1
|
Barbor JP, Flesch KN, Chan M, Ang HR, Stoltz BM. Enantioselective Spirocyclization of Pd-Enolates and Isocyanates. Angew Chem Int Ed Engl 2025; 64:e202502583. [PMID: 40148236 PMCID: PMC12124958 DOI: 10.1002/anie.202502583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 03/29/2025]
Abstract
An enantioselective cyclization of Pd-enolates and isocyanates to form spirocyclic γ-lactams is reported. This reaction proceeds under mild reaction conditions and utilizes a novel Meldrum's acid derivative to achieve catalyst turnover, delivering enantioenriched products in up to 97% yield and 96% ee. Preliminary mechanistic investigations suggest that the reaction may proceed via the formation of higher-order species.
Collapse
Affiliation(s)
| | | | | | | | - Brian M. Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125 (USA)
| |
Collapse
|
2
|
Ma C, Guo JF, Xu SS, Mei TS. Recent Advances in Asymmetric Organometallic Electrochemical Synthesis (AOES). Acc Chem Res 2025; 58:399-414. [PMID: 39829007 DOI: 10.1021/acs.accounts.4c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
ConspectusIn recent years, our research group has dedicated significant effort to the field of asymmetric organometallic electrochemical synthesis (AOES), which integrates electrochemistry with asymmetric transition metal catalysis. On one hand, we have rationalized that organometallic compounds can serve as molecular electrocatalysts (mediators) to reduce overpotentials and enhance both the reactivity and selectivity of reactions. On the other hand, the conditions for asymmetric transition metal catalysis can be substantially improved through electrochemistry, enabling precise modulation of the transition metal's oxidation state by controlling electrochemical potentials and regulating the electron transfer rate via current adjustments. This synergistic approach addresses key challenges inherent in traditional asymmetric transition metal catalysis, particularly those related to the use of redox-active chemical reagents. Furthermore, the redox potentials of molecular electrocatalysts can be conveniently tuned by modifying their ligands, thereby governing the reaction regioselectivity and stereoselectivity. As a result, the AOES has emerged as a powerful and promising tool for the synthesis of chiral compounds.In this Account, we summarize and contextualize our recent efforts in the field of AOES. Our primary strategy involves leveraging the controllability of electrochemical potential and current to regulate the oxidation state of organometallics, thereby facilitating the desired reactions. An efficient asymmetric synthesis platform was established under mild conditions, significantly reducing the reliance on chemical redox reagents. Our research has been systematically categorized into three sections based on distinct electrolysis modes: asymmetric transition metal catalysis combined with anodic oxidation, cathodic reduction, and paired electrolysis. In each section, we highlight our innovative discoveries tailored to the unique characteristics of the respective electrolysis modes.In many transformations, transition metal-catalyzed reactions involving traditional chemical redox reagents and those utilizing electrochemistry exhibit similar reactivities. However, we also observed notable differences in certain cases. These findings include the following: (1) Enhanced efficiency in asymmetric electrochemical synthesis: for instance, the Rh-catalyzed enantioselective electrochemical functionalization of C-H bonds demonstrates superior efficiency. (2) Expanded scope of transformations: certain transformations, previously challenging in traditional transition metal catalysis, can be achieved through electrochemistry due to the tunability of redox potentials. A notable example is the enantioselective reductive coupling of aryl chlorides, which significantly expands the range of accessible transformations. Additionally, our mechanistic studies explore unique techniques intrinsic to electrochemistry, such as controlled potential electrolysis experiments, the impact of electrode materials on catalyst performance, and cyclic voltammetry studies. These investigations provide a more intuitive understanding of the behavior of metal catalysts through the study of electrochemical mechanisms, which can also guide the design of new catalytic systems.The advancements in this field offer a robust platform for environmentally friendly and sustainable selective asymmetric transformations. By integrating electrochemistry with transition metal catalysis, we have developed a versatile approach for organic synthesis that not only enhances the efficiency and selectivity of reactions but also reduces the environmental impact. We anticipate that this Account will stimulate further research and innovation in the realm of AOES, leading to the discovery of new catalytic systems and the development of more sustainable synthetic methodologies.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Shuo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
