imply a hydrogen bond between this hydroxo ligand and a cis carboxylate ligand. While hydrogen bonding is a common feature of enzyme active sites, the importance of this particular hydroxo-carboxylate interaction is relatively unexplored. In this present study, we examined a pair of MnIII-hydroxo complexes that differ by a single functional group. One of these complexes, [MnIII(OH)(PaPy2N)]+, contains a naphthyridinyl moiety capable of forming an intramolecular hydrogen bond with the hydroxo ligand. The second complex, [MnIII(OH)(PaPy2Q)]+, contains a quinolinyl moiety that does not permit any intramolecular hydrogen bonding. Spectroscopic characterization of these complexes supports a common structure, but with perturbations to [MnIII(OH)(PaPy2N)]+, consistent with a hydrogen bond. Kinetic studies using a variety of substrates with activated O-H bonds, revealed that [MnIII(OH)(PaPy2N)]+ is far more reactive than [MnIII(OH)(PaPy2Q)]+, with rate enhancements of 15-100-fold. A detailed analysis of the thermodynamic contributions to these reactions using DFT computations reveals that the former complex is significantly more basic. This increased basicity counteracts the more negative reduction potential of this complex, leading to a stronger O-H BDFE in the [MnII(OH2)(PaPy2N)]+ product. Thus, the differences in reactivity between [MnIII(OH)(PaPy2Q)]+ and [MnIII(OH)(PaPy2N)]+ can be understood on the basis of thermodynamic considerations, which are strongly influenced by the ability of the latter complex to form an intramolecular hydrogen bond.
Collapse
Affiliation(s)
- Adedamola A Opalade
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Logan Hessefort
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Victor W Day
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
17
|
Barman SK, Yang MY, Parsell TH, Green MT, Borovik AS. Semiempirical method for examining asynchronicity in metal-oxido-mediated C-H bond activation. Proc Natl Acad Sci U S A 2021; 118:e2108648118. [PMID: 34465626 PMCID: PMC8433561 DOI: 10.1073/pnas.2108648118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The oxidation of substrates via the cleavage of thermodynamically strong C-H bonds is an essential part of mammalian metabolism. These reactions are predominantly carried out by enzymes that produce high-valent metal-oxido species, which are directly responsible for cleaving the C-H bonds. While much is known about the identity of these transient intermediates, the mechanistic factors that enable metal-oxido species to accomplish such difficult reactions are still incomplete. For synthetic metal-oxido species, C-H bond cleavage is often mechanistically described as synchronous, proton-coupled electron transfer (PCET). However, data have emerged that suggest that the basicity of the M-oxido unit is the key determinant in achieving enzymatic function, thus requiring alternative mechanisms whereby proton transfer (PT) has a more dominant role than electron transfer (ET). To bridge this knowledge gap, the reactivity of a monomeric MnIV-oxido complex with a series of external substrates was studied, resulting in a spread of over 104 in their second-order rate constants that tracked with the acidity of the C-H bonds. Mechanisms that included either synchronous PCET or rate-limiting PT, followed by ET, did not explain our results, which led to a proposed PCET mechanism with asynchronous transition states that are dominated by PT. To support this premise, we report a semiempirical free energy analysis that can predict the relative contributions of PT and ET for a given set of substrates. These findings underscore why the basicity of M-oxido units needs to be considered in C-H functionalization.
Collapse
Affiliation(s)
- Suman K Barman
- Department of Chemistry, University of California Irvine, CA 92697;
| | - Meng-Yin Yang
- Department of Chemistry, University of California Irvine, CA 92697
| | | | - Michael T Green
- Department of Chemistry, University of California Irvine, CA 92697;
- Department of Molecular Biosciences and Biochemistry, University of California Irvine, CA 92697
| | - A S Borovik
- Department of Chemistry, University of California Irvine, CA 92697;
| |
Collapse
|
18
|
Synthesis, reactivity, and DFT studies of a series of non-heme alkoxoiron(III) complexes as models for lipoxygenase. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Dobbelaar E, Rauber C, Bonck T, Kelm H, Schmitz M, de Waal Malefijt ME, Klein JEMN, Krüger HJ. Combining Structural with Functional Model Properties in Iron Synthetic Analogue Complexes for the Active Site in Rabbit Lipoxygenase. J Am Chem Soc 2021; 143:13145-13155. [PMID: 34383499 DOI: 10.1021/jacs.1c04422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Iron complexes that model the structural and functional properties of the active iron site in rabbit lipoxygenase are described. The ligand sphere of the mononuclear pseudo-octahedral cis-(carboxylato)(hydroxo)iron(III) complex, which is completed by a tetraazamacrocyclic ligand, reproduces the first coordination shell of the active site in the enzyme. In addition, two corresponding iron(II) complexes are presented that differ in the coordination of a water molecule. In their structural and electronic properties, both the (hydroxo)iron(III) and the (aqua)iron(II) complex reflect well the only two essential states found in the enzymatic mechanism of peroxidation of polyunsaturated fatty acids. Furthermore, the ferric complex is shown to undergo hydrogen atom abstraction reactions with O-H and C-H bonds of suitable substrates, and the bond dissociation free energy of the coordinated water ligand of the ferrous complex is determined to be 72.4 kcal·mol-1. Theoretical investigations of the reactivity support a concerted proton-coupled electron transfer mechanism in close analogy to the initial step in the enzymatic mechanism. The propensity of the (hydroxo)iron(III) complex to undergo H atom abstraction reactions is the basis for its catalytic function in the aerobic peroxidation of 2,4,6-tri(tert-butyl)phenol and its role as a radical initiator in the reaction of dihydroanthracene with oxygen.
