1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Zhou H, Lunic D, Sanosa N, Sampedro D, Funes‐Ardoiz I, Teskey CJ. Merging Hydrogen-Atom-Transfer and the Truce-Smiles Rearrangement for Synthesis of β-Arylethylamines from Unactivated Allylsulfonamides. Angew Chem Int Ed Engl 2025; 64:e202418869. [PMID: 40019754 PMCID: PMC12051773 DOI: 10.1002/anie.202418869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/13/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Arylethylamines are crucial elements in pharmaceutical molecules, making methods for their synthesis highly significant. The Truce-Smiles rearrangement is a well-developed strategy to synthesize arylethylamine motifs via aryl migration. However, most examples require amide substrates to activate the alkene to attack by a radical precursor. This strategy both limits the product scope to amide-containing compounds as well as necessitating the incorporation of specific functional groups arising from the initial radical addition. In this work, we overcome these limitations, delivering a hydrogen-atom transfer from a cobalt catalyst to unactivated alkenes to yield β-arylethylamines with simple alkyl chains. DFT studies reveal that increasing the steric hindrance in at least one of the ortho positions on the migrating aromatic group promotes ipso over ortho addition, a selectivity that contrasts with previous methods.
Collapse
Affiliation(s)
- Hanqi Zhou
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
- Institute of Organic ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| | - Danijela Lunic
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
- Department of ChemistryInstituto de Investigación en Química de la Universidad de La Rioja (IQUR)Universidad de La RiojaMadre de Dios 5326004LogroñoSpain
| | - Nil Sanosa
- Department of ChemistryInstituto de Investigación en Química de la Universidad de La Rioja (IQUR)Universidad de La RiojaMadre de Dios 5326004LogroñoSpain
| | - Diego Sampedro
- Department of ChemistryInstituto de Investigación en Química de la Universidad de La Rioja (IQUR)Universidad de La RiojaMadre de Dios 5326004LogroñoSpain
| | - Ignacio Funes‐Ardoiz
- Department of ChemistryInstituto de Investigación en Química de la Universidad de La Rioja (IQUR)Universidad de La RiojaMadre de Dios 5326004LogroñoSpain
| | | |
Collapse
|
3
|
Wu HY, Koh MJ, Wang ZC, Shi SL. Modular Access to Arylethylamines Enabled by Ni-Catalyzed Markovnikov-Selective Hydroarylation of Allylic Amines. Angew Chem Int Ed Engl 2025:e202503126. [PMID: 40302289 DOI: 10.1002/anie.202503126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/15/2025] [Accepted: 04/29/2025] [Indexed: 05/02/2025]
Abstract
Arylethylamines are prevalent structural skeletons in bioactive molecules and have significant interest within the organic chemistry community. We report here a modular and efficient nickel-catalyzed Markovnikov-selective hydroarylation of readily available allylic amines, delivering a wide variety of valuable arylethylamines with complete regiocontrol under mild conditions. Key to the success of this protocol is the employment of bulky N-heterocyclic carbenes (NHCs) as ligands. Furthermore, the use of chiral NHC ligands enables straightforward access to enantioenriched arylethylamines with excellent regio- and enantioselectivities.
Collapse
Affiliation(s)
- Hai-Yu Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, Singapore, 117544, Republic of Singapore
| | - Zi-Chao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| |
Collapse
|
4
|
Manchado A, García-González Á, Nieto CT, Ledesma NG, Díez D, Garrido NM. Transition Metal Catalysis for the Asymmetric Synthesis of 2-Arylethylamines: A Review of the New Millennium. Molecules 2025; 30:1721. [PMID: 40333644 PMCID: PMC12029675 DOI: 10.3390/molecules30081721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
The 2-arylethylamine motif is very well-known in medicinal chemistry because of its interesting properties when it comes to interacting with the Central Neural System thanks to its ability to pass the blood-brain barrier. This nitrogen-containing family of compounds is of great interest in synthetic organic chemistry and, when it comes to its asymmetric synthesis, great challenges can be faced in order to obtain the chiral purity required in the drug industry. Thus, we provide a concise transition metal review presenting the recent advances in the synthesis of chiral 2-arylethylamines using transition metals as the main catalysts in the introduction of chirality. Both conventional and photocatalysis methods will be covered, considering the main transition metal used in the studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Narciso M. Garrido
- Department of Organic Chemistry, Faculty of Chemical Sciences, University of Salamanca, Pl. Caídos, s/n, 37008 Salamanca, Spain; (A.M.); (Á.G.-G.); (C.T.N.); (N.G.L.); (D.D.)