3
|
Chen XW, Li C, Gui YY, Yue JP, Zhou Q, Liao LL, Yang JW, Ye JH, Yu DG. Atropisomeric Carboxylic Acids Synthesis via Nickel-Catalyzed Enantioconvergent Carboxylation of Aza-Biaryl Triflates with CO 2. Angew Chem Int Ed Engl 2024; 63:e202403401. [PMID: 38527960 DOI: 10.1002/anie.202403401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Upgrading CO2 to value-added chiral molecules via catalytic asymmetric C-C bond formation is a highly important yet challenging task. Although great progress on the formation of centrally chiral carboxylic acids has been achieved, catalytic construction of axially chiral carboxylic acids with CO2 has never been reported to date. Herein, we report the first catalytic asymmetric synthesis of axially chiral carboxylic acids with CO2, which is enabled by nickel-catalyzed dynamic kinetic asymmetric reductive carboxylation of racemic aza-biaryl triflates. A variety of important axially chiral carboxylic acids, which are valuable but difficult to obtain via catalysis, are generated in an enantioconvergent version. This new methodology features good functional group tolerance, easy to scale-up, facile transformation and avoids cumbersome steps, handling organometallic reagents and using stoichiometric chiral materials. Mechanistic investigations indicate a dynamic kinetic asymmetric transformation process induced by chiral nickel catalysis.
Collapse
Affiliation(s)
- Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Chao Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qi Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jing-Wei Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
4
|
Dong H, Wang C. Cobalt-Catalyzed Asymmetric Reductive Alkenylation and Arylation of Heterobiaryl Tosylates: Kinetic Resolution or Dynamic Kinetic Resolution? J Am Chem Soc 2023. [PMID: 38018138 DOI: 10.1021/jacs.3c08769] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Herein, we report a cobalt-catalyzed atroposelective reductive cross-coupling of racemic heterobiaryl tosylates with a C(sp2)-X type electrophile. Both aryl and alkenyl halides are competent precursors for this reaction, providing a variety of heterobiaryls as the products in a highly enantioselective manner with high functionality tolerance. The related asymmetric arylation and alkenylation are discovered to proceed with divergent mechanisms. The reaction pathway changes from kinetic resolution (KR) when alkenyl bromides and aryl iodides bearing strong electron-withdrawing substitution on the para-position are employed as the starting materials to an enantioconvergent transformation via dynamic KR of configurationally labile cobaltacycles when relatively electron-rich aryl iodides are used. The change of the reaction mechanisms turns out to arise from the relative rates of two competing elementary steps, which are the epimerization of the cyclic Co(I) intermediates and their trapping by the coupling electrophiles of the C(sp2)-type via oxidative addition.
Collapse
Affiliation(s)
- Haiyan Dong
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
5
|
Wang YZ, Sun B, Zhu XY, Gu YC, Ma C, Mei TS. Enantioselective Reductive Cross-Couplings of Olefins by Merging Electrochemistry with Nickel Catalysis. J Am Chem Soc 2023; 145:23910-23917. [PMID: 37883710 DOI: 10.1021/jacs.3c10109] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The merger of electrochemistry and transition metal catalysis has emerged as a powerful tool to join two electrophiles in an enantioselective manner. However, the development of enantioselective electroreductive cross-couplings of olefins remains a challenge. Inspired by the advantages of the synergistic use of electrochemistry with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of acrylates with aryl halides and alkyl bromides, which affords chiral α-aryl carbonyls in good to excellent enantioselectivity. Additionally, this catalytic reaction can be applied to (hetero)aryl chlorides, which is difficult to achieve by other methods. The combination of cyclic voltammetry analysis with electrode potential studies suggests that the NiI species activates aryl halides by oxidative addition and alkyl bromides by single-electron transfer.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Bing Sun
