1
|
Nguyen LNKT, Derra S, Hahn F. The Relationship between Substrate Structure and Selectivity of Ketoreduction in Multimodular Polyketide Synthases: A Comparative Study of A-Type Ketoreductases from Late Modules Using Complex Precursor Analogues. ACS Chem Biol 2025; 20:186-196. [PMID: 39772407 DOI: 10.1021/acschembio.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Ketoreductases (KRs) are domains in the reductive loops of type I polyketide synthases (PKSs) and are responsible for the majority of stereocenters in reduced polyketides. Although the highly stereoselective reduction of ACP-bound β-ketothioester intermediates by KRs is crucial for the overall functioning of PKSs, the substrate-dependent stereoselectivity of KRs is a factor that is not yet fully understood, especially for KR domains in late PKS modules that act on biosynthetic precursors with complex polyketidic moieties. We present studies on the three KR domains FosKR7, PlmKR6, and EryKR6 from the biosynthetic pathways of fostriecin, phoslactomycin, and erythromycin by in vitro assays using close surrogates of the octaketidic FosKR7 biosynthetic precursor, complex derivatives and a diketide in the form of their biomimetic N-acetylcysteamine thioesters. Supported by molecular modeling, specific interactions of the studied KR domains with the extended polyketide moieties of their natural precursors were identified and correlated to the differences in stereoselectivity observed in the in vitro assays. These results reinforce the importance of the substrate-dependent stereoselectivity of KR domains in PKSs and suggest more detailed experimental and structural studies with isolated KRs and full PKS modules that could ultimately lead to improved results in PKS engineering.
Collapse
Affiliation(s)
- Lisa N K T Nguyen
- Professur Organische Chemie IV, Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Sebastian Derra
- Professur Organische Chemie IV, Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Frank Hahn
- Professur Organische Chemie IV, Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
2
|
Wang D, Mao H, Zhao Z, Liu L, Chen Y, Li P. Reprogramming of the Aurantinin Polyketide Assembly Line to Synthesize Auritriacids by Excising an Atypical Enoyl-CoA Hydratase Domain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401708. [PMID: 38995095 PMCID: PMC11425284 DOI: 10.1002/advs.202401708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Modular polyketide synthases (PKSs) are capable of synthesizing diverse natural products with fascinating bioactivities. Canonical enoyl-CoA hydratases (ECHs) are components of the β-branching cassette that modifies the polyketide chain by adding a β-methyl branch. Herein, it is demonstrated that the deletion of an atypical ECHQ domain (featuring a Q280 residue) of Art21, a didomain protein contains an ECHQ domain and a thioesterase (TE) domain, reprograms the polyketide assembly line from synthesizing tetracyclic aurantinins (ARTs) to bicyclic auritriacids (ATAs) with much lower antibacterial activities. Genes encoding the ECHQ-TE didomain proteins distribute in many PKS gene clusters from different bacteria. Significantly, the ART PKS machinery can be directed to make ARTs, ATAs, or both of them by employing appropriate ECHQ-TE proteins, implying a great potential for using this reprogramming strategy in polyketide structure diversification.
Collapse
Affiliation(s)
- Dacheng Wang
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Huijin Mao
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zelian Zhao
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- School of Life SciencesYunnan UniversityKunming650500China
| | - Lilu Liu
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Yihua Chen
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Pengwei Li
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| |
Collapse
|
3
|
Chen L, Liu K, Hong J, Cui Z, He W, Wang Y, Deng Z, Tao M. The Discovery of Weddellamycin, a Tricyclic Polyene Macrolactam Antibiotic from an Antarctic Deep-Sea-Derived Streptomyces sp. DSS69, by Heterologous Expression. Mar Drugs 2024; 22:189. [PMID: 38667806 PMCID: PMC11051340 DOI: 10.3390/md22040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Polyene macrolactams are a special group of natural products with great diversity, unique structural features, and a wide range of biological activities. Herein, a cryptic gene cluster for the biosynthesis of putative macrolactams was disclosed from a sponge-associated bacterium, Streptomyces sp. DSS69, by genome mining. Cloning and heterologous expression of the whole biosynthetic gene cluster led to the discovery of weddellamycin, a polyene macrolactam bearing a 23/5/6 ring skeleton. A negative regulator, WdlO, and two positive regulators, WdlA and WdlB, involved in the regulation of weddellamycin production were unraveled. The fermentation titer of weddellamycin was significantly improved by overexpression of wdlA and wdlB and deletion of wdlO. Notably, weddellamycin showed remarkable antibacterial activity against various Gram-positive bacteria including MRSA, with MIC values of 0.10-0.83 μg/mL, and antifungal activity against Candida albicans, with an MIC value of 3.33 μg/mL. Weddellamycin also displayed cytotoxicity against several cancer cell lines, with IC50 values ranging from 2.07 to 11.50 µM.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Kai Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Jiali Hong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Zhanzhao Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Weijun He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Yemin Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.C.); (K.L.); (J.H.); (Z.C.); (W.H.); (Y.W.); (Z.D.)