| |
Collapse
|
5
|
Yan SS, Jackstell R, Beller M. Copper-Catalyzed Selective Amino-alkoxycarbonylation of Unactivated Alkenes with CO. J Am Chem Soc 2025; 147:6464-6471. [PMID: 39961097 PMCID: PMC11869293 DOI: 10.1021/jacs.4c13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
1,2-Amino-difunctionalization reactions of alkenes allow the efficient introduction of different functional groups and the rapid construction of valuable functionalized amines. In this respect, we report a copper-catalyzed 1,2-amino-alkoxycarbonylation of unactivated alkenes with CO and alkylamine precursors in the presence of a Lewis acid additive. The novel protocol allows direct access to valuable β-amino acid derivatives from easily available starting materials. The presented methods feature high chemo- and regioselectivities, good functional group tolerance, and substrate scope including diverse bioactive compounds and drug-like molecules. Mechanistic studies indicate that the Lewis acid additive is the key to realizing the efficient umpolung addition of nucleophilic aminyl radicals to electron-rich alkenes, which represents an elegant activation strategy for aminyl radicals.
Collapse
Affiliation(s)
- Si-Shun Yan
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Ralf Jackstell
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
6
|
Yu H, Yu X, Li X, Kou W, Fang F, Zhang G. Enantioselective Photoredox- and Cu-Catalyzed Cyanoalkylation of Styrenes via Deoxygenation of Alkoxyl Radicals with Organophosphorus Compounds(III). Org Lett 2025; 27:1750-1756. [PMID: 39935183 DOI: 10.1021/acs.orglett.5c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The enantioselective cyanoalkylation of styrenes by a cooperative photoredox and copper catalysis system has been established, providing straightforward access to structurally diverse enantioenriched alkyl nitriles in good yields with excellent enantioselectivities under mild conditions via deoxygenation of alkoxyl radicals with organophosphorus compounds(III). In addition, the reaction features a wide substrate scope and good functional group tolerance, and the resultant alkyl nitriles could be easily converted into a series of chiral carboxylic acids, amides, esters, etc.
Collapse
Affiliation(s)
- Hongzhou Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Xiang Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Xingyu Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Wanqing Kou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Fang Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Guoyu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| |
Collapse
|
7
|
Barney JL, Wolfram AJ, Litvak R, Nacsa ED. A General Amino-(Hetero)arylation of Simple Olefins with (Hetero)aryl Sulfonamides Enabled by an N-Triazinyl Group. ACS Catal 2025; 15:2139-2149. [PMID: 40124959 PMCID: PMC11928165 DOI: 10.1021/acscatal.5c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
(Hetero)arylethylamines are privileged substructures in pharmaceuticals, agrochemicals, and other bioactive compounds. In principle, the amino-(hetero)arylation of olefins represents an ideal strategy for the rapid preparation of these pharmacophores, which could accelerate the discovery of valuable new products. Established amino-(hetero)arylation methods, however, do not accommodate several important classes of olefins and (hetero)aromatic structures, which precludes access to an appreciable range of molecular architectures. To address these limitations, we have developed a radical-mediated reaction that adds the amino and (hetero)aryl groups from a simple and stable (hetero)aryl sulfonamide across an alkene. The identification of a readily available triazine as an original N-protecting group was critical to the development of this transformation. The reaction features good regio- and stereoselectivity and succeeds with classes of olefins and medicinally valuable (hetero)aryl groups that are unproductive with alternate protocols. Lastly, we highlighted these advances by synthesizing TMP269, a class IIa histone deacetylase inhibitor that would otherwise be challenging to prepare by olefin amino-arylation.