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiao-Yu Zhu
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, United Kingdom
| | - Cong Ma
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Tian-Sheng Mei
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
6
|
Drennhaus T, Leifert D, Lammert J, Drennhaus JP, Bergander K, Daniliuc CG, Studer A. Enantioselective Copper-Catalyzed Fukuyama Indole Synthesis from 2-Vinylphenyl Isocyanides. J Am Chem Soc 2023; 145:8665-8676. [PMID: 37029692 DOI: 10.1021/jacs.3c01667] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Enantioenriched chiral indoles are of high interest for the pharmaceutical and agrochemical industries. Herein, we present an asymmetric Fukuyama indole synthesis through a mild and efficient radical cascade reaction to access 2-fluoroalkylated 3-(α-cyanobenzylated) indoles by stereochemical control with a chiral copper-bisoxazoline complex using 2-vinylphenyl arylisocyanides as radical acceptors and fluoroalkyl iodides as C-radical precursors. Radical addition to the isonitrile moiety, 5-exo-trig cyclization, and Cu-catalyzed stereoselective cyanation provide the targeted indoles with excellent enantioselectivity and good yields. Due to the similar electronic and steric properties of the two aryl substituents to be differentiated, the enantioselective construction of the cyano diaryl methane stereocenter is highly challenging. Mechanistic studies reveal a negative nonlinear effect which allows proposing a model to explain the stereochemical outcome. Scalability and potential utility of the enantioenriched 3-(α-cyanobenzylated) indoles as hubs for chiral tryptamines, indole-3-acetic acid derivatives, and triarylmethanes are demonstrated, and a formal synthesis of a natural product analogue is disclosed.
Collapse
Affiliation(s)
- Till Drennhaus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Jessika Lammert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | | | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
7
|
Kee CW. Molecular Understanding and Practical In Silico Catalyst Design in Computational Organocatalysis and Phase Transfer Catalysis-Challenges and Opportunities. Molecules 2023; 28:1715. [PMID: 36838703 PMCID: PMC9966076 DOI: 10.3390/molecules28041715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/25/2023] Open
Abstract
Through the lens of organocatalysis and phase transfer catalysis, we will examine the key components to calculate or predict catalysis-performance metrics, such as turnover frequency and measurement of stereoselectivity, via computational chemistry. The state-of-the-art tools available to calculate potential energy and, consequently, free energy, together with their caveats, will be discussed via examples from the literature. Through various examples from organocatalysis and phase transfer catalysis, we will highlight the challenges related to the mechanism, transition state theory, and solvation involved in translating calculated barriers to the turnover frequency or a metric of stereoselectivity. Examples in the literature that validated their theoretical models will be showcased. Lastly, the relevance and opportunity afforded by machine learning will be discussed.
Collapse
Affiliation(s)
- Choon Wee Kee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
8
|
Wang L, Li T, Perveen S, Zhang S, Wang X, Ouyang Y, Li P. Nickel-Catalyzed Enantioconvergent Carboxylation Enabled by a Chiral 2,2'-Bipyridine Ligand. Angew Chem Int Ed Engl 2022; 61:e202213943. [PMID: 36300599 DOI: 10.1002/anie.202213943] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/24/2022]
Abstract
In contrast to previous approaches to chiral α-aryl carboxylic acids that based on reactions using hazardous gases, pressurized setup and mostly noble metal catalysts, in this work, a nickel-catalyzed general, efficient and highly enantioselective carboxylation reaction of racemic benzylic (pseudo)halides under mild conditions using atmospheric CO2 has been developed. A unique chiral 2,2'-bipyridine ligand named Me-SBpy featuring compact polycyclic skeleton enabled both high reactivity and stereoselectivity. The utility of this method has been demonstrated by synthesis of various chiral α-aryl carboxylic acids (30 examples, up to 95 % yield and 99 : 1 er), including profen family anti-inflammatory drugs and transformations using the acids as key intermediates. Based on mechanistic experimental results, a plausible catalytic cycle involving Ni-complex/radical equilibrium and Lewis acid-assisted CO2 activation has been proposed.
