1
|
Prabhakaran A, Jha KK, Sia RCE, Arellano Reyes RA, Sarangi NK, Kogut M, Guthmuller J, Czub J, Dietzek-Ivanšić B, Keyes TE. Triplet-Triplet Annihilation Upconverting Liposomes: Mechanistic Insights into the Role of Membranes in Two-Dimensional TTA-UC. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29324-29337. [PMID: 38776974 PMCID: PMC11163426 DOI: 10.1021/acsami.4c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) implemented in nanoparticle assemblies is of emerging interest in biomedical applications, including in drug delivery and imaging. As it is a bimolecular process, ensuring sufficient mobility of the sensitizer and annihilator to facilitate effective collision in the nanoparticle is key. Liposomes can provide the benefits of two-dimensional confinement and condensed concentration of the sensitizer and annihilator along with superior fluidity compared to other nanoparticle assemblies. They are also biocompatible and widely applied across drug delivery modalities. However, there are relatively few liposomal TTA-UC systems reported to date, so systematic studies of the influence of the liposomal environment on TTA-UC are currently lacking. Here, we report the first example of a BODIPY-based sensitizer TTA-UC system within liposomes and use this system to study TTA-UC generation and compare the relative intensity of the anti-Stokes signal for this system as a function of liposome composition and membrane fluidity. We report for the first time on time-resolved spectroscopic studies of TTA-UC in membranes. Nanosecond transient absorption data reveal the BODIPY-perylene dyad sensitizer has a long triplet lifetime in liposome with contributions from three triplet excited states, whose lifetimes are reduced upon coinclusion of the annihilator due to triplet-triplet energy transfer, to a greater extent than in solution. This indicates triplet energy transfer between the sensitizer and the annihilator is enhanced in the membrane system. Molecular dynamics simulations of the sensitizer and annihilator TTA collision complex are modeled in the membrane and confirm the co-orientation of the pair within the membrane structure and that the persistence time of the bound complex exceeds the TTA kinetics. Modeling also reliably predicted the diffusion coefficient for the sensitizer which matches closely with the experimental values from fluorescence correlation spectroscopy. The relative intensity of the TTA-UC output across nine liposomal systems of different lipid compositions was explored to examine the influence of membrane viscosity on upconversion (UC). UC showed the highest relative intensity for the most fluidic membranes and the weakest intensity for highly viscous membrane compositions, including a phase separation membrane. Overall, our study reveals that the co-orientation of the UC pair within the membrane is crucial for effective TTA-UC within a biomembrane and that the intensity of the TTA-UC output can be tuned in liposomal nanoparticles by modifying the phase and fluidity of the liposome. These new insights will aid in the design of liposomal TTA-UC systems for biomedical applications.
Collapse
Affiliation(s)
- Amrutha Prabhakaran
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Keshav Kumar Jha
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology Jena, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Rengel Cane E. Sia
- Institute
of Physics and Applied Computer Science, Faculty of Applied Physics
and Mathematics, Gdańsk University
of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland
| | - Ruben Arturo Arellano Reyes
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Nirod Kumar Sarangi
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Mateusz Kogut
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza
11/12, 80233 Gdańsk, Poland
| | - Julien Guthmuller
- Institute
of Physics and Applied Computer Science, Faculty of Applied Physics
and Mathematics, Gdańsk University
of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland
| | - Jacek Czub
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza
11/12, 80233 Gdańsk, Poland
| | - Benjamin Dietzek-Ivanšić
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology Jena, Jena 07745, Germany
| | - Tia E. Keyes
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
2
|
Shi Y, Gou H, Wu H, Wan S, Wang K, Yu J, Zhang X, Ye C. Harnessing Heavy-Atom Effects in Multiple Resonance Thermally Activated Delayed Fluorescence (MR-TADF) Sensitizers: Unlocking High-Performance Visible-to-Ultraviolet (Vis-to-UV) Triplet Fusion Upconversion. J Phys Chem Lett 2024; 15:4647-4654. [PMID: 38647524 DOI: 10.1021/acs.jpclett.4c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ultraviolet (UV) light plays a crucial role in various applications, but currently, the efficiency of generating artificial UV light is low. The visible-to-ultraviolet (Vis-to-UV) system based on the triplet-triplet annihilation upconversion (TTA-UC) mechanism can be a viable solution. Metal-free multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are ideal photosensitizers (PSs) apart from the drawback of high photoluminescence quantum yields (PLQYs). Herein, we systematically investigated the impact of the heavy-atom effect (HAE) on the MR-TADF sensitizers. BNCzBr was then synthesized by incorporating a bromine atom into the skeleton of the precursor BNCz. Impressively, the internal HAE (iHAE) leads to a significantly decreased PLQY and a remarkably increased intersystem crossing quantum yield (ΦISC). Consequently, a higher upconversion quantum efficiency of 12.5% was realized. While the external HAE (eHAE) harms the UC performance. This work guides the further development of MR-TADF sensitizers for high-performance Vis-to-UV TTA-UC systems.