Collapse
Affiliation(s)
- Jaxon L Barney
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Andrew J Wolfram
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rose Litvak
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Eric D Nacsa
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Saha SN, Ballav N, Ghosh S, Baidya M. Regioselective intermolecular carboamination of allylamines via nucleopalladation: empowering three-component synthesis of vicinal diamines. Chem Sci 2024; 16:386-392. [PMID: 39620079 PMCID: PMC11606157 DOI: 10.1039/d4sc07630c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
An intermolecular carboamination reaction of allyl amines under Pd(ii)-catalysis is reported, expediting the synthesis of valuable vicinal diamines embedded in a functionally enriched linear carbon framework with high yields and exclusive Markovnikov selectivity. Central to our approach is the strategic use of a removable picolinamide auxiliary, which directs the regioselectivity during aminopalladation and stabilizes the crucial 5,5-palladacycle intermediate. This stabilization facilitates oxidative addition to carbon electrophiles, enabling the simultaneous incorporation of diverse aryl/styryl groups as well as important amine motifs, such as sulfoximines and anilines, across carbon-carbon double bonds. The protocol features broad substrate compatibility, tolerance to various functional groups, and scalability. The utility of this method is further demonstrated by the site-selective diversification of pharmaceutical agents. Additionally, these products serve as versatile intermediates for synthesizing heterocycles and function as effective ligands in catalytic transfer hydrogenation reactions. Notably, this work represents a rare instance of nucleopalladation-guided intermolecular carboamination of allylamines.
Collapse
Affiliation(s)
- Shib Nath Saha
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Nityananda Ballav
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Suman Ghosh
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
9
|
Guo K, Sun Y, Sun Y, Shang J, Lu Y, Wu Q. Copper-Catalyzed Trifunctionalization of Heteroaryl-Substituted 1-Hexenes via Remote Heteroaryl Migration. Chem Asian J 2024; 19:e202400988. [PMID: 39267120 DOI: 10.1002/asia.202400988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
A copper-catalyzed trifunctionalization (trifluoromethylation, heteroarylation, and cyanation) of heteroaryl-substituted 1-hexenes via remote heteroaryl migration is reported. A variety of CF3 and heteroaryl-containing nitriles were readily constructed under mild conditions. The reaction features high chemo- and regioselectivities and represents a convenient method for the synthesis of multifunctionalized molecules in organic synthesis.
Collapse
Affiliation(s)
- Kang Guo
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Yanwen Sun
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Yining Sun
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Jiayi Shang
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Yongchao Lu
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Qiong Wu
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| |
Collapse
|
10
|
Li Z, Wang S, Chen SC, Zhu X, Lian Z, Xing D. Cu-Catalyzed Asymmetric Three-Component Radical Acylarylation of Vinylarenes with Aldehydes and Aryl Boronic Acids. J Am Chem Soc 2024; 146:32235-32242. [PMID: 39533487 DOI: 10.1021/jacs.4c08957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The direct use of readily available aldehydes as acyl radical precursors has facilitated diverse three-component acylative difunctionalization reactions of alkenes, offering a powerful route to synthesize β-branched ketones. However, asymmetric three-component acylative difunctionalization of alkenes with aldehydes still remains elusive. Here we report a copper-catalyzed asymmetric three-component radical acylarylation of vinylarenes with aldehydes and aryl boronic acids. This method begins with acyl radical formation from an aldehyde via hydrogen atom transfer. The acyl radical adds to the alkene, forming a new benzylic radical that then undergoes copper-catalyzed enantioselective arylation. A chiral binaphthyl-tethered bisoxazoline ligand is essential for achieving high stereocontrol. This strategy enables the direct synthesis of a range of synthetically valuable chiral β,β-diaryl ketones from aldehydes and vinylarenes.