Collapse
Affiliation(s)
- Linghua Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Tao Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Saima Perveen
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Xicheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.,School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Abstract
Orders in catalyst greater than one can be attributed to several different reaction mechanisms. Differentiating among these possibilities requires careful analysis of their rate laws, rational experiment design and accurate measurement of the progress of the reactions. We have compiled the most popular mechanisms proposed for reactions with an order in catalyst greater than one and derived their steady-state rate laws. We have analysed the rate laws and proposed experiments to discern between mechanisms. Finally, we have examined 100 case studies that showcase good practices to propose robust mechanisms and to avoid common pitfalls.
Collapse
|
10
|
Wang R, Fan P, Wang C. Nickel/Photo-Cocatalyzed Asymmetric Acyl C–H Allylation of Aldehydes and Formamides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| | - Pei Fan
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, People’s Republic of China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
11
|
Ali C, Blackmond DG, Burés J. Kinetic Rationalization of Nonlinear Effects in Asymmetric Catalytic Cascade Reactions under Curtin-Hammett Conditions. ACS Catal 2022; 12:5776-5785. [PMID: 35633899 PMCID: PMC9127809 DOI: 10.1021/acscatal.2c00783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/26/2022] [Indexed: 11/29/2022]
Abstract
Observations of nonlinear effects of catalyst enantiopurity on product enantiomeric excess in asymmetric catalysis are often used to infer that more than one catalyst species is involved in one or more reaction steps. We demonstrate here, however, that in the case of asymmetric catalytic cascade reactions, a nonlinear effect may be observed in the absence of any higher order catalyst species or any reaction step involving two catalyst species. We illustrate this concept with an example from a recent report of an organocatalytic enantioselective [10 + 2] stepwise cyclization reaction. The disruption of pre-equilibria (Curtin-Hammett equilibrium) in reversible steps occurring prior to the final irreversible product formation step can result in an alteration of the final product ee from what would be expected based on a linear relationship with the enantiopure catalyst. The treatment accounts for either positive or negative nonlinear effects in systems over a wide range of conditions including "major-minor" kinetics or the more conventional "lock-and-key" kinetics. The mechanistic scenario proposed here may apply generally to other cascade reaction systems exhibiting similar kinetic features and should be considered as a viable alternative model whenever a nonlinear effect is observed in a cascade sequence of reactions.
Collapse
Affiliation(s)
- Camran Ali
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Donna G. Blackmond
- Scripps Research, Department of Chemistry, La Jolla, California 92037, United States
| | - Jordi Burés
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
12
|
Geiger Y, Achard T, Maisse‐François A, Bellemin‐Laponnaz S. Absence of Non‐Linear Effects Despite Evidence for Catalyst Aggregation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yannick Geiger
- Institut de Physique et Chimie des Matériaux de Strasbourg Université de Strasbourg-CNRS, UMR 7504 67000 Strasbourg France
- Current address: Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Thierry Achard
- Institut de Physique et Chimie des Matériaux de Strasbourg Université de Strasbourg-CNRS, UMR 7504 67000 Strasbourg France
| | - Aline Maisse‐François
- Institut de Physique et Chimie des Matériaux de Strasbourg Université de Strasbourg-CNRS, UMR 7504 67000 Strasbourg France
| | - Stéphane Bellemin‐Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg Université de Strasbourg-CNRS, UMR 7504 67000 Strasbourg France
| |
Collapse
|
13
|
Bai D, Liu S, Chen J, Yu Y, Wang M, Chang J, Lan Y, Li X. Mechanistic studies on nickel-catalyzed enantioselective [3 + 2] annulation for γ-butenolide synthesis via C–C activation of diarylcyclopropenones. Org Chem Front 2021. [DOI: 10.1039/d1qo00322d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Detailed mechanistic studies on Ni-catalyzed C–C activation of cyclopropenones, and enantioselective [3 + 2] annulation with α-CF3 enones or 1,2-diones toward the efficient synthesis of γ-butenolides.