Collapse
Affiliation(s)
- Yizhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215009 Suzhou, PR China
| | - Haodong Gou
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215009 Suzhou, PR China
| | - Hao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123 Suzhou, PR China
| | - Shigang Wan
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215009 Suzhou, PR China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123 Suzhou, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, PR China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123 Suzhou, PR China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123 Suzhou, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 215123 Suzhou, PR China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215009 Suzhou, PR China
| |
Collapse
|
3
|
Li DY, Wang W, Chu LY, Deng NN. Tunable Structural Coloration in Eccentric Water-in-Oil-in-Water Droplets. NANO LETTERS 2023; 23:9657-9663. [PMID: 37548909 DOI: 10.1021/acs.nanolett.3c02119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Structural colors show diverse advantages such as fade resistance, eco-friendliness, iridescence, and high saturation in comparison with chemical pigments. In this paper, we show tunable structural coloration in colorless water-in-oil-in-water double emulsion droplets via total internal reflection and interference at the microscale concave interfaces. Through experimental work and simulations, we demonstrate that the shell thickness and the eccentricity of the core-shell structures are key to the successful formation of iridescent structural colors. Only eccentric thin-shell water-in-oil-in-water droplets show structural colors. Importantly, structural colors based on water-oil interfaces are readily responsive to a variety of environmental stimuli, such as osmotic pressure, temperature, magnetic fields, and light composition. This work highlights an alternative structural coloration that expands the applications of droplet-based structural colors to aqueous systems.
Collapse
Affiliation(s)
- Dong-Yu Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Nan-Nan Deng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, Sichuan 610213, China
| |
Collapse
|
4
|
Concellón A. Liquid Crystal Emulsions: A Versatile Platform for Photonics, Sensing, and Active Matter. Angew Chem Int Ed Engl 2023:e202308857. [PMID: 37694542 DOI: 10.1002/anie.202308857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/12/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
The self-assembly of liquid crystals (LCs) is a fascinating method for controlling the organization of discrete molecules into nanostructured functional materials. Although LCs are traditionally processed in thin films, their confinement within micrometre-sized droplets has recently revealed new properties and functions, paving the way for next-generation soft responsive materials. These recent findings have unlocked a wealth of unprecedented applications in photonics (e.g. reflectors, lasing materials), sensing (e.g. biomolecule and pathogen detection), soft robotics (e.g. micropumps, artificial muscles), and beyond. This Minireview focuses on recent developments in LC emulsion designs and highlights a variety of novel potential applications. Perspectives on the opportunities and new directions for implementing LC emulsions in future innovative technologies are also provided.
Collapse
Affiliation(s)
- Alberto Concellón
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
5
|
Sharma A, Kizhakidathazhath R, Lagerwall JPF. Impact of mesogenic aromaticity and cyano termination on the alignment and stability of liquid crystal shells. SOFT MATTER 2023; 19:2637-2645. [PMID: 36960755 DOI: 10.1039/d3sm00041a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We carry out a strategic and systematic variation of the molecular structure of liquid crystals (LCs) molded into spherical shells, surrounded by aqueous isotropic phases internally and externally. Contrary to common expectation, based on previous studies that have almost exclusively been carried out with cyanobiphenyl-based LCs, we find that the director field aligns normal to the LC-water interface when we use an LC molecule that is entirely non-aromatic. We propose to explain this by the inability of such an LC to participate in hydrogen bonding, rendering the normal configuration favorable as it minimizes the molecular cross section in contact with the water. We also find that cyano-terminated LC molecules contribute greatly to stabilizing the LC-water interface. This explains why shells made of cyanobiphenyl LCs are much more stable than shells of LCs with non-cyano-terminated molecules, even if the latter exhibit aromatic cores. Unstable LC shells can be stabilized very efficiently, however, through the addition of a low concentration of molecules that are cyano-terminated, preferably below the threshold for dimerization. Our study provides a much clarified understanding of how the molecular structure dictates the stability and alignment of LC shells, and it will enable a diversification of LC shell research and applications to systems where the use of non-cyanobiphenyl LCs is required.
Collapse
Affiliation(s)
- Anjali Sharma
- University of Luxembourg, Physics & Materials Science Research Unit, Luxembourg, Luxembourg.
| | | | - Jan P F Lagerwall
- University of Luxembourg, Physics & Materials Science Research Unit, Luxembourg, Luxembourg.
| |
Collapse
|
6
|
Qu G, Zhang X, Li S, Lu L, Gao J, Yu B, Wu S, Zhang Q, Hu Z. Liquid crystal random lasers. Phys Chem Chem Phys 2022; 25:48-63. [PMID: 36477742 DOI: 10.1039/d2cp02859j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The enthusiasm for research on liquid crystal random lasers (LCRLs) is driven by their unusual optical properties and promising potential for broad applications in manufacturing, communications, medicine and entertainment. From this perspective, we will summarize the most attractive advances in the development of LCRLs in the last decade and propose future prospects. This article will begin with a fundamental description of LCRLs, including the principle of laser generation and a description of LC substances. Then, we spend several chapters on the lasing performance control methods of LCRLs, including random lasing wavelength, threshold, and polarization properties. In addition, we analyze how the LC chiral agent structures, LC core-shell structures and new light-amplifying materials affect the design of LCRL devices. In the last chapter, we discuss the application of LCRLs in 3D displays, information encryption, biochemical sensing and other optoelectronics devices and finally end the perspective with LCRLs' likely directions in future research.
Collapse
Affiliation(s)
- Guangyin Qu
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China.
| | - Xiaojuan Zhang
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China.
| | - Siqi Li
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China.
| | - Liang Lu
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China.
| | - Jiangang Gao
- Department of Polymeric Materials and Engineering, School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Benli Yu
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China.
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Qijin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Zhijia Hu
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
7
|
Liquid Crystal Droplet-Based Biosensors: Promising for Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090758. [PMID: 36140143 PMCID: PMC9496589 DOI: 10.3390/bios12090758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
The development of biosensing platforms has been impressively accelerated by advancements in liquid crystal (LC) technology. High response rate, easy operation, and good stability of the LC droplet-based biosensors are all benefits of the long-range order of LC molecules. Bioprobes emerged when LC droplets were combined with biotechnology, and these bioprobes are used extensively for disease diagnosis, food safety, and environmental monitoring. The LC droplet biosensors have high sensitivity and excellent selectivity, making them an attractive tool for the label-free, economical, and real-time detection of different targets. Portable devices work well as the accessory kits for LC droplet-based biosensors to make them easier to use by anyone for on-site monitoring of targets. Herein, we offer a review of the latest developments in the design of LC droplet-based biosensors for qualitative target monitoring and quantitative target analysis.