Collapse
Affiliation(s)
- Zhiheng Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Si-Cong Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiangwen Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zhengzhen Lian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
11
|
Cao Z, Sun Y, Chen Y, Zhu C. Photoinduced Asymmetric Alkene Aminohetarylation with Chiral Sulfoximine Reagents. Angew Chem Int Ed Engl 2024; 63:e202408177. [PMID: 39143840 DOI: 10.1002/anie.202408177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Given the pivotal role of β-(het)arylethylamine moiety in bioactive molecules, the direct amino(het)arylation of alkenes occupies a privileged position in the construction of (het)arylethylamine derivatives. Herein we devise chiral sulfoximines as novel bifunctional reagents which exhibit remarkable efficiency in the challenging asymmetric alkene aminohetarylation reaction, particularly in terms of reactivity and stereo-control. The chiral reagents can be conveniently accessed in gram scale, and efficiently generate N-centered radicals under mild photochemical conditions. The transformation proceeds through enantioselective 1,4-hetaryl migration, ensuring precise chirality transfer from sulfur- to carbon-centers, rendering wide applicability to both aromatic and aliphatic alkenes. Furthermore, the method is straightforward to operate and does not require transition metals or photosensitizers, making it an attractive and practical option.
Collapse
Affiliation(s)
- Zhu Cao
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuqian Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Yasu Chen
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Zhu
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
12
|
Wang PZ, Zhang B, Xiao WJ, Chen JR. Photocatalysis Meets Copper Catalysis: A New Opportunity for Asymmetric Multicomponent Radical Cross-Coupling Reactions. Acc Chem Res 2024. [PMID: 39535732 DOI: 10.1021/acs.accounts.4c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
ConspectusIn recent years, radical-mediated cross-coupling reactions have emerged as a compelling strategy for achieving a rich diversity in molecular topologies under benign conditions. However, the inherent high reactivity of radicals presents considerable challenges in controlling reaction pathways and selectivity, which often results in a limited range of substrates and a constrained reaction profile. Given the capacity of visible-light photoredox catalysis to generate a wide variety of reactive radicals and radical ions in a controlled manner and the propensity of copper complexes toward radical species, we envisaged that the synergy between chiral copper catalysts and photoactive catalysts would pave the way for developing innovative strategies. This integration is poised to unlock a broad spectrum of enantioselective multicomponent radical cross-coupling reactions.In this Account, we describe our insights and recent efforts in the realm of enantioselective multicomponent radical cross-coupling reactions. These advancements have been achieved through the innovative application of dual photoredox/copper catalysis or bifunctional copper catalysis under visible light irradiation. Our work is systematically divided into two sections based on the activation modes. The first section focuses on photoinduced copper-catalyzed chiral C-C and C-O bond formation through a radical addition/nucleophilic trap sequence. Our discussion of chiral C-C bond formation is particularly concentrated on the asymmetric carbocyanation and carboarylation of vinylarenes, 1,3-enynes, and 1,3-dienes. Our findings underscore that irradiation with visible light can adeptly modulate the pace of radical generation, thus orchestrating consecutive reaction stages and ensuring the attainment of both chemo- and stereoselectivity. In the domain of chiral C-O bond formation, leveraging carboxylic acids as a nucleophilic oxygen source, we introduce a suite of esterification reactions of benzylic, allylic, and propargylic radicals. These radicals are derived from a variety of radical precursors, showcasing the versatility of our approach. The following section highlights our innovative discovery in the field of dual photoredox/copper catalysis, which enables enantioselective three-component radical transformations via the direct activation of aromatic alkenes. This methodology begins with the generation of formal distonic radical anions through the photocatalytic single-electron reduction of aromatic alkenes, thus, enabling orthogonal reactivity. Employing H2O, D2O, and CO2 as external electrophile agents, we have developed three types of radical cyanofunctionalization reactions: hydrocyanation, deuteriocyanation, and cyanocarboxylation. These reactions provide practical access to diversely functionalized chiral nitriles with high enantiomeric excess.Collectively, these synthetic methodologies highlight the immense potential inherent in the synergistic integration of photocatalysis and asymmetric copper catalysis. This Account aspires to deepen our comprehension of the advantages conferred by these catalytic systems, elucidating the crucial role of photocatalysis in facilitating enantioselective multicomponent radical cross-couplings. We anticipate that this Account will provide valuable insights and stimulate the evolution of innovative methodologies within this rapidly expanding field.