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
4
|
Kim MC, Winter JM, Cullum R, Smith AJ, Fenical W. Expanding the Utility of Bioinformatic Data for the Full Stereostructural Assignments of Marinolides A and B, 24- and 26-Membered Macrolactones Produced by a Chemically Exceptional Marine-Derived Bacterium. Mar Drugs 2023; 21:367. [PMID: 37367692 DOI: 10.3390/md21060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Marinolides A and B, two new 24- and 26-membered bacterial macrolactones, were isolated from the marine-derived actinobacterium AJS-327 and their stereostructures initially assigned by bioinformatic data analysis. Macrolactones typically possess complex stereochemistry, the assignments of which have been one of the most difficult undertakings in natural products chemistry, and in most cases, the use of X-ray diffraction methods and total synthesis have been the major methods of assigning their absolute configurations. More recently, however, it has become apparent that the integration of bioinformatic data is growing in utility to assign absolute configurations. Genome mining and bioinformatic analysis identified the 97 kb mld biosynthetic cluster harboring seven type I polyketide synthases. A detailed bioinformatic investigation of the ketoreductase and enoylreductase domains within the multimodular polyketide synthases, coupled with NMR and X-ray diffraction data, allowed for the absolute configurations of marinolides A and B to be determined. While using bioinformatics to assign the relative and absolute configurations of natural products has high potential, this method must be coupled with full NMR-based analysis to both confirm bioinformatic assignments as well as any additional modifications that occur during biosynthesis.
Collapse
Affiliation(s)
- Min Cheol Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - Alexander J Smith
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
5
|
Hou A, Dickschat JS. Labelling studies in the biosynthesis of polyketides and non-ribosomal peptides. Nat Prod Rep 2023; 40:470-499. [PMID: 36484402 DOI: 10.1039/d2np00071g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2015 to 2022In this review, we discuss the recent advances in the use of isotopically labelled compounds to investigate the biosynthesis of polyketides, non-ribosomally synthesised peptides, and their hybrids. Also, we highlight the use of isotopes in the elucidation of their structures and investigation of enzyme mechanisms. The biosynthetic pathways of selected examples are presented in detail to reveal the principles of the discussed labelling experiments. The presented examples demonstrate that the application of isotopically labelled compounds is still the state of the art and can provide valuable information for the biosynthesis of natural products.
Collapse
Affiliation(s)
- Anwei Hou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, West 7th Avenue No. 32, 300308 Tianjin, China.,Institute of Microbiology, Jiangxi Academy of Sciences, Changdong Road No. 7777, 330096 Nanchang, China
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
6
|
Carretero-Molina D, Ortiz-López FJ, Gren T, Oves-Costales D, Martín J, Román-Hurtado F, Sparholt Jørgensen T, de la Cruz M, Díaz C, Vicente F, Blin K, Reyes F, Weber T, Genilloud O. Discovery of gargantulides B and C, new 52-membered macrolactones from Amycolatopsis sp. Complete absolute stereochemistry of the gargantulide family. Org Chem Front 2022. [DOI: 10.1039/d1qo01480c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gargantulides B and C are among the most complex bacterial polyketides discovered so far. A combination of NMR and genome-based bioinformatics analyses allowed us to complete and revise the absolute stereochemistry of the entire gargantulide family.