Collapse
|
8
|
Kim YG, Park S, Kim SH. Designing photonic microparticles with droplet microfluidics. Chem Commun (Camb) 2022; 58:10303-10328. [PMID: 36043863 DOI: 10.1039/d2cc03629k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Photonic materials with a periodic change of refractive index show unique optical properties through wavelength-selective diffraction and modulation of the optical density of state, which is promising for various optical applications. In particular, photonic structures have been produced in the format of microparticles using emulsion templates to achieve advanced properties and applications beyond those of a conventional film format. Photonic microparticles can be used as a building block to construct macroscopic photonic materials, and the individual microparticles can serve as miniaturized photonic devices. Droplet microfluidics enables the production of emulsion drops with a controlled size, composition, and configuration that serve as the optimal confining geometry for designing photonic microparticles. This feature article reviews the recent progress and current state of the art in the field of photonic microparticles, covering all aspects of microfluidic production methods, microparticle geometries, optical properties, and applications. Two distinct bottom-up approaches based on colloidal assembly and liquid crystals are, respectively, discussed and compared.
Collapse
Affiliation(s)
- Young Geon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sihun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Kim JW, Han SH, Choi YH, Hamonangan WM, Oh Y, Kim SH. Recent advances in the microfluidic production of functional microcapsules by multiple-emulsion templating. LAB ON A CHIP 2022; 22:2259-2291. [PMID: 35608122 DOI: 10.1039/d2lc00196a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple-emulsion drops serve as versatile templates to design functional microcapsules due to their core-shell geometry and multiple compartments. Microfluidics has been used for the elaborate production of multiple-emulsion drops with a controlled composition, order, and dimensions, elevating the value of multiple-emulsion templates. Moreover, recent advances in the microfluidic control of the emulsification and parallelization of drop-making junctions significantly enhance the production throughput for practical use. Metastable multiple-emulsion drops are converted into stable microcapsules through the solidification of selected phases, among which solid shells are designed to function in a programmed manner. Functional microcapsules are used for the storage and release of active materials as drug carriers. Beyond their conventional uses, microcapsules can serve as microcompartments responsible for transmembrane communication, which is promising for their application in advanced microreactors, artificial cells, and microsensors. Given that post-processing provides additional control over the composition and construction of multiple-emulsion drops, they are excellent confining geometries to study the self-assembly of colloids and liquid crystals and produce miniaturized photonic devices. This review article presents the recent progress and current state of the art in the microfluidic production of multiple-emulsion drops, functionalization of solid shells, and applications of microcapsules.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sang Hoon Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Wahyu Martumpal Hamonangan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Yoonjin Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
10
|
Napoli G, Vergori L. Cooling a spherical nematic shell. Phys Rev E 2021; 104:L022701. [PMID: 34525608 DOI: 10.1103/physreve.104.l022701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 11/07/2022]
Abstract
Within the framework of Landau-de Gennes theory for nematic liquid crystals, we study the temperature-induced isotropic-nematic phase transition on a spherical shell under the assumption of degenerate tangential anchoring. Below a critical temperature, a thin layer of nematic coating a microscopic spherical particle exhibits nonuniform textures due to the geometrical frustration. We find the exact value of the critical threshold for the temperature and determine exactly the nematic textures at the transition by means of a weakly nonlinear analysis. The critical temperature is affected by the extrinsic curvature of the sphere, and the nematic alignment is consistent with the Poincaré-Hopf index theorem and experimental observations. The stability analysis of the bifurcate textures at the isotropic-nematic transition highlights that only the tetrahedral configuration is stable.
Collapse
Affiliation(s)
- Gaetano Napoli
- Dipartimento di Matematica e Fisica "E. De Giorgi," Università del Salento, Lecce 73100, Italy
| | - Luigi Vergori
- Dipartimento di Ingegneria, Università degli Studi di Perugia, Perugia 06125, Italy
| |
Collapse
|
11
|
Chen HQ, Wang XY, Bisoyi HK, Chen LJ, Li Q. Liquid Crystals in Curved Confined Geometries: Microfluidics Bring New Capabilities for Photonic Applications and Beyond. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3789-3807. [PMID: 33775094 DOI: 10.1021/acs.langmuir.1c00256] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The quest for interesting properties and phenomena in liquid crystals toward their employment in nondisplay application is an intense and vibrant endeavor. Remarkable progress has recently been achieved with regard to liquid crystals in curved confined geometries, typically represented as enclosed spherical geometries and cylindrical geometries with an infinitely extended axial-symmetrical space. Liquid-crystal emulsion droplets and fibers are intriguing examples from these fields and have attracted considerable attention. It is especially noteworthy that the rapid development of microfluidics brings about new capabilities to generate complex soft microstructures composed of both thermotropic and lyotropic liquid crystals. This review attempts to outline the recent developments related to the liquid crystals in curved confined geometries by focusing on microfluidics-mediated approaches. We highlight a wealth of novel photonic applications and beyond and also offer perspectives on the challenges, opportunities, and new directions for future development in this emerging research area.