Collapse
Affiliation(s)
- Emiel Dobbelaar
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Christian Rauber
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Thorsten Bonck
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Harald Kelm
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Markus Schmitz
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Matina Eloïse de Waal Malefijt
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
| | - Johannes E M N Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
| | - Hans-Jörg Krüger
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
20
|
Léonard NG, Dhaoui R, Chantarojsiri T, Yang JY. Electric Fields in Catalysis: From Enzymes to Molecular Catalysts. ACS Catal 2021; 11:10923-10932. [DOI: 10.1021/acscatal.1c02084] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nadia G. Léonard
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Rakia Dhaoui
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
21
|
Salamone M, Galeotti M, Romero-Montalvo E, van Santen JA, Groff BD, Mayer JM, DiLabio GA, Bietti M. Bimodal Evans-Polanyi Relationships in Hydrogen Atom Transfer from C(sp 3)-H Bonds to the Cumyloxyl Radical. A Combined Time-Resolved Kinetic and Computational Study. J Am Chem Soc 2021; 143:11759-11776. [PMID: 34309387 PMCID: PMC8343544 DOI: 10.1021/jacs.1c05566] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 12/11/2022]
Abstract
The applicability of the Evans-Polanyi (EP) relationship to HAT reactions from C(sp3)-H bonds to the cumyloxyl radical (CumO•) has been investigated. A consistent set of rate constants, kH, for HAT from the C-H bonds of 56 substrates to CumO•, spanning a range of more than 4 orders of magnitude, has been measured under identical experimental conditions. A corresponding set of consistent gas-phase C-H bond dissociation enthalpies (BDEs) spanning 27 kcal mol-1 has been calculated using the (RO)CBS-QB3 method. The log kH' vs C-H BDE plot shows two distinct EP relationships, one for substrates bearing benzylic and allylic C-H bonds (unsaturated group) and the other one, with a steeper slope, for saturated hydrocarbons, alcohols, ethers, diols, amines, and carbamates (saturated group), in line with the bimodal behavior observed previously in theoretical studies of reactions promoted by other HAT reagents. The parallel use of BDFEs instead of BDEs allows the transformation of this correlation into a linear free energy relationship, analyzed within the framework of the Marcus theory. The ΔG⧧HAT vs ΔG°HAT plot shows again distinct behaviors for the two groups. A good fit to the Marcus equation is observed only for the saturated group, with λ = 58 kcal mol-1, indicating that with the unsaturated group λ must increase with increasing driving force. Taken together these results provide a qualitative connection between Bernasconi's principle of nonperfect synchronization and Marcus theory and suggest that the observed bimodal behavior is a general feature in the reactions of oxygen-based HAT reagents with C(sp3)-H donors.
Collapse
Affiliation(s)
- Michela Salamone
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Marco Galeotti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Eduardo Romero-Montalvo
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Jeffrey A. van Santen
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Benjamin D. Groff
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - James M. Mayer
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Gino A. DiLabio
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| |
Collapse
|
22
|
Crossland PM, Guo Y, Que L. Spontaneous Formation of an Fe/Mn Diamond Core: Models for the Fe/Mn Sites in Class 1c Ribonucleotide Reductases. Inorg Chem 2021; 60:8710-8721. [PMID: 34110143 PMCID: PMC8997264 DOI: 10.1021/acs.inorgchem.1c00684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A handful of oxygen-activating enzymes has recently been found to contain Fe/Mn active sites, like Class 1c ribonucleotide reductases and R2-like ligand-binding oxidase, which are closely related to their better characterized diiron cousins. These enzymes are proposed to form high-valent intermediates with Fe-O-Mn cores. Herein, we report the first examples of synthetic Fe/Mn complexes that mimic doubly bridged intermediates proposed for enzymatic oxygen activation. Fe K-edge extended X-ray absorption fine structure (EXAFS) analysis has been used to characterize the structures of each of these compounds. Linear compounds accurately model the Fe···Mn distances found in Fe/Mn proteins in their resting states, and doubly bridged diamond core compounds accurately model the distances found in high-valent biological intermediates. Unlike their diiron analogues, the paramagnetic nature of Fe/Mn compounds can be analyzed by EPR, revealing S = 1/2 signals that reflect antiferromagnetic coupling between the high-spin Fe(III) and Mn(III) units of heterobimetallic centers. These compounds undergo electron transfer with various ferrocenes, linear compounds being capable of oxidizing diacetyl ferrocene, a weak reductant, and diamond core compounds being capable of oxidizing acetyl ferrocene. Diamond core compounds can also perform HAT reactions from substrates with X-H bonds with bond dissociation free energies (BDFEs) up to 75 kcal/mol and are capable of oxidizing TEMPO-H at rates of 0.32-0.37 M-1 s-1, which are comparable to those reported for some mononuclear FeIII-OH and MnIII-OH compounds. However, such reactivity is not observed for the corresponding diiron compounds, a difference that Nature may have taken advantage of in evolving enzymes with heterobimetallic active sites.