Collapse
Affiliation(s)
- Dachang Bai
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Song Liu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400030
- China
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies
| | - Junyan Chen
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Yanjiang Yu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Manman Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Yu Lan
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400030
- China
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| |
Collapse
|
14
|
Wang H, Luo H, Zhang ZM, Zheng WF, Yin Y, Qian H, Zhang J, Ma S. Pd-Catalyzed Enantioselective Syntheses of Trisubstituted Allenes via Coupling of Propargylic Benzoates with Organoboronic Acids. J Am Chem Soc 2020; 142:9763-9771. [DOI: 10.1021/jacs.0c02876] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huanan Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Hongwen Luo
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Zhan-Ming Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Wei-Feng Zheng
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Yu Yin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Junliang Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, PR China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, PR China
| |
Collapse
|
15
|
Cativiela C, Ordóñez M, Viveros-Ceballos JL. Stereoselective synthesis of acyclic α,α-disubstituted α-amino acids derivatives from amino acids templates. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130875] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Poutrel P, Ivanova MV, Pannecoucke X, Jubault P, Poisson T. Copper-Catalyzed Enantioselective Formation of C-CF 3 Centers from β-CF 3 -Substituted Acrylates and Acrylonitriles. Chemistry 2019; 25:15262-15266. [PMID: 31517410 DOI: 10.1002/chem.201904192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 11/07/2022]
Abstract
The catalytic asymmetric synthesis of β-trifluoromethylated esters or nitriles is reported. The use of an in situ formed chiral Cu-H complex allowed the enantioselective reduction of β-trifluoromethylated acrylates or acrylonitriles. The reaction proceeds smoothly affording the corresponding enantioenriched products in good to excellent yields and outstanding enantioselectivities (up to 98 % ee). The mechanism of the reaction was studied, and a plausible reaction pathway was suggested accordingly. Finally, the versatility of the products was highlighted through functional group manipulations.
Collapse
Affiliation(s)
- Pauline Poutrel
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Maria V Ivanova
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Xavier Pannecoucke
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Philippe Jubault
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Thomas Poisson
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris, France
| |
Collapse
|
17
|
Dai Q, Li W, Li Z, Zhang J. P-Chiral Phosphines Enabled by Palladium/Xiao-Phos-Catalyzed Asymmetric P–C Cross-Coupling of Secondary Phosphine Oxides and Aryl Bromides. J Am Chem Soc 2019; 141:20556-20564. [DOI: 10.1021/jacs.9b11938] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiang Dai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zhiming Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
18
|
Armstrong BM, Sayler RI, Shupe BH, Stich TA, Britt RD, Franz AK. EPR Evidence for the Origin of Nonlinear Effects in an Enantioselective Cu(II)-Catalyzed Spiroannulation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03822] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Brittany M. Armstrong
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Richard I. Sayler
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Benjamin H. Shupe
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Troy A. Stich
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - R. David Britt
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Annaliese K. Franz
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
19
|
Cui XY, Ge Y, Tan SM, Jiang H, Tan D, Lu Y, Lee R, Tan CH. (Guanidine)copper Complex-Catalyzed Enantioselective Dynamic Kinetic Allylic Alkynylation under Biphasic Condition. J Am Chem Soc 2018; 140:8448-8455. [DOI: 10.1021/jacs.7b12806] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xi-Yang Cui
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yicen Ge
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Siu Min Tan
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Huan Jiang
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Davin Tan
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Richmond Lee
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
20
|
Zhu C, Wang D, Zhao Y, Sun WY, Shi Z. Enantioselective Palladium-Catalyzed Intramolecular α-Arylative Desymmetrization of 1,3-Diketones. J Am Chem Soc 2017; 139:16486-16489. [PMID: 29116769 DOI: 10.1021/jacs.7b10365] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient enantioselective protocol has been reported to build highly oxygenated and densely substituted bicyclo[m.n.1] skeletons through intramolecular asymmetric α-arylative desymmetrization of 1,3-diketones. Employing Pd catalyst and FOXAP ligand, various bicyclo[m.n.1] skeleton with different size can be accessed with high enantio- and diastereoselectivities. Utilizing the present method as a key step, formal asymmetric total synthesis of the (-)-parvifoline has been demonstrated.
Collapse
Affiliation(s)
- Chendan Zhu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Dingyi Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Wei-Yin Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| |
Collapse
|