Collapse
Affiliation(s)
- Han-Qing Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Xi-Yuan Wang
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Lu-Jian Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province 211189, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
12
|
Liu EY, Choi Y, Yi H, Choi CH. Triple Emulsion-Based Rapid Microfluidic Production of Core-Shell Hydrogel Microspheres for Programmable Biomolecular Conjugation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11579-11587. [PMID: 33651584 DOI: 10.1021/acsami.0c20081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a simple and rapid microfluidic approach to produce core-shell hydrogel microspheres in a single step. We exploit triple emulsion drops with sacrificial oil layers that separate two prepolymer phases, forming poly(ethylene glycol)-based core-shell microspheres via photopolymerization followed by spontaneous removal of the oil layer. Our technique enables the production of monodisperse core-shell microspheres with varying dimensions of each compartment by independently and precisely controlled flow rates. This leads to stable and uniform incorporation of functional moieties in the core compartment with negligible cross-contamination into the shell layer. Selective conjugation of biomolecules is enabled through a rapid bioorthogonal reaction with functional groups in the core compartment with minimal non-specific adsorption. Finally, in-depth protein conjugation kinetics studies using microspheres with varying shell porosities highlight the capability to provide tunable size-selective diffusion barriers by simple tuning of prepolymer compositions for the shell layer. Combined, these results illustrate a significant step forward for programmable high-throughput fabrication of multifunctional hydrogel microspheres, which possess substantial potential in a large array of biomedical and biochemical applications.
Collapse
Affiliation(s)
- Eric Y Liu
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yoon Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| | - Hyunmin Yi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| |
Collapse
|
13
|
Ding L, Zhou J, Fu Q, Bao G, Liu Y, Jin D. Triplet Fusion Upconversion with Oxygen Resistance in Aqueous Media. Anal Chem 2021; 93:4641-4646. [PMID: 33667071 DOI: 10.1021/acs.analchem.1c00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triplet fusion upconversion (also called triplet-triplet annihilation, TTA) arouses much attention due to its potential in the fields of biological imaging, optogenetics, and light harvesting. However, oxygen quenching remains a challenge ahead, restricting its applications in aqueous media. Previous efforts to realize aqueous TTA with oxygen resistance have been focused on core-shell structures and self-assembly, but tedious processes and complicated chemical modification are required. Here, we report a direct and efficient strategy to realize aqueous TTA by controlling the ionic equilibrium of the TTA dyad. We find that the ionized organic dyad in physiological buffers and electrolyte-based media shows a natural aerotolerance without any complicated structure engineering. In particular, the upconversion intensity of this aqueous TTA in Tris buffer under an air-saturated condition is more than twice that under the deaerated condition. We further demonstrate the TTA system for potential applications in pH and temperature sensing with reversible and sensitive performance. We anticipate this facile approach will inspire the development of practical aqueous TTA and broad applications in biological science.
Collapse
Affiliation(s)
- Lei Ding
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Qiang Fu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Guochen Bao
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yongtao Liu
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia.,UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| |
Collapse
|
14
|
Wang L, Urbas AM, Li Q. Nature-Inspired Emerging Chiral Liquid Crystal Nanostructures: From Molecular Self-Assembly to DNA Mesophase and Nanocolloids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1801335. [PMID: 30160812 DOI: 10.1002/adma.201801335] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Indexed: 05/22/2023]
Abstract
Liquid crystals (LCs) are omnipresent in living matter, whose chirality is an elegant and distinct feature in certain plant tissues, the cuticles of crabs, beetles, arthropods, and beyond. Taking inspiration from nature, researchers have recently devoted extensive efforts toward developing chiral liquid crystalline materials with self-organized nanostructures and exploring their potential applications in diverse fields ranging from dynamic photonics to energy and safety issues. In this review, an account on the state of the art of emerging chiral liquid crystalline nanostructured materials and their technological applications is provided. First, an overview on the significance of chiral liquid crystalline architectures in various living systems is given. Then, the recent significant progress in different chiral liquid crystalline systems including thermotropic LCs (cholesteric LCs, cubic blue phases, achiral bent-core LCs, etc.) and lyotropic LCs (DNA LCs, nanocellulose LCs, and graphene oxide LCs) is showcased. The review concludes with a perspective on the future scope, opportunities, and challenges in these truly advanced functional soft materials and their promising applications.
Collapse
Affiliation(s)
- Ling Wang
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Augustine M Urbas
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433, USA
| | - Quan Li
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
15
|
Ellis PW, Klaneček S, Fernandez-Nieves A. Polarized epifluorescence microscopy and the imaging of nematic liquid crystals in highly curved geometries. Phys Rev E 2020; 101:052703. [PMID: 32575280 DOI: 10.1103/physreve.101.052703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/05/2020] [Indexed: 11/07/2022]
Abstract
We develop polarized epifluorescence microscopy (PFM), a technique to qualitatively determine a director field, even when refraction effects are too strong to use optical polarized microscopy. We present the basic theory behind the technique and cover in detail the experimental setup. We validate PFM on the well-studied cases of a planar nematic cell, spherical nematic droplets, and a cylindrical capillary filled with nematic liquid crystal. Last, we use nematic capillary bridges to demonstrate that PFM can indeed provide measurements of the director field, even when refraction effects are large.
Collapse
Affiliation(s)
- Perry W Ellis
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138-2933, USA
| | - Susannah Klaneček
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | - Alberto Fernandez-Nieves
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA.,Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain.,ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
| |
Collapse
|
16
|
Durey G, Sohn HRO, Ackerman PJ, Brasselet E, Smalyukh II, Lopez-Leon T. Topological solitons, cholesteric fingers and singular defect lines in Janus liquid crystal shells. SOFT MATTER 2020; 16:2669-2682. [PMID: 31898713 DOI: 10.1039/c9sm02033k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Topological solitons are non-singular but topologically nontrivial structures in fields, which have fundamental significance across various areas of physics, similar to singular defects. Production and observation of singular and solitonic topological structures remain a complex undertaking in most branches of science - but in soft matter physics, they can be realized within the director field of a liquid crystal. Additionally, it has been shown that confining liquid crystals to spherical shells using microfluidics resulted in a versatile experimental platform for the dynamical study of topological transformations between director configurations. In this work, we demonstrate the triggered formation of topological solitons, cholesteric fingers, singular defect lines and related structures in liquid crystal shells. We show that to accommodate these objects, shells must possess a Janus nature, featuring both twisted and untwisted domains. We report the formation of linear and axisymmetric objects, which we identify as cholesteric fingers and skyrmions or elementary torons, respectively. We then take advantage of the sensitivity of shells to numerous external stimuli to induce dynamical transitions between various types of structures, allowing for a richer phenomenology than traditional liquid crystal cells with solid flat walls. Using gradually more refined experimental techniques, we induce the targeted transformation of cholesteric twist walls and fingers into skyrmions and elementary torons. We capture the different stages of these director transformations using numerical simulations. Finally, we uncover an experimental mechanism to nucleate arrays of axisymmetric structures on shells, thereby creating a system of potential interest for tackling crystallography studies on curved spaces.