Collapse
Affiliation(s)
- Daniel Carretero-Molina
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Francisco Javier Ortiz-López
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Daniel Oves-Costales
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Fernando Román-Hurtado
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Tue Sparholt Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Mercedes de la Cruz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| |
Collapse
|
7
|
Wang D, Li P, Yan JL, Mao H, Liu L, Wang M, Chen M, Ye T, Chen Y. Assigning the stereochemical structures of aurantinin A and B with the assistance of biosynthetic investigations. Org Chem Front 2022. [DOI: 10.1039/d2qo01251k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereochemistry of aurantinin was determined by spectroscopic and computational analysis with the assistance of biosynthetic studies. The latter method provided critical evidence for the assignment of the configuration of the 3-ketosugar moiety.
Collapse
Affiliation(s)
- Dacheng Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Lei Yan
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Huijin Mao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lilu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Meng Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Ye
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen 518055, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Kim MC, Winter JM, Cullum R, Li Z, Fenical W. Complementary Genomic, Bioinformatics, and Chemical Approaches Facilitate the Absolute Structure Assignment of Ionostatin, a Linear Polyketide from a Rare Marine-Derived Actinomycete. ACS Chem Biol 2020; 15:2507-2515. [PMID: 32852937 DOI: 10.1021/acschembio.0c00526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new linear type-1 polyketide, ionostatin (1), has been fully defined using a combined genomic and bioinformatics approach coupled with confirmatory chemical analyses. The 41 carbon-containing polyether is the product of the 101 kbp ion biosynthetic cluster containing seven modular type-1 polyketide synthases. Ionostatin is composed of 15 chiral centers that were proposed using the stereospecificities installed by the different classes of ketoreductases and enoylreductases and confirmed by rigorous NMR analyses. Incorporated into the structure are two tetrahydrofuran rings that appear to be the product of stereospecific epoxidation, followed by stereospecific ring opening and cyclization. These transformations are proposed to be catalyzed by conserved enzymes analogous to those found in other bacterial-derived polyether biosynthetic clusters. Ionostatin shows moderate cancer cell cytotoxicity against U87 glioblastoma and SKOV3 ovarian carcinoma at 7.4 μg/mL.
Collapse
Affiliation(s)
- Min Cheol Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Jaclyn M. Winter
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhifei Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Moores Comprehensive Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Ojha SK, Singh PK, Mishra S, Pattnaik R, Dixit S, Verma SK. Response surface methodology based optimization and scale-up production of amylase from a novel bacterial strain, Bacillus aryabhattai KIIT BE-1. ACTA ACUST UNITED AC 2020; 27:e00506. [PMID: 32742945 PMCID: PMC7388185 DOI: 10.1016/j.btre.2020.e00506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022]
Abstract
A novel strain KIIT BE-1 isolated from a specialized environment, screened through starch iodine test from a set of eighty-five biodigestate isolates, produced amylase maximally when cultured for 48 h at 37 °C. The molecular and biochemical characterization confirmed it as a strain of Bacillus aryabhattai. It exhibited optimal amylase activity (3.20 U/ml) at 36 h post incubation with a media combination of starch and yeast extract for C-N source respectively. Statistical optimisation by response surface modeling showed R2 values of 0.9645 for biomass and 0.9831 for amylase activity, suggesting the significance of the model. The optimised medium (10.25 % starch, 5.0 % peptone, 5.18 % yeast extract, pH 7.3) enhanced the enzyme activity to 4.16 U/ml (1.39-fold) from 3.20 U/ml of un-optimised medium. Further, the biomass yield and the enzymatic activity in optimized medium and process conditions increased by 1.14 and 1.21 folds subjected to a 5 l scaled-up operation in a lab-scale bioreactor.