Collapse
Affiliation(s)
- Patrick M. Crossland
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Mondal T, Shaik S, Kenttämaa H, Stuyver T. Modulating the radical reactivity of phenyl radicals with the help of distonic charges: it is all about electrostatic catalysis. Chem Sci 2021; 12:4800-4809. [PMID: 34163733 PMCID: PMC8179573 DOI: 10.1039/d0sc07111k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/16/2021] [Indexed: 11/21/2022] Open
Abstract
This manuscript reports the modulation of H-abstraction reactivity of phenyl radicals by (positive and negative) distonic ions. Specifically, we focus on the origins of this modulating effect: can the charged functional groups truly be described as "extreme forms of electron-withdrawing/donating substituents" - implying a through-bond mechanism - as argued in the literature, or is the modulation mainly caused by through-space effects? Our analysis indicates that the effect of the remote charges can be mimicked almost perfectly with the help of a purely electrostatic treatment, i.e. replacing the charged functional groups by a simple uniform electric field is sufficient to recover the quantitative reactivity trends. Hence, through-space effects dominate, whereas through-bond effects play a minor role at best. We elucidate our results through a careful Valence Bond (VB) analysis and demonstrate that such a qualitative analysis not only reveals through-space dominance, but also demonstrates a remarkable reversal in the reactivity trends of a given polarity upon a rational modification of the reaction partner. As such, our findings demonstrate that VB theory can lead to productive predictions about the behaviour of distonic radical ions.
Collapse
Affiliation(s)
- Totan Mondal
- Institute of Chemistry, The Hebrew University Jerusalem 91904 Israel
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University Jerusalem 91904 Israel
| | - Hilkka Kenttämaa
- Department of Chemistry, Purdue University West Lafayette Indiana 47907-1393 USA
| | - Thijs Stuyver
- Institute of Chemistry, The Hebrew University Jerusalem 91904 Israel
| |
Collapse
|
24
|
Weberg AB, McCollom SP, Thierer LM, Gau MR, Carroll PJ, Tomson NC. Using internal electrostatic fields to manipulate the valence manifolds of copper complexes. Chem Sci 2021; 12:4395-4404. [PMID: 34163703 PMCID: PMC8179517 DOI: 10.1039/d0sc06364a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A series of tetradentate tris(phosphinimine) ligands (R3P3tren) was developed and bound to CuI to form the trigonal pyramidal, C3v-symmetric cuprous complexes [R3P3tren-Cu][BArF4] (1PR3) (PR3 = PMe3, PMe2Ph, PMePh2, PPh3, PMe2(NEt2), BArF4 = B(C6F5)4). Electrochemical studies on the CuI complexes were undertaken, and the permethylated analog, 1PMe3, was found to display an unprecedentedly cathodic CuI/CuII redox potential (−780 mV vs. Fc/Fc+ in isobutyronitrile). Elucidation of the electronic structures of 1PR3via density functional theory (DFT) studies revealed atypical valence manifold configurations, resulting from strongly σ-donating phosphinimine moieties in the xy-plane that destabilize 2e (dxy/dx2−y2) orbital sets and uniquely stabilized a1 (dz2) orbitals. Support is provided that the a1 stabilizations result from intramolecular electrostatic fields (ESFs) generated from cationic character on the phosphinimine moieties in R3P3tren. This view is corroborated via 1-dimensional electrostatic potential maps along the z-axes of 1PR3 and their isostructural analogues. Experimental validation of this computational model is provided upon oxidation of 1PMe3 to the cupric complex [Me3P3tren-Cu][OTf]2 (2PMe3), which displays a characteristic Jahn–Teller distortion in the form of a see-saw, pseudo-Cs-symmetric geometry. A systematic anodic shift in the potential of the CuI/CuII redox couple as the steric bulk in the secondary coordination sphere increases is explained through the complexes' diminishing ability to access the ideal Cs-symmetric geometry upon oxidation. The observations and calculations discussed in this work support the presence of internal electrostatic fields within the copper complexes, which subsequently influence the complexes' properties via a method orthogonal to classic ligand field tuning. Secondary coordination sphere electrostatic effects tune the valence manifolds of copper centers, impacting molecular geometries, photophysical properties, and redox potentials.![]()
Collapse
Affiliation(s)
- Alexander B Weberg
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Samuel P McCollom
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Laura M Thierer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Michael R Gau
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Patrick J Carroll
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Neil C Tomson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
25
|
Shaik S, Danovich D, Joy J, Wang Z, Stuyver T. Electric-Field Mediated Chemistry: Uncovering and Exploiting the Potential of (Oriented) Electric Fields to Exert Chemical Catalysis and Reaction Control. J Am Chem Soc 2020; 142:12551-12562. [PMID: 32551571 DOI: 10.1021/jacs.0c05128] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This Perspective discusses oriented external-electric-fields (OEEF), and other electric-field types, as "smart reagents", which enable in principle control over wide-ranging aspects of reactivity and structure. We discuss the potential of OEEFs to control nonredox reactions and impart rate-enhancement and selectivity. An OEEF along the "reaction axis", which is the direction whereby electronic reorganization converts reactants' to products' bonding, will accelerate reactions, control regioselectivity, induce spin-state selectivity, and elicit mechanistic crossovers. Simply flipping the direction of the OEEF will lead to inhibition. Orienting the OEEF off the reaction axis enables control over stereoselectivity, enantioselectivity, and product selectivity. For polar/polarizable reactants, the OEEF itself will act as tweezers, which orient the reactants and drive their reaction. OEEFs also affect bond-dissociation energies and dissociation modes (covalent vs ionic), as well as alteration of molecular geometries and supramolecular aggregation. The "key" to gaining access to this toolbox provided by OEEFs is microscopic control over the alignment between the molecule and the applied field. We discuss the elegant experimental methods which have been used to verify the theoretical predictions and describe various alternative EEF sources and prospects for upscaling OEEF catalysis in solvents. We also demonstrate the numerous ways in which the OEEF effects can be mimicked by use of (designed) local-electric fields (LEFs), i.e., by embedding charges or dipoles into molecules. LEFs and OEEFs are shown to be equivalent and to obey the same ground rules. Outcomes are exemplified for Diels-Alder cycloadditions, oxidative addition of bonds by transition-metal complexes, H-abstractions by oxo-metal species, ionic cleavage of halogen bonds, methane activation, etc.