Collapse
Affiliation(s)
- Guillaume Durey
- Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
17
|
Guerrero J, Chang YW, Fragkopoulos AA, Fernandez-Nieves A. Capillary-Based Microfluidics-Coflow, Flow-Focusing, Electro-Coflow, Drops, Jets, and Instabilities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904344. [PMID: 31663270 DOI: 10.1002/smll.201904344] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Capillary-based microfluidics is a great technique to produce monodisperse and complex emulsions and particulate suspensions. In this review, the current understanding of drop and jet formation in capillary-based microfluidic devices for two primary flow configurations, coflow and flow-focusing is summarized. The experimental and theoretical description of fluid instabilities is discussed and conditions for controlled drop breakup in different modes of drop generation are provided. Current challenges in drop breakup with low interfacial tension systems and recent progress in overcoming drop size limitations using electro-coflow are addressed. In each scenario, the physical mechanisms for drop breakup are revisited, and simple scaling arguments proposed in the literature are introduced.
Collapse
Affiliation(s)
- Josefa Guerrero
- Department of Chemistry and Physics, Augusta University, Augusta, GA, 30912, USA
| | - Ya-Wen Chang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Alexandros A Fragkopoulos
- Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, 37077, Göttingen, Germany
| | - Alberto Fernandez-Nieves
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Condensed Matter Physics, University of Barcelona, 08028, Barcelona, Spain
- ICREA-Institució Caalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| |
Collapse
|
18
|
Chen S, Zhou X, Ye W, Zhang Z. Periodic nanostructure-induced change of director profiles and variable stop bands of photonic crystals infiltrated by nematic liquid crystals. APPLIED OPTICS 2019; 58:9846-9855. [PMID: 31873629 DOI: 10.1364/ao.58.009846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Photonic crystals with periodic nanostructures infiltrated by nematic liquid crystals were investigated based on Landau-de Gennes theory. We studied the fine structures of the system within different amplitudes on the sinusoidal boundaries. When modulating the amplitude, the location of the defects will change. Two new director profiles occurred, and the state observed in Appl. Phys. Lett.87, 241108 (2005)APPLAB0003-695110.1063/1.2139846 also appeared. The transmittance curves show a redshift of ${\sim} {0.1}\,\,\unicode{x00B5}{\rm m}$∼0.1µm in the mid-infrared spectra when increasing the amplitude. The location change of defect rings will induce a shift of ${\sim} 22.4\,\,{\rm nm}$∼22.4nm. Variations in sinusoidal boundaries will have an effect on the transmittance spectrum. Elastic anisotropic will also induce a small shift when the structure is fixed. Results could be useful in designing new types of photonic crystal devices or sensors.
Collapse
|
19
|
Concellón A, Zentner CA, Swager TM. Dynamic Complex Liquid Crystal Emulsions. J Am Chem Soc 2019; 141:18246-18255. [DOI: 10.1021/jacs.9b09216] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alberto Concellón
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Cassandra A. Zentner
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Swager
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Che KJ, Yang YJ, Lin YL, Shan YW, Ge YH, Li SS, Chen LJ, Yang CJ. Microfluidic generation of cholesteric liquid crystal droplets with an integrative cavity for dual-gain and controllable lasing. LAB ON A CHIP 2019; 19:3116-3122. [PMID: 31429847 DOI: 10.1039/c9lc00655a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The integration of one more gain media in droplet microlasers with morphology-dependent modes, which can be employed in optofluidic systems as multi-wavelength lasing sources, is highly attractive and demands new cavity design and fabrication approaches. Here, cholesteric liquid crystal (CLC) droplets with an integrative triple-emulsion cavity are fabricated via glass-capillary-based microfluidic technologies and dual-gain lasing with variable modes, flexibly configured by the combination and incorporation of gain dyes and CLCs into both the core and shell. The distributed feedback (DFB) mode, formed by the feedback from the self-assembled helix periodic structure of CLCs, the whispering gallery (WG) mode, and the hybrid, is selectively excited by controlling the spatial coupling between the pump beam and the droplet with gain. With the merits of dual-gain and controllable lasing, a prototype dual-wavelength-ratiometric thermometer with self-calibration capability is expected to be developed. Furthermore, the anisotropic CLC core is substituted with an isotropic fluid and the gain from the CLC shell is additionally removed, DFB lasings in both shell and core are absent, and only Bragg-shell reflection-based hybrid modes are excited for lasing. The CLC droplet microlasers with an integrative cavity are expected to provide a new route to future lab-on-chip (LOC) applications.