Collapse
Affiliation(s)
- Peng-Zi Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Bin Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| | - Jia-Rong Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| |
Collapse
|
13
|
Wang PZ, Zhang Z, Jiang M, Chen JR, Xiao WJ. A General Copper-Box System for the Asymmetric Arylative Functionalization of Benzylic, Propargylic or Allenylic Radicals. Angew Chem Int Ed Engl 2024; 63:e202411469. [PMID: 39073195 DOI: 10.1002/anie.202411469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Radical-involved arylative cross-coupling reactions have recently emerged as an attractive strategy to access valuable aryl-substituted motifs. However, there still exist several challenges such as limited scope of radical precursors/acceptors, and lack of general asymmetric catalytic systems, especially regarding the multicomponent variants. Herein, we reported a general copper-Box system for asymmetric three-component arylative radical cross-coupling of vinylarenes and 1,3-enynes, with oxime carbonates and aryl boronic acids. The reactions proceed under practical conditions in the absence or presence of visible-light irradiation, affording chiral 1,1-diarylalkanes, benzylic alkynes and allenes with good enantioselectivities. Mechanistic studies imply that the copper/Box complexes play a dual role in both radical generation and ensuing asymmetric cross-coupling. In the cases of 1,3-enynes, visible-light irradiation could improve the activity of copper/Box complex toward the initial radical generation, enabling better efficiency match between radical formation and cross-coupling.
Collapse
Affiliation(s)
- Peng-Zi Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jia-Rong Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
| |
Collapse
|
14
|
Li L, Rawal VH. Transition Metal-Free Difunctionalization of Unactivated Alkenes: Arylation/Azidation, Arylation/Chlorination, and Arylation/Cyanation. Chem 2024; 10:3243-3253. [PMID: 39677497 PMCID: PMC11637411 DOI: 10.1016/j.chempr.2024.07.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Arylethylamines represent a privileged scaffold in pharmaceutical compounds and form the backbone of many medical drugs, including those used for treating neurological diseases and pain. Their biomedical significance has inspired new synthetic methods that rely on transition metal-catalyzed aminoarylation reaction to an alkene, often in conjunction with a photoredox catalyst or a photosensitizer, and guided by a directing or stabilizing group. Here, we introduce a simple and effective method for azidoarylation of unactivated alkenes under transition metal-free conditions. Visible or near-UV light irradiation of readily available triarylbismuth dichlorides generates an aryl radical that selectively adds to the alkene, and the resulting homobenzyl radical is intercepted by an amine equivalent. This method offers a broad substrate scope and also enables aryl chlorination and arylcyanation of unactivated alkenes.
Collapse
Affiliation(s)
- Li Li
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Viresh H. Rawal
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
15
|
Cheng Z, Zhang J, Li C, Li X, Chen P, Liu G. Copper-Catalyzed sp 2 C-H Arylation and Alkynylation of Allenes via Hydrogen Atom Abstraction. J Am Chem Soc 2024; 146:24689-24698. [PMID: 39167590 DOI: 10.1021/jacs.4c09324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Development of methods for the sp2 C-H transformations of allenes has received much attention, and it presents a powerful tool for the synthesis of complicated allene-containing bioactive molecules. With a copper-catalyzed radical relay, sp2 allenic C-H arylation and alkynylation were established herein, using various aryl boronic acids and trimethoxysilyl-substituted alkynes as carbon nucleophiles and using electrophilic N-F reagents as nitrogen-centered radical precursors. These methods featured excellent site selectivity to deliver fully substituted allenes efficiently. Moreover, with silyl-substituted allenes as substrates, a subsequent dual sp2 C-H functionalization process was established as well, which allowed for the divergent synthesis of multifunctionalized allenes, significantly expanding their chemical spaces.