Collapse
Affiliation(s)
- Sason Shaik
- Institute of Chemistry, Edmond J. Safra Compus at Givat Ram, The Hebrew University, Jerusalem 91904, Israel
| | - David Danovich
- Institute of Chemistry, Edmond J. Safra Compus at Givat Ram, The Hebrew University, Jerusalem 91904, Israel
| | - Jyothish Joy
- Institute of Chemistry, Edmond J. Safra Compus at Givat Ram, The Hebrew University, Jerusalem 91904, Israel
| | - Zhanfeng Wang
- Institute of Chemistry, Edmond J. Safra Compus at Givat Ram, The Hebrew University, Jerusalem 91904, Israel
| | - Thijs Stuyver
- Institute of Chemistry, Edmond J. Safra Compus at Givat Ram, The Hebrew University, Jerusalem 91904, Israel.,Algemene Chemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
26
|
Mondal P, Lovisari M, Twamley B, McDonald AR. Fast Hydrocarbon Oxidation by a High‐Valent Nickel–Fluoride Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Prasenjit Mondal
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Marta Lovisari
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Brendan Twamley
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| |
Collapse
|
27
|
Mondal P, Lovisari M, Twamley B, McDonald AR. Fast Hydrocarbon Oxidation by a High‐Valent Nickel–Fluoride Complex. Angew Chem Int Ed Engl 2020; 59:13044-13050. [DOI: 10.1002/anie.202004639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Prasenjit Mondal
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Marta Lovisari
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Brendan Twamley
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| |
Collapse
|
28
|
Reckziegel A, Pietzonka C, Kraus F, Werncke CG. C-H Bond Activation by an Imido Cobalt(III) and the Resulting Amido Cobalt(II) Complex. Angew Chem Int Ed Engl 2020; 59:8527-8531. [PMID: 32119164 PMCID: PMC7318117 DOI: 10.1002/anie.201914718] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/31/2022]
Abstract
The 3d-metal mediated nitrene transfer is under intense scrutiny due to its potential as an atom economic and ecologically benign way for the directed amination of (un)functionalised C-H bonds. Here we present the isolation and characterisation of a rare, trigonal imido cobalt(III) complex, which bears a rather long cobalt-imido bond. It can cleanly cleave strong C-H bonds with a bond dissociation energy of up to 92 kcal mol-1 in an intermolecular fashion, unprecedented for imido cobalt complexes. This resulted in the amido cobalt(II) complex [Co(hmds)2 (NHt Bu)]- . Kinetic studies on this reaction revealed an H atom transfer mechanism. Remarkably, the cobalt(II) amide itself is capable of mediating H atom abstraction or stepwise proton/electron transfer depending on the substrate. A cobalt-mediated catalytic application for substrate dehydrogenation using an organo azide is presented.
Collapse
Affiliation(s)
- Alexander Reckziegel
- Fachbereich 15/ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Clemens Pietzonka
- Fachbereich 15/ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Florian Kraus
- Fachbereich 15/ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - C. Gunnar Werncke
- Fachbereich 15/ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
29
|
Reckziegel A, Pietzonka C, Kraus F, Werncke CG. C‐H‐Bindungsaktivierung durch einen Imidocobalt(III)‐ und den resultierenden Amidocobalt(II)‐Komplex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alexander Reckziegel
- Fachbereich 15/Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| | - Clemens Pietzonka
- Fachbereich 15/Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| | - Florian Kraus
- Fachbereich 15/Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| | - C. Gunnar Werncke
- Fachbereich 15/Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| |
Collapse
|
30
|
Stuyver T, Ramanan R, Mallick D, Shaik S. Oriented (Local) Electric Fields Drive the Millionfold Enhancement of the H-Abstraction Catalysis Observed for Synthetic Metalloenzyme Analogues. Angew Chem Int Ed Engl 2020; 59:7915-7920. [PMID: 32097514 DOI: 10.1002/anie.201916592] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/29/2020] [Indexed: 01/01/2023]
Abstract
This contribution follows the recent remarkable catalysis observed by Groves et al. in hydrogen-abstraction reactions by a) an oxoferryl porphyrin radical-cation complex [Por⋅+ FeIV (O)Lax ] and b) a hydroxoiron porphyrazine ferric complex [PyPzFeIII (OH)Lax ], both of which involve positively charged substituents on the outer circumference of the respective macrocyclic ligands. These charge-coronated complexes are analogues of the biologically important Compound I (Cpd I) and synthetic hydroxoferric species, respectively. We demonstrate that the observed enhancement of the H-abstraction catalysis for these systems is a purely electrostatic effect, elicited by the local charges embedded on the peripheries of the respective macrocyclic ligands. Our findings provide new insights into how electrostatics can be employed to tune the catalytic activity of metalloenzymes and can thus contribute to the future design of new and highly efficient hydrogen-abstraction catalysts.