Collapse
Affiliation(s)
- Kai-Jun Che
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Azarmanesh M, Bawazeer S, Mohamad AA, Sanati-Nezhad A. Rapid and Highly Controlled Generation of Monodisperse Multiple Emulsions via a One-Step Hybrid Microfluidic Device. Sci Rep 2019; 9:12694. [PMID: 31481702 PMCID: PMC6722102 DOI: 10.1038/s41598-019-49136-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple Emulsions (MEs) contain a drop laden with many micro-droplets. A single-step microfluidic-based synthesis process of MEs is presented to provide a rapid and controlled generation of monodisperse MEs. The design relies on the interaction of three immiscible fluids with each other in subsequent droplet formation steps to generate monodisperse ME constructs. The design is within a microchannel consists of two compartments of cross-junction and T-junction. The high shear stress at the cross-junction creates a stagnation point that splits the first immiscible phase to four jet streams each of which are sprayed to micrometer droplets surrounded by the second phase. The resulted structure is then supported by the third phase at the T-junction to generate and transport MEs. The ME formation within microfluidics is numerically simulated and the effects of several key parameters on properties of MEs are investigated. The dimensionless modeling of ME formation enables to change only one parameter at the time and analyze the sensitivity of the system to each parameter. The results demonstrate the capability of highly controlled and high-throughput MEs formation in a one-step synthesis process. The consecutive MEs are monodisperse in size which open avenues for the generation of controlled MEs for different applications.
Collapse
Affiliation(s)
- Milad Azarmanesh
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Saleh Bawazeer
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Abdulmajeed A Mohamad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada. .,Center for Bioengineering Research and Education, Biomedical Engineering Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
22
|
Sharma A, Jampani VSR, Lagerwall JPF. Realignment of Liquid Crystal Shells Driven by Temperature-Dependent Surfactant Solubility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11132-11140. [PMID: 31356088 PMCID: PMC7217602 DOI: 10.1021/acs.langmuir.9b00989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/12/2019] [Indexed: 05/31/2023]
Abstract
We investigate dynamic director field variations in shells of the nematic liquid crystal (LC) compound, 4-cyano-4'-pentylbiphenyl, suspended in and containing immiscible aqueous phases. The outer and inner shell interfaces are stabilized by the cationic surfactant, cetyl trimethyl ammonium bromide (CTAB), and by the water soluble polymer, poly(vinyl alcohol) (PVA), respectively. PVA and surfactant solutions normally promote tangential and orthogonal alignments, respectively, of the LC director. The rather high Krafft temperature of CTAB, TK ≈ 25 °C, means that its solubility in water is below the critical micelle concentration at room temperature in most labs. Here, we study the effect of cooling/heating past TK on the LC shell director configuration. Within a certain concentration range, CTAB in the outer aqueous phase (and PVA in the inner) switches the LC director field from hybrid to uniformly orthogonal upon cooling below TK. We argue that the effect is related to the migration of the surfactant through the fluid LC membrane into the initially surfactant-free aqueous PVA solution, triggered by the drastically reduced water solubility of CTAB at T < TK. The results suggest that LC shells can detect solutes in the continuous phase, provided there is sufficient probability that the solute migrates through the LC into the inner aqueous phase.
Collapse
|
23
|
Reyes CG, Baller J, Araki T, Lagerwall JPF. Isotropic-isotropic phase separation and spinodal decomposition in liquid crystal-solvent mixtures. SOFT MATTER 2019; 15:6044-6054. [PMID: 31225565 DOI: 10.1039/c9sm00921c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phase separation in mixtures forming liquid crystal (LC) phases is an important yet under-appreciated phenomenon that can drastically influence the behaviour of a multi-component LC. Here we demonstrate, using polarising microscopy with active cooling as well as differential scanning calorimetry, that the phase diagram for mixtures of the LC-forming compound 4'-n-pentylbiphenyl-4-carbonitrile (5CB) with ethanol is surprisingly complex. Binary mixtures reveal a broad miscibility gap that leads to phase separation between two distinct isotropic phases via spinodal decomposition or nucleation and growth. On further cooling the nematic phase enters on the 5CB-rich side, adding to the complexity. Significantly, water contamination dramatically raises the temperature range of the miscibility gap, bringing up the critical temperature for spinodal decomposition from ∼ 2 °C for the anhydrous case to >50 °C if just 3 vol% water is added to the ethanol. We support the experiments with a theoretical treatment that qualitatively reproduces the phase diagrams as well as the transition dynamics, with and without water. Our study highlights the impact of phase separation in LC-forming mixtures, spanning from equilibrium coexistence of multiple liquid phases to non-equilibrium effects due to persistent spatial concentration gradients.
Collapse
Affiliation(s)
- Catherine G Reyes
- Physics and Materials Science Research Unit, University of Luxembourg, 162a, Avenue de la Faencerie, L-1511, Luxembourg.
| | - Jörg Baller
- Physics and Materials Science Research Unit, University of Luxembourg, 162a, Avenue de la Faencerie, L-1511, Luxembourg.
| | - Takeaki Araki
- Department of Physics, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Jan P F Lagerwall
- Physics and Materials Science Research Unit, University of Luxembourg, 162a, Avenue de la Faencerie, L-1511, Luxembourg.
| |
Collapse
|
24
|
Yang X, Han J, Wang Y, Duan P. Photon-upconverting chiral liquid crystal: significantly amplified upconverted circularly polarized luminescence. Chem Sci 2019; 10:172-178. [PMID: 30713629 PMCID: PMC6330689 DOI: 10.1039/c8sc03806f] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/02/2018] [Indexed: 01/20/2023] Open
Abstract
In this work, we demonstrate a room-temperature chiral liquid crystal which shows remarkable photon upconverted circularly polarized luminescence (UC-CPL). Circularly polarized luminescent materials with higher dissymmetry factor (g lum) underpin the basis for future applications. Since most chiral organic molecules have only a small g lum, it is vital to explore a new pathway to amplify the g lum of organic compounds. Here, by dispersing a chiral emitter and a triplet donor into a room-temperature nematic liquid crystal, highly efficient triplet-triplet annihilation-based photon upconversion (TTA-UC) and UC-CPL were observed in the induced chiral nematic liquid crystal (N*LC). Moreover, this system could simultaneously amplify the promoted circularly polarized luminescence (CPL) and the upconverted circularly polarized luminescence. The dissymmetry factors g lum of CPL and UC-CPL have been amplified by three orders of magnitude and one order of magnitude, respectively.