Collapse
Affiliation(s)
- Zhongming Cheng
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jiajun Zhang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Can Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiang Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
16
|
Cui J, Wang X, Zeng R. Directed copper-catalyzed C-H functionalization of unactivated olefins with azodicarbonamide compounds. RSC Adv 2024; 14:27475-27480. [PMID: 39221125 PMCID: PMC11359497 DOI: 10.1039/d4ra04113e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The copper-catalyzed strategy employing the 8-aminoquinoline directing group has proven to be a highly advantageous approach for functionalizing C-H bonds. In this study, we present the successful application of this strategy to accomplish Heck-type coupling reactions and construct β-lactam skeletons, simultaneously introducing a unique cyano functional group. The resulting Heck-type coupling products demonstrate good stereo- and region-selectivity. Initial mechanistic investigations indicate that the reaction proceeds via a radical coupling mechanism, exhibiting a wide substrate scope and delivering good yields.
Collapse
Affiliation(s)
- Jing Cui
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Xiaoya Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Runsheng Zeng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
17
|
Guerrero M, Rentería-Gómez Á, Das D, Gutierrez O. Fe-Catalyzed Fluoroalkyl(hetero)arylation of Vinyl Azaarenes: Rapid and Modular Synthesis of Unsymmetrical 1,1-Bis(hetero)arylalkanes. Org Lett 2024; 26:7015-7020. [PMID: 39141436 PMCID: PMC11348425 DOI: 10.1021/acs.orglett.4c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
In contrast to transition-metal-catalyzed difunctionalization of activated alkenes, selective alkylarylation of vinyl azaarenes is underdeveloped. Consequently, the lack of modular and rapid syntheses of 1,1-bis(hetero)arylalkanes limits their exploration in medicinal chemistry. Herein we report a protocol using commercially available iron salts, bisphosphine ligands, fluoroalkyl halides, and Grignard reagents that enables the selective 1,2-fluoroalkyl(hetero)arylation of vinyl azaarenes. We demonstrate the versatility and robustness of the method through the selective synthesis of a range of unsymmetrical 1,1-bis(hetero)arylalkenes, including pyridine N-oxides, triazoles, pyrazines, carbazoles, indazoles, and 1,2-azaborines. Mechanistic insights from experimental and computational investigations support a radical pathway and provide insights into the role of non-covalent interactions in iron catalysis.
Collapse
Affiliation(s)
| | | | - Deborshee Das
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
18
|
Kashyap S, Singh B, Ghorai MK. Magic Blue-Initiated S N2-Type Ring Opening of Activated Aziridines: Friedel-Crafts-Type Alkylation of Electron-Rich Arenes/Heteroarenes. J Org Chem 2024; 89:11429-11445. [PMID: 39088802 DOI: 10.1021/acs.joc.4c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
A transition metal-free, atom-economical, and highly stereospecific synthetic approach to Friedel-Crafts-type alkylation of arenes/heteroarenes has been developed. The protocol involves the catalytic aminium radical-cation salt (Magic Blue)-initiated SN2-type nucleophilic ring opening of activated aziridines with arenes/heteroarenes to give the corresponding 2,2-diarylethylamines up to 99% yield and 85% ee (for nonracemic aziridines) in a very short reaction time. Moreover, on reaction with 1,3-dimethylindole and benzofuran, aziridines undergo domino-ring-opening cyclization (DROC) to give the various biologically significant heterocyclic scaffolds in moderate to good yields.
Collapse
Affiliation(s)
- Suraj Kashyap
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Bharat Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manas K Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
19
|
Mukherjee U, Shah JA, Musaev DG, Ngai MY. Harnessing Bromo/Acyloxy Transposition (BrAcT) and Excited-State Copper Catalysis for Styrene Difunctionalization. J Am Chem Soc 2024; 146:21271-21279. [PMID: 39042434 PMCID: PMC11542872 DOI: 10.1021/jacs.4c08984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
1,2-Difunctionalization of styrenes, adding two distinct functional groups across the C═C double bond, has emerged as a powerful tool for enhancing molecular complexity. Herein, we report the development of a regioconvergent β-acyloxylation-α-ketonylation of styrenes through bromo/acyloxy transposition (BrAcT) and excited-state copper catalysis. This approach is amenable to gram-scale synthesis and tolerates a