Collapse
Affiliation(s)
- Sanjay Kumar Ojha
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar, 751 024, India.,Pandorum Technologies Pvt. Ltd., Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City Phase 1, Bengaluru, 560 100, India
| | - Puneet Kumar Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar, 751 024, India
| | - Snehasish Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar, 751 024, India
| | - Ritesh Pattnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar, 751 024, India
| | - Shubha Dixit
- School of Pharmacy, Lloyd Institute of Management and Technology, PlotNo.11, Knowledge Park II, Greater Noida, 201310, India
| | - Suresh K Verma
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar, 751 024, India
| |
Collapse
|
10
|
Zhu M, Cen Y, Ye W, Li S, Zhang W. Recent Advances on Macrocyclic Trichothecenes, Their Bioactivities and Biosynthetic Pathway. Toxins (Basel) 2020; 12:E417. [PMID: 32585939 PMCID: PMC7354583 DOI: 10.3390/toxins12060417] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 01/23/2023] Open
Abstract
Macrocyclic trichothecenes are an important group of trichothecenes bearing a large ring. Despite the fact that many of trichothecenes are of concern in agriculture, food contamination, health care and building protection, the macrocyclic ones are becoming the research hotspot because of their diversity in structure and biologic activity. Several researchers have declared that macrocyclic trichothecenes have great potential to be developed as antitumor agents, due to the plenty of their compounds and bioactivities. In this review we summarize the newly discovered macrocyclic trichothecenes and their bioactivities over the last decade, as well as identifications of genes tri17 and tri18 involved in the trichothecene biosynthesis and putative biosynthetic pathway. According to the search results in database and phylogenetic trees generated in the review, the species of the genera Podostroma and Monosporascus would probably be great sources for producing macrocyclic trichothecenes. Moreover, we propose that the macrocyclic trichothecene roridin E could be formed via acylation or esterification of the long side chain linked with C-4 to the hydroxyl group at C-15, and vice versa. More assays and evidences are needed to support this hypothesis, which would promote the verification of the proposed pathway.
Collapse
Affiliation(s)
| | | | | | | | - Weimin Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.Z.); (Y.C.); (W.Y.); (S.L.)
| |
Collapse
|
11
|
Batista PR, Karas LJ, Viesser RV, de Oliveira CC, Gonçalves MB, Tormena CF, Rittner R, Ducati LC, de Oliveira PR. Dealing with Hydrogen Bonding on the Conformational Preference of 1,3-Aminopropanols: Experimental and Molecular Dynamics Approaches. J Phys Chem A 2019; 123:8583-8594. [PMID: 31517493 DOI: 10.1021/acs.jpca.9b05619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study expands the knowledge on the conformational preference of 1,3-amino alcohols in the gas phase and in solution. By employing Fourier transform infrared spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, density functional theory (DFT) calculations, quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) analysis, and molecular dynamics (MD), the compounds 3-aminopropan-1-ol (1), 3-methylaminopropan-1-ol (2), and 3-dimethylaminopropan-1-ol (3) are evaluated. The results show that the most stable conformation of each compound in the gas phase and in nonpolar solvents exhibited an O-H···N intramolecular hydrogen bond (IHB). Based on the experimental and theoretical OH-stretching frequencies, the IHB becomes stronger from 1 to 3. In addition, from the experimental NMR J-couplings, the IHB conformers are predominant in nonbasic solvents, representing 70-80% of the conformational equilibrium, while in basic solvents, such conformers only represent 10%. DFT calculations and QTAIM analysis in the gas phase support the occurrence of IHBs in these compounds. The MD simulation indicates that the non-hydrogen-bonded conformers are the lowest energy conformations in the solution because of molecular interactions with the solvent, while they are absent in the implicit solvation model based on density. NBO analysis suggests that methyl groups attached on the nitrogen atom affect the charge transfer energy involved in the IHB. This effect occurs mostly because of a decrease in the s-character of the LPN orbital along with weakening of the charge transfer from LPN to σ*OH, which is caused by an increase in the C-C-N bond angle.