Collapse
Affiliation(s)
- Xuefeng Yang
- College of Chemistry , Key Lab of Environment-Friendly Chemistry and Application of the Ministry of Education , Xiangtan University , Xiangtan 411105 , P. R. China
- CAS Center for Excellence in Nanoscience , CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , Division of Nanophotonics , National Center for Nanoscience and Technology (NCNST) , No. 11 ZhongGuanCun BeiYiTiao , Beijing 100190 , P. R. China .
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience , CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , Division of Nanophotonics , National Center for Nanoscience and Technology (NCNST) , No. 11 ZhongGuanCun BeiYiTiao , Beijing 100190 , P. R. China .
| | - Yafei Wang
- Science and Engineering , Jiangsu Collaboration Innovation Center of Photovoltaic Science and Engineering , Changzhou University , Changzhou 213164 , P. R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience , CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , Division of Nanophotonics , National Center for Nanoscience and Technology (NCNST) , No. 11 ZhongGuanCun BeiYiTiao , Beijing 100190 , P. R. China .
- University of Chinese Academy of Sciences , Beijing 10049 , P. R. China
| |
Collapse
|
25
|
Lee SS, Kim SH. Controlled Encapsulation of Cholesteric Liquid Crystals Using Emulsion Templates. Macromol Res 2018. [DOI: 10.1007/s13233-018-6148-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Peng H, Jiang W, Liu Q, Chen G, Ni M, Liang F, Liao Y, Xie X, Smalyukh II. Liquid Crystals under Confinement in Submicrometer Capsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10955-10963. [PMID: 30130404 DOI: 10.1021/acs.langmuir.8b01056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liquid crystal (LC) ordering and phase transition behavior under confined conditions have attracted extensive attention and enabled many applications. However, the ordering and phase transition behavior of LCs in submicrometer capsules have seldom been studied, primarily due to the lack of proper capsulizing and visualization approaches to such small LC microcapsules. Herein, we achieve submicrometer LC capsules with the sizes down to 100 nm by using emulsion-based interfacial sol-gel reaction. The behavior of LCs under the submicrometer confinement conditions is investigated while the sizes and chemical composition of the microcapsule shell surface are tuned in a controllable way. The phase transition temperatures of LCs in the submicrometer capsules shift from those of bulk LCs due to the surface-induced ordering of LCs under the strong confinement conditions, which causes formation of topological defects and alters the order parameter. Using nonlinear optical imaging technology, we explore the structures of director field of LCs that arise as a result of the competition between the surface boundary conditions and LC elasticity. The results show that the nanoscale encapsulation can significantly influence the structural configurations of the director and phase transitions of LCs under various confinement conditions.
Collapse
Affiliation(s)
- Haiyan Peng
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
- Sino-U.S. Joint Research Center on Liquid Crystal Chemistry and Physics , HUST and CUB
| | - Wenhong Jiang
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
- State Key Lab of Polymer Physics and Chemistry , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Qingkun Liu
- Department of Physics and Materials Science and Engineering Program , University of Colorado at Boulder (CUB) , Boulder , Colorado 80309 , United States
| | - Guannan Chen
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Mingli Ni
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Fuxin Liang
- State Key Lab of Polymer Physics and Chemistry , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yonggui Liao
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
- Sino-U.S. Joint Research Center on Liquid Crystal Chemistry and Physics , HUST and CUB
| | - Xiaolin Xie
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
- Sino-U.S. Joint Research Center on Liquid Crystal Chemistry and Physics , HUST and CUB
| | - Ivan I Smalyukh
- Department of Physics and Materials Science and Engineering Program , University of Colorado at Boulder (CUB) , Boulder , Colorado 80309 , United States
- Sino-U.S. Joint Research Center on Liquid Crystal Chemistry and Physics , HUST and CUB
| |
Collapse
|
27
|
Schwartz M, Lenzini G, Geng Y, Rønne PB, Ryan PYA, Lagerwall JPF. Cholesteric Liquid Crystal Shells as Enabling Material for Information-Rich Design and Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707382. [PMID: 29756303 DOI: 10.1002/adma.201707382] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/25/2018] [Indexed: 05/28/2023]
Abstract
The responsive and dynamic character of liquid crystals (LCs), arising from their ability to self-organize into long-range ordered structures while maintaining fluidity, has given them a role as key enabling materials in the information technology that surrounds us today. Ongoing research hints at future LC-based technologies of entirely different types, for instance by taking advantage of the peculiar behavior of cholesteric liquid crystals (CLCs) subject to curvature. Spherical shells of CLC reflect light omnidirectionally with specific polarization and wavelength, tunable from the UV to the infrared (IR) range, with complex patterns arising when many of them are brought together. Here, these properties are analyzed and explained, and future application opportunities from an interdisciplinary standpoint are discussed. By incorporating arrangements of CLC shells in smart facades or vehicle coatings, or in objects of high value subject to counterfeiting, game-changing future uses might arise in fields spanning information security, design, and architecture. The focus here is on the challenges of a digitized and information-rich future society where humans increasingly rely on technology and share their space with autonomous vehicles, drones, and robots.