Collapse
Affiliation(s)
- Thijs Stuyver
- Department of Organic Chemistry, The Hebrew Unviersity of Jerusalem, Jerusalem, 91904, Israel.,Algemene Chemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Rajeev Ramanan
- Department of Organic Chemistry, The Hebrew Unviersity of Jerusalem, Jerusalem, 91904, Israel.,Department of Chemistry, Michigan Technological University, Houghton, MI, USA
| | - Dibyendu Mallick
- Department of Organic Chemistry, The Hebrew Unviersity of Jerusalem, Jerusalem, 91904, Israel.,Department of Chemistry, Presidency University, Kolkata, 700073, India
| | - Sason Shaik
- Department of Organic Chemistry, The Hebrew Unviersity of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
31
|
Stuyver T, Ramanan R, Mallick D, Shaik S. Oriented (Local) Electric Fields Drive the Millionfold Enhancement of the H‐Abstraction Catalysis Observed for Synthetic Metalloenzyme Analogues. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Thijs Stuyver
- Department of Organic Chemistry The Hebrew Unviersity of Jerusalem Jerusalem 91904 Israel
- Algemene Chemie Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
| | - Rajeev Ramanan
- Department of Organic Chemistry The Hebrew Unviersity of Jerusalem Jerusalem 91904 Israel
- Department of Chemistry Michigan Technological University Houghton MI USA
| | - Dibyendu Mallick
- Department of Organic Chemistry The Hebrew Unviersity of Jerusalem Jerusalem 91904 Israel
- Department of Chemistry Presidency University Kolkata 700073 India
| | - Sason Shaik
- Department of Organic Chemistry The Hebrew Unviersity of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
32
|
Ding CW, Luo W, Zhou JY, Ma XJ, Chen GH, Zhou XP, Li D. Hydroxo Iron(III) Sites in a Metal-Organic Framework: Proton-Coupled Electron Transfer and Catalytic Oxidation of Alcohol with Molecular Oxygen. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45621-45628. [PMID: 31724842 DOI: 10.1021/acsami.9b15311] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metalloenzymes are powerful biocatalysts that can catalyze particular chemical reactions with high activity, selectivity, and specificity under mild conditions. Metal-organic frameworks (MOFs) composed of metal ions or metal clusters and organic ligands with defined cavities have the potential to impart enzyme-like catalytic activity and mimic metalloenzymes. Here, a new metal-organic framework implanted with hydroxo iron(III) sites with the structural and reactivity characteristics of iron-containing lipoxygenases is reported. Similar to lipoxygenases, the hydrogen atoms and electrons of the substrate can transfer to the hydroxo iron(III) sites, showing typical proton-coupled electron transfer behavior. In the reactivity mimicking biology system, similar to alcohol oxidase, the material also catalyses the oxidation of alcohol into aldehyde by using O2 with a high yield and 100% selectivity under mild conditions, without the use of a radical cocatalyst or photoexcitation. These results provide strong evidence for the high structural fidelity of enzymatically active sites in MOF materials, verifying that MOFs provide an ideal platform for designing biomimetic heterogeneous catalysts with high conversion efficiency and product selectivity.
Collapse
Affiliation(s)
- Chong-Wei Ding
- College of Chemistry and Materials Science , Jinan University , Guangzhou , Guangdong 510632 , P. R. China
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Wenzhi Luo
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Jie-Yi Zhou
- College of Chemistry and Materials Science , Jinan University , Guangzhou , Guangdong 510632 , P. R. China
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Xin-Jie Ma
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Guang-Hui Chen
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science , Jinan University , Guangzhou , Guangdong 510632 , P. R. China
| | - Dan Li
- College of Chemistry and Materials Science , Jinan University , Guangzhou , Guangdong 510632 , P. R. China
| |
Collapse
|
33
|
Tang L, Zhu L, Ener ME, Gao H, Wang Y, Groves JT, Spiro TG, Fang C. Photoinduced charge flow inside an iron porphyrazine complex. Chem Commun (Camb) 2019; 55:13606-13609. [PMID: 31657387 PMCID: PMC11076153 DOI: 10.1039/c9cc06193b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Tracking inorganic photochemistry with high resolution poses considerable challenges. Here, sub-picosecond electronic and structural motions and MLCT/d-d intersystem crossing in a cationic iron-porphyrazine are probed using ultrafast transient absorption, stimulated Raman spectroscopy, and quantum calculations. By delineating photoinduced energy relaxation, strategies for extending the lifetime of MLCT state are discussed.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Maraia E Ener
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | - Hongxin Gao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Yanli Wang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - John T Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| |
Collapse
|
34
|
Balcells D, Clot E, Macgregor SA, Maseras F, Perrin L. A Career in Catalysis: Odile Eisenstein. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- David Balcells
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, Oslo 0315, Norway
| | - Eric Clot
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Stuart A. Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Catalonia Spain
| | - Lionel Perrin
- Université de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INSA Lyon, ICBMS, CNRS UMR 5246, Equipe ITEMM, Bât Lederer, 1 rue V, Grignard, 69622 Villeurbanne France
| |
Collapse
|
35
|
Ehudin MA, Quist DA, Karlin KD. Enhanced Rates of C-H Bond Cleavage by a Hydrogen-Bonded Synthetic Heme High-Valent Iron(IV) Oxo Complex. J Am Chem Soc 2019; 141:12558-12569. [PMID: 31318198 PMCID: PMC6734939 DOI: 10.1021/jacs.9b01253] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Secondary coordination sphere interactions are critical in facilitating the formation, stabilization, and enhanced reactivity of high-valent oxidants required for essential biochemical processes. Herein, we compare the C-H bond oxidizing capabilities of spectroscopically characterized synthetic heme iron(IV) oxo complexes, F8Cmpd-II (F8 = tetrakis(2,6-difluorophenyl)porphyrinate), and a 2,6-lutidinium triflate (LutH+) Lewis acid adduct involving ferryl O-atom hydrogen-bonding, F8Cmpd-II(LutH+). Second-order rate constants utilizing C-H and C-D substrates were obtained by UV-vis spectroscopic monitoring, while products were characterized and quantified by EPR spectroscopy and gas chromatography (GC). With xanthene, F8Cmpd-II(LutH+) reacts 40 times faster (k2 = 14.2 M-1 s-1; -90 °C) than does F8Cmpd-II, giving bixanthene plus xanthone and the heme product [F8FeIIIOH2]+. For substrates with greater C-H bond dissociation energies (BDEs) F8Cmpd-II(LutH+) reacts with the second order rate constants k2(9,10-dihydroanthracene; DHA) = 0.485 M-1 s-1 and k2(fluorene) = 0.102 M-1 s-1 (-90 °C); by contrast, F8Cmpd-II is unreactive toward these substrates. For xanthene vs xanthene-(d2), large, nonclassical deuterium kinetic isotope effects are roughly estimated for both F8Cmpd-II and F8Cmpd-II(LutH+). The deuterated H-bonded analog, F8Cmpd-II(LutD+), was also prepared; for the reaction with DHA, an inverse KIE (compared to F8Cmpd-II(LutH+)) was observed. This work originates/inaugurates experimental investigation of the reactivity of authentic H-bonded heme-based FeIV═O compounds, critically establishing the importance of oxo H-bonding (or protonation) in heme complexes and enzyme active sites.
Collapse
Affiliation(s)
- Melanie A. Ehudin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
36
|
Kuimov VA, Gusarova NK, Malysheva SF, Kon’kova TV, Trofimov BA. Reduction of Acridine and 9-Chloroacridine with Red Phosphorus in the KOH/DMSO System. DOKLADY CHEMISTRY 2019. [DOI: 10.1134/s001250081907005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Barman SK, Jones JR, Sun C, Hill EA, Ziller JW, Borovik AS. Regulating the Basicity of Metal-Oxido Complexes with a Single Hydrogen Bond and Its Effect on C-H Bond Cleavage. J Am Chem Soc 2019; 141:11142-11150. [PMID: 31274298 DOI: 10.1021/jacs.9b03688] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The functionalization of C-H bonds is an essential reaction in biology and chemistry. Metalloenzymes that often exhibit this type of reactivity contain metal-oxido intermediates that are directly involved in the initial cleavage of the C-H bonds. Regulation of the cleavage process is achieved, in part, by hydrogen bonds that are proximal to the metal-oxido units, yet our understanding of their exact role(s) is still emerging. To gain further information into the role of H-bonds on C-H bond activation, a hybrid set of urea-containing tripodal ligands has been developed in which a single H-bond can be adjusted through changes in the properties of one ureayl N-H bond. This modularity is achieved by appending a phenyl ring with different para-substituents from one ureayl NH group. The ligands have been used to prepare a series of MnIII-oxido complexes, and a Hammett correlation was found between the pKa values of the complexes and the substituents on the phenyl ring that was explained within the context of changes to the H-bonds involving the MnIII-oxido unit. The complexes were tested for their reactivity toward 9,10-dihydroanthracene (DHA), and a Hammett correlation was found between the second-order rate constants for the reactions and the pKa values. Studies to determine activation parameters and the kinetic isotope effects are consistent with a mechanism in which rate-limiting proton transfer is an important contributor. However, additional reactivity studies with xanthene found a significant increase in the rate constant compared to DHA, even though the substrates have the same pKa(C-H) values. These results do not support a discrete proton-transfer/electron-transfer process, but rather an asynchronous mechanism in which the proton and electron are transferred unequally at the transition state.
Collapse
Affiliation(s)
- Suman K Barman
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Jason R Jones
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Chen Sun
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Ethan A Hill
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Joseph W Ziller
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - A S Borovik
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| |
Collapse
|
38
|
Liu Y, Lau TC. Activation of Metal Oxo and Nitrido Complexes by Lewis Acids. J Am Chem Soc 2019; 141:3755-3766. [DOI: 10.1021/jacs.8b13100] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yingying Liu
- Department of Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Tai-Chu Lau
- Department of Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| |
Collapse
|
39
|
Rice DB, Munasinghe A, Grotemeyer EN, Burr AD, Day VW, Jackson TA. Structure and Reactivity of (μ-Oxo)dimanganese(III,III) and Mononuclear Hydroxomanganese(III) Adducts Supported by Derivatives of an Amide-Containing Pentadentate Ligand. Inorg Chem 2019; 58:622-636. [PMID: 30525518 DOI: 10.1021/acs.inorgchem.8b02794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mononuclear MnIII-hydroxo and dinuclear (μ-oxo)dimanganese(III,III) complexes were prepared using derivatives of the pentadentate, amide-containing dpaq ligand (dpaq = 2-[bis(pyridin-2-ylmethyl)]amino- N-quinolin-8-yl-acetamidate). Each of these ligand derivatives (referred to as dpaq5R) contained a substituent R (where R = OMe, Cl, and NO2) at the 5-position of the quinolinyl group. Generation of the MnIII complexes was achieved by either O2 oxidation of MnII precursors (for [MnII(dpaq5OMe)]+ and [MnII(dpaq5Cl)]+ or PhIO oxidation (for [MnII(dpaq5NO2)]+). For each oxidized complex, 1H NMR experiments provided evidence of a water-dependent equilibrium between paramagnetic [MnIII(OH)(dpaq5R)]+ and an antiferromagnetically coupled [MnIIIMnIII(μ-O)(dpaq5R)2]2+ species in acetonitrile, with the addition of water favoring the MnIII-hydroxo species. This conversion could also be monitored by electronic absorption spectroscopy. Solid-state X-ray crystal structures for each [MnIIIMnIII(μ-O)(dpaq5R)2](OTf)2 complex revealed a nearly linear Mn-O-Mn core (angle of ca. 177°), with short Mn-O distances near 1.79 Å, and a Mn···Mn separation of 3.58 Å. X-ray crystallographic information was also obtained for the mononuclear [MnIII(OH)(dpaq5Cl)](OTf) complex, which has a short Mn-O(H) distance of 1.810(2) Å. The influence of the 5-substituted quinolinyl moiety on the electronic properties of the [MnIII(OH)(dpaq5R)]+ complexes was demonstrated through shifts in a number of 1H NMR resonances, as well as a steady increase in the MnIII/II cyclic voltammetry peak potential in the order [MnIII(OH)(dpaq5OMe)]+ < [MnIII(OH)(dpaq)]+ < [MnIII(OH)(dpaq5Cl)]+ < [MnIII(OH)(dpaq5NO2)]+. These changes in oxidizing power of the MnIII-hydroxo adducts translated to only modest rate enhancements for TEMPOH oxidation by the [MnIII(OH)(dpaq5R)]+ complexes, with the most reactive [MnIII(OH)(dpaq5NO2)]+ complex showing a second-order rate constant only 9-fold larger than that of the least reactive [MnIII(OH)(dpaq5OMe)]+ complex. These modest rate changes were understood on the basis of density functional theory (DFT)-computed p Ka values for the corresponding [MnII(OH2)(dpaq5R)]+ complexes. Collectively, the experimental and DFT results reveal that the 5-substituted quinolinyl groups have an inverse influence on electron and proton affinity for the MnIII-hydroxo unit.
Collapse
Affiliation(s)
- Derek B Rice
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Aruna Munasinghe
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Elizabeth N Grotemeyer
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Andrew D Burr
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Victor W Day
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Timothy A Jackson
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
40
|
Resa S, Millán A, Fuentes N, Crovetto L, Luisa Marcos M, Lezama L, Choquesillo-Lazarte D, Blanco V, Campaña AG, Cárdenas DJ, Cuerva JM. O–H and (CO)N–H bond weakening by coordination to Fe(ii). Dalton Trans 2019; 48:2179-2189. [DOI: 10.1039/c8dt04689a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coordination of hydroxyl/amide groups to Fe(ii) diminishes BDFEs of O–H and (CO)N–H bonds down to 76.0 and 80.5 kcal mol−1 respectively.
Collapse
|
41
|
Marko JA, Durgham A, Bretz SL, Liu W. Electrochemical benzylic oxidation of C–H bonds. Chem Commun (Camb) 2019; 55:937-940. [DOI: 10.1039/c8cc08768g] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical benzylic C–H oxidation reaction that is mediated by tert-butyl peroxyl radical is reported.
Collapse
Affiliation(s)
- Jason A. Marko
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- Ohio
- USA
| | - Anthony Durgham
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- Ohio
- USA
| | | | - Wei Liu
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- Ohio
- USA
| |
Collapse
|
42
|
Wegeberg C, Fernández-Alvarez VM, de Aguirre A, Frandsen C, Browne WR, Maseras F, McKenzie CJ. Photoinduced O 2-Dependent Stepwise Oxidative Deglycination of a Nonheme Iron(III) Complex. J Am Chem Soc 2018; 140:14150-14160. [PMID: 30347152 DOI: 10.1021/jacs.8b07455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The iron(III) complex [Fe(tpena)]2+ (tpena = N, N, N'-tris(2-pyridylmethyl)ethylendiamine- N'-acetate) undergoes irreversible O2-dependent N-demethylcarboxylation to afford [FeII(SBPy3)(MeCN)]2+ (SBPy3 = N, N-bis(2-pyridylmethyl)amine- N-ethyl-2-pyridine-2-aldimine), when irradiated with near-UV light. The loss of a mass equivalent to the glycyl group in a process involving consecutive C-C and C-N cleavages is documented by the measurement of the sequential production of CO2 and formaldehyde, respectively. Time-resolved UV-vis absorption, Mössbauer, EPR, and Raman spectroscopy have allowed the spectroscopic characterization of two iron-based intermediates along the pathway. The first of these, proposed to be a low-spin iron(II)-radical ligand complex, reacts with O2 in the rate-determining step to produce a putative alkylperoxide complex. DFT calculations suggest that this evolves into an Fe(IV)-oxo species, which can abstract a hydrogen atom from a cis methylene group of the ligand to give the second spectroscopically identified intermediate, a high-spin iron(III)-hydroxide of the product oxidized ligand, [FeIII(OH)(SBPy3)]2+. Reduction and exchange of the cohydroxo/water ligand produces the crystallographically characterized products [FeII(SBPy3)(X)]2+/3+, X = MeCN, [Zn(tpena)]+.
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M, Denmark.,Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , AG Groningen 9747 , The Netherlands
| | - Víctor M Fernández-Alvarez
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avgda. Països Catalans, 16 , 43007 Tarragona , Catalonia , Spain
| | - Adiran de Aguirre
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avgda. Països Catalans, 16 , 43007 Tarragona , Catalonia , Spain
| | - Cathrine Frandsen
- Department of Physics , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , AG Groningen 9747 , The Netherlands
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avgda. Països Catalans, 16 , 43007 Tarragona , Catalonia , Spain.,Departament de Química , Universitat Autònoma de Barcelona , 08193 Bellaterra , Catalonia , Spain
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M, Denmark
| |
Collapse
|
43
|
Sankaralingam M, Lee YM, Karmalkar DG, Nam W, Fukuzumi S. A Mononuclear Non-heme Manganese(III)–Aqua Complex as a New Active Oxidant in Hydrogen Atom Transfer Reactions. J Am Chem Soc 2018; 140:12695-12699. [DOI: 10.1021/jacs.8b07772] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Deepika G. Karmalkar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
44
|
Dhar D, Yee GM, Tolman WB. Effects of Charged Ligand Substituents on the Properties of the Formally Copper(III)-Hydroxide ([CuOH] 2+) Unit. Inorg Chem 2018; 57:9794-9806. [PMID: 30070473 PMCID: PMC6653640 DOI: 10.1021/acs.inorgchem.8b01529] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the goal of understanding how distal charge influences the properties and hydrogen atom transfer (HAT) reactivity of the [CuOH]2+ core proposed to be important in oxidation catalysis, the complexes [M]3[SO3LCuOH] (M = [K(18-crown-6)]+ or [K(crypt-222)]+) and [NMe3LCuOH]X (X = BArF4- or ClO4-) were prepared, in which SO3- or NMe3+ substituents occupy the para positions of the flanking aryl rings of the supporting bis(carboxamide)pyridine ligands. Structural and spectroscopic characterization showed that the [CuOH]+ cores in the corresponding complexes were similar, but cyclic voltammetry revealed the E1/2 value for the [CuOH]2+/[CuOH]+ couple to be nearly 0.3 V more oxidizing for the [NMe3LCuOH]2+ than the [SO3LCuOH]- species, with the latter influenced by interactions between the distal -SO3- substituents and K+ or Na+ counterions. Chemical oxidations of the complexes generated the corresponding [CuOH]2+ species as evinced by UV-vis spectroscopy. The rates of HAT reactions of these species with 9,10-dihydroanthracene to yield the corresponding [Cu(OH2)]2+ complexes and anthracene were measured, and the thermodynamics of the processes were evaluated via determination of the bond dissociation enthalpies (BDEs) of the product O-H bonds. The HAT rate for [SO3LCuOH]- was found to be ∼150 times faster than that for [NMe3LCuOH]2+, despite finding approximately the same BDEs for the product O-H bonds. Rationales for these observations and new insights into the roles of supporting ligand attributes on the properties of the [CuOH]2+ unit are presented.
Collapse
Affiliation(s)
| | | | - William B. Tolman
- Department of Chemistry, Washington University in St. Louis, Campus Box 1134, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
45
|
Zaragoza JPT, Siegler MA, Goldberg DP. A Reactive Manganese(IV)-Hydroxide Complex: A Missing Intermediate in Hydrogen Atom Transfer by High-Valent Metal-Oxo Porphyrinoid Compounds. J Am Chem Soc 2018. [PMID: 29542921 DOI: 10.1021/jacs.8b00350] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-valent metal-hydroxide species are invoked as critical intermediates in both catalytic, metal-mediated O2 activation (e.g., by Fe porphyrin in Cytochrome P450) and O2 production (e.g., by the Mn cluster in Photosystem II). However, well-characterized mononuclear MIV(OH) complexes remain a rarity. Herein we describe the synthesis of MnIV(OH)(ttppc) (3) (ttppc = tris(2,4,6-triphenylphenyl) corrole), which has been characterized by X-ray diffraction (XRD). The large steric encumbrance of the ttppc ligand allowed for isolation of 3. The complexes MnV(O)(ttppc) (4) and MnIII(H2O)(ttppc) (1·H2O) were also synthesized and structurally characterized, providing a series of Mn complexes related only by the transfer of hydrogen atoms. Both 3 and 4 abstract an H atom from the O-H bond of 2,4-di- tert-butylphenol (2,4-DTBP) to give a radical coupling product in good yield (3 = 90(2)%, 4 = 91(5)%). Complex 3 reacts with 2,4-DTBP with a rate constant of k2 = 2.73(12) × 104 M-1 s-1, which is ∼3 orders of magnitude larger than 4 ( k2 = 17.4(1) M-1 s-1). Reaction of 3 with a series of para-substituted 2,6-di- tert-butylphenol derivatives (4-X-2,6-DTBP; X = OMe, Me, tBu, H) gives rate constants in the range k2 = 510(10)-36(1.4) M-1 s-1 and led to Hammett and Marcus plot correlations. Together with kinetic isotope effect measurements, it is concluded that O-H cleavage occurs by a concerted H atom transfer (HAT) mechanism and that the MnIV(OH) complex is a much more powerful H atom abstractor than the higher-valent MnV(O) complex, or even some FeIV(O) complexes.
Collapse
Affiliation(s)
- Jan Paulo T Zaragoza
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Maxime A Siegler
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - David P Goldberg
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
46
|
Huang X, Groves JT. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chem Rev 2018; 118:2491-2553. [PMID: 29286645 PMCID: PMC5855008 DOI: 10.1021/acs.chemrev.7b00373] [Citation(s) in RCA: 657] [Impact Index Per Article: 93.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/20/2022]
Abstract
As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal-oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal-oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron-oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we envision that new enzymatic and synthetic transformations will emerge based on the radical processes mediated by metalloproteins and their synthetic analogs.
Collapse
Affiliation(s)
- Xiongyi Huang
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - John T. Groves
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
47
|
Affiliation(s)
- Paolo Pirovano
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green 2 Dublin Ireland
| | - Aidan R. McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green 2 Dublin Ireland
| |
Collapse
|
48
|
Ching WM, Zhou A, Klein JEMN, Fan R, Knizia G, Cramer CJ, Guo Y, Que L. Characterization of the Fleeting Hydroxoiron(III) Complex of the Pentadentate TMC-py Ligand. Inorg Chem 2017; 56:11129-11140. [DOI: 10.1021/acs.inorgchem.7b01459] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gerald Knizia
- Department
of Chemistry, Pennsylvania State University, 401A Chemistry Bldg; University Park, Pennsylvania 16802, United States
| | | | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | |
Collapse
|