Collapse
Affiliation(s)
- Patrick R Batista
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo , Av. Prof. Lineu Prestes , P.O. Box 748, 05508-000 São Paulo , São Paulo , Brazil
| | - Lucas J Karas
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Renan V Viesser
- Physical Organic Chemistry Laboratory, Institute of Chemistry , University of Campinas , P.O. Box 6154, 13083-970 Campinas , São Paulo , Brazil
| | - Cynthia C de Oliveira
- Academic Department of Physics , Federal Technological University of Paraná , 80230-901 Curitiba , Paraná , Brazil
| | - Marcos B Gonçalves
- Academic Department of Physics , Federal Technological University of Paraná , 80230-901 Curitiba , Paraná , Brazil
| | - Cláudio F Tormena
- Physical Organic Chemistry Laboratory, Institute of Chemistry , University of Campinas , P.O. Box 6154, 13083-970 Campinas , São Paulo , Brazil
| | - Roberto Rittner
- Physical Organic Chemistry Laboratory, Institute of Chemistry , University of Campinas , P.O. Box 6154, 13083-970 Campinas , São Paulo , Brazil
| | - Lucas C Ducati
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo , Av. Prof. Lineu Prestes , P.O. Box 748, 05508-000 São Paulo , São Paulo , Brazil
| | - Paulo R de Oliveira
- Conformational Analysis and Renewable Resources Laboratory, Department of Chemistry and Biology , Federal Technological University of Paraná , P.O. Box 5000, 81280-340 Curitiba , Paraná , Brazil
| |
Collapse
|
12
|
Xie X, Cane DE. pH-Rate profiles establish that polyketide synthase dehydratase domains utilize a single-base mechanism. Org Biomol Chem 2019; 16:9165-9170. [PMID: 30457629 DOI: 10.1039/c8ob02637h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FosDH1 from module 1 of the fostriecin polyketide synthase (PKS) catalyzes the dehydration of a 3-hydroxybutyryl-SACP to the (E)-3-butenoyl-SACP. The steady-state kinetic parameters, kcat and kcat/Km, were determined over the pH range 3.0 to 9.2 for the FosDH1-catalyzed dehydration of the N-acetycsteamine thioester, 3-hydroxybutyryl-SNAC (3), to (E)-3-butenoyl-SNAC (4). The pH rate profiles for both log(kcat) and log(kcat/Km) each corresponded to a single pH-dependent ionization to give an active site general base, with a calculated pKa 6.1 ± 0.2 for kcat and pKa 5.7 ± 0.1 for kcat/Km. These results are inconsistent with the commonly suggested "two-base" (base-acid) mechanism for the dehydratases of PKS and fatty acid biosynthesis and support a simple one-base mechanism in which the universally conserved active site His residue acts as the base to deprotonate C-2 of the substrate, then redonates the proton to the C-3 hydroxyl group to promote C-O bond-cleavage and elimination of water. The carboxylate of the paired Asp or Glu residue is thought to bind and orient the hydroxyl group of the substrate in the stereoelectonically favored conformation.
Collapse
Affiliation(s)
- Xinqiang Xie
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108, USA.
| | | |
Collapse
|
13
|
Xie X, Cane DE. Stereospecific Formation of Z-Trisubstituted Double Bonds by the Successive Action of Ketoreductase and Dehydratase Domains from trans-AT Polyketide Synthases. Biochemistry 2018; 57:3126-3129. [PMID: 29293329 PMCID: PMC5988919 DOI: 10.1021/acs.biochem.7b01253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Incubation of (±)-2-methyl-3-ketobutyryl-SNAC (3) and (±)-2-methyl-3-ketopentanoyl-SNAC (4) with BonKR2 or OxaKR5, ketoreductase domains from the bongkrekic acid (1) and oxazolomycin (2) polyketide synthases, in the presence of NADPH gave in each case the corresponding (2 R,3 S)-2-methyl-3-hydroxybutyryl-SNAC (5) or (2 R,3 S)-2-methyl-3-hydroxypentanoyl-SNAC (6) products, as established by chiral gas chromatography-mass spectrometry analysis of the derived methyl esters. Identical results were obtained by BonKR2- and OxaKR5-catalyzed reduction of chemoenzymatically prepared (2 R)-2-methyl-3-ketopentanoyl-EryACP6, (2 R)-2-methyl-3-ketobutyryl-BonACP2 (12), and (2 R)-2-methyl-3-ketopentanoyl-BonACP2 (13). The paired dehydratase domains, BonDH2 and OxaDH5, were then shown to catalyze the reversible syn dehydration of (2 R,3 S)-2-methyl-3-hydroxybutyryl-BonACP2 (14) to give the corresponding trisubstituted ( Z)-2-methylbutenoyl-BonACP2 (16).
Collapse
Affiliation(s)
- Xinqiang Xie
- Department of Chemistry, Brown University, Box H, Providence, Rhode Island 02912-9108, United States
| | - David E. Cane
- Department of Chemistry, Brown University, Box H, Providence, Rhode Island 02912-9108, United States
| |
Collapse
|
14
|
Liu C, Yuan M, Xu X, Wang L, Keatinge-Clay AT, Deng Z, Lin S, Zheng J. Substrate-bound structures of a ketoreductase from amphotericin modular polyketide synthase. J Struct Biol 2018; 203:135-141. [PMID: 29626512 DOI: 10.1016/j.jsb.2018.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 11/29/2022]
Abstract
Ketoreductase (KR) domains of modular polyketide synthases (PKSs) control the stereochemistry of C2 methyl and C3 hydroxyl substituents of polyketide intermediates. To understand the molecular basis of stereocontrol exerted by KRs, the crystal structure of a KR from the second module of the amphotericin PKS (AmpKR2) complexed with NADP+ and 2-methyl-3-oxopentanoyl-pantetheine was solved. This first ternary structure provides direct evidence to the hypothesis that a substrate enters into the active site of an A-type KR from the side opposite the coenzyme to generate an L-hydroxyl substituent. A comparison with the ternary complex of a G355T/Q364H mutant sheds light on the structural basis for stereospecificity toward the substrate C2 methyl substituent. Functional assays suggest the pantetheine handle shows obvious influence on the catalytic efficiency and the stereochemical outcome. Together, these findings extend our current understanding of the stereochemical control of PKS KR domains.
Collapse
Affiliation(s)
- Chenguang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meijuan Yuan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Shah DD, You YO, Cane DE. Stereospecific Formation of E- and Z-Disubstituted Double Bonds by Dehydratase Domains from Modules 1 and 2 of the Fostriecin Polyketide Synthase. J Am Chem Soc 2017; 139:14322-14330. [PMID: 28902510 DOI: 10.1021/jacs.7b08896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The dehydratase domain FosDH1 from module 1 of the fostriecin polyketide synthase (PKS) catalyzed the stereospecific interconversion of (3R)-3-hydroxybutyryl-FosACP1 (5) and (E)-2-butenoyl-FosACP1 (11), as established by a combination of direct LC-MS/MS and chiral GC-MS. FosDH1 did not act on either (3S)-3-hydroxybutyryl-FosACP1 (6) or (Z)-2-butenoyl-FosACP1 (12). FosKR2, the ketoreductase from module 2 of the fostriecin PKS that normally provides the natural substrate for FosDH2, was shown to catalyze the NADPH-dependent stereospecific reduction of 3-ketobutyryl-FosACP2 (23) to (3S)-3-hydroxybutyryl-FosACP2 (8). Consistent with this finding, FosDH2 catalyzed the interconversion of the corresponding triketide substrates (3R,4E)-3-hydroxy-4-hexenoyl-FosACP2 (18) and (2Z,4E)-2,4-hexadienoyl-FosACP2 (21). FosDH2 also catalyzed the stereospecific hydration of (Z)-2-butenoyl-FosACP2 (14) to (3S)-3-hydroxybutyryl-FosACP2 (8). Although incubation of FosDH2 with (3S)-3-hydroxybutyryl-FosACP2 (8) did not result in detectable accumulation of (Z)-2-butenoyl-FosACP2 (14), FosDH2 catalyzed the slow exchange of the 3-hydroxy group of 8 with [18O]-water. FosDH2 unexpectedly could also support the stereospecific interconversion of (3R)-3-hydroxybutyryl-FosACP2 (7) and (E)-2-butenoyl-FosACP2 (13).
Collapse
Affiliation(s)
- Dhara D Shah
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - Young-Ok You
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - David E Cane
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| |
Collapse
|
16
|
Cai W, Zhang W. Engineering modular polyketide synthases for production of biofuels and industrial chemicals. Curr Opin Biotechnol 2017; 50:32-38. [PMID: 28946011 DOI: 10.1016/j.copbio.2017.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Polyketide synthases (PKSs) are one of the most profound biosynthetic factories for producing polyketides with diverse structures and biological activities. These enzymes have been historically studied and engineered to make un-natural polyketides for drug discovery, and have also recently been explored for synthesizing biofuels and industrial chemicals due to their versatility and customizability. Here, we review recent advances in the mechanistic understanding and engineering of modular PKSs for producing polyketide-derived chemicals, and provide perspectives on this relatively new application of PKSs.
Collapse
Affiliation(s)
- Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States; Chan Zuckerberg Biohub, San Francisco, CA 94158, United States.
| |
Collapse
|
17
|
Xie X, Garg A, Khosla C, Cane DE. Elucidation of the Cryptic Methyl Group Epimerase Activity of Dehydratase Domains from Modular Polyketide Synthases Using a Tandem Modules Epimerase Assay. J Am Chem Soc 2017; 139:9507-9510. [PMID: 28682630 DOI: 10.1021/jacs.7b05502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dehydratase (DH) domains of cryptic function are often found in polyketide synthase (PKS) modules that produce epimerized (2S)-2-methyl-3-ketoacyl-ACP (acyl carrier protein) intermediates. A combination of tandem equilibrium isotope exchange (EIX) and a newly developed Tandem Modules Epimerase assay revealed the intrinsic epimerase activity of NanDH1 and NanDH5, from modules 1 and 5, respectively, of the nanchangmycin (1) PKS as well of NigDH1, from module 1 of the nigericin (3) PKS. Unexpectedly, all three epimerase-active DH domains were also found to possess intrinsic dehydratase activity, whereas the conventional DH domains, EryDH4, from module 4 of the erythromycin synthase, and NanDH2 from module 2 of the nanchangmycin synthase, were shown to have cryptic epimerase activity.
Collapse
Affiliation(s)
- Xinqiang Xie
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - Ashish Garg
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - Chaitan Khosla
- Departments of Chemical Engineering, Chemistry, and Biochemistry, Stanford University , Stanford, California 94305, United States
| | - David E Cane
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| |
Collapse
|
18
|
Xie X, Khosla C, Cane DE. Elucidation of the Stereospecificity of C-Methyltransferases from trans-AT Polyketide Synthases. J Am Chem Soc 2017; 139:6102-6105. [PMID: 28430424 DOI: 10.1021/jacs.7b02911] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S-Adenosyl methionine (SAM)-dependent C-methyltransferases are responsible for the C2-methylation of 3-ketoacyl-acyl carrier protein (ACP) intermediates to give the corresponding 2-methy-3-ketoacyl-ACP products during bacterial polyketide biosynthesis mediated by trans-AT polyketide synthases that lack integrated acyl transferase (AT) domains. A coupled ketoreductase (KR) assay was used to assign the stereochemistry of the C-methyltransferase-catalyzed reaction. Samples of chemoenzymatically generated 3-ketopentanoyl-ACP (9) were incubated with SAM and BonMT2 from module 2 of the bongkrekic acid polyketide synthase. The resulting 2-methyl-3-ketopentanoyl-ACP (10) was incubated separately with five (2R)- or (2S)-methyl specific KR domains. Analysis of the derived 2-methyl-3-hydroxypentanoate methyl esters (8) by chiral GC-MS established that the BonMT2-catalyzed methylation generated exclusively (2R)-2-methyl-3-ketopentanoyl-ACP ((2R)-10). Identical results were also obtained with three additional C-methyltransferases-BaeMT9, DifMT1, and MupMT1-from the bacillaene, difficidin, and mupirocin trans-AT polyketide synthases.
Collapse
Affiliation(s)
- Xinqiang Xie
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - Chaitan Khosla
- Departments of Chemical Engineering, Chemistry, and Biochemistry, Stanford University , Stanford, California 94305, United States
| | - David E Cane
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| |
Collapse
|