Collapse
Affiliation(s)
- Mathew Schwartz
- College of Architecture and Design, New Jersey Institute of Technology, 154 Summit Street, University Heights, Newark, NJ, 07102, USA
| | - Gabriele Lenzini
- Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, 29 Avenue J. F. Kennedy, L-1855, Luxembourg, Luxembourg
| | - Yong Geng
- Physics and Materials Science Research Unit, University of Luxembourg, 162 A Avenue de la Faïencerie, 1511, Luxembourg, Luxembourg
| | - Peter B Rønne
- Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, 29 Avenue J. F. Kennedy, L-1855, Luxembourg, Luxembourg
| | - Peter Y A Ryan
- Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, 29 Avenue J. F. Kennedy, L-1855, Luxembourg, Luxembourg
| | - Jan P F Lagerwall
- Physics and Materials Science Research Unit, University of Luxembourg, 162 A Avenue de la Faïencerie, 1511, Luxembourg, Luxembourg
| |
Collapse
|
28
|
Bisoyi HK, Bunning TJ, Li Q. Stimuli-Driven Control of the Helical Axis of Self-Organized Soft Helical Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706512. [PMID: 29603448 DOI: 10.1002/adma.201706512] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Indexed: 05/22/2023]
Abstract
Supramolecular and macromolecular functional helical superstructures are ubiquitous in nature and display an impressive catalog of intriguing and elegant properties and performances. In materials science, self-organized soft helical superstructures, i.e., cholesteric liquid crystals (CLCs), serve as model systems toward the understanding of morphology- and orientation-dependent properties of supramolecular dynamic helical architectures and their potential for technological applications. Moreover, most of the fascinating device applications of CLCs are primarily determined by different orientations of the helical axis. Here, the control of the helical axis orientation of CLCs and its dynamic switching in two and three dimensions using different external stimuli are summarized. Electric-field-, magnetic-field-, and light-irradiation-driven orientation control and reorientation of the helical axis of CLCs are described and highlighted. Different techniques and strategies developed to achieve a uniform lying helix structure are explored. Helical axis control in recently developed heliconical cholesteric systems is examined. The control of the helical axis orientation in spherical geometries such as microdroplets and microshells fabricated from these enticing photonic fluids is also explored. Future challenges and opportunities in this exciting area involving anisotropic chiral liquids are then discussed.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, OH, 44242, USA
| | - Timothy J Bunning
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433, USA
| | - Quan Li
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, OH, 44242, USA
| |
Collapse
|
29
|
Murakami Y, Das SK, Himuro Y, Maeda S. Triplet-sensitized photon upconversion in deep eutectic solvents. Phys Chem Chem Phys 2018; 19:30603-30615. [PMID: 29115349 DOI: 10.1039/c7cp06494b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photon upconversion (UC) is a technology that can increase solar utilization efficiencies in broad photoenergy conversion systems by converting lower-energy photons into usable higher-energy photons. Recently, UC using triplet-triplet annihilation (TTA) of organic molecules has drawn attention because it is presently the only method applicable to weak and noncoherent light. To date, many attempts have been made to realize this UC technology in forms suitable for applications, but they typically suffer from either high cost or insufficient stability and/or safety of materials. Recently, a new class of liquid called deep eutectic solvents (DESs) has emerged as low-cost green fluids that possess low toxicity and vapor pressure, biodegradability, and high thermal stability. DESs have been proposed as an alternative to ionic liquids. This article develops triplet-sensitized UC samples using DESs that are found to be suitable solvents for this purpose, attaining a new materials platform for UC with the aforementioned advantages. The high thermal stability of the samples is qualitatively confirmed and their UC quantum yields are determined to be 0.11-0.21 (based on the definition that the maximum quantum yield is 0.5) depending on the DES composition. The triplet lifetime of the emitter 9,10-diphenylanthracene increases with DES viscosity, resulting in unique kinetics. Analysis of photophysical experimental results allows the relevant physics governing the performance of this sample system to be determined and discussed. Overall, a novel UC platform that simultaneously achieves high thermal stability, low cost, and environmental friendliness is developed using DESs as the solvent.
Collapse
Affiliation(s)
- Yoichi Murakami
- School of Engineering, Tokyo Institute of Technology, 2-12-1-I1-15 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | | | | | | |
Collapse
|
30
|
Zhu C, Zhou W, Fang J, Ni Y, Fang L, Lu C, Xu Z, Kang Z. Enhancement of fluorescent emission in photonic crystal film and application in photocatalysis. NANOTECHNOLOGY 2018; 29:045601. [PMID: 29199974 DOI: 10.1088/1361-6528/aa9efc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fluorescent photonic crystal films composed of monodisperse NaYF4:15Yb,0.5Tm@SiO2 (where 15 and 0.5 represent the mole percentage of reactants) core-shell spheres were successfully fabricated and applied in photocatalysis. The core-shell spheres were prepared using a modified Stober method, and fluorescent photonic crystal films were fabricated via a simple self-assembly method. The morphologies, structures and upconversion fluorescent properties of the fluorescent photonic crystal films with different photonic band gaps were characterized. Moreover, their photocatalytic capability in decomposing rhodamine B using near-infrared light was studied. Results indicate that the band edge effect plays a critical role in the enhancement of short wave emission intensity of fluorescent photonic crystal films. Specifically, in comparison to the reference sample without a band edge effect, the 363 nm emission intensity was enhanced by 5.97 times, while the percentage of UV upconversion emission was improved by 6.23%. In addition, the 451 nm emission intensity was enhanced by 5.81 times, and the percentage of visible upconversion emission was improved by 8.88%. Furthermore, fluorescent photonic crystal films with enhanced short wave emission exhibited great photocatalytic performance in the degradation of rhodamine B aqueous solutions under near-infrared light.
Collapse
Affiliation(s)
- Cheng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, People's Republic of China. Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, People's Republic of China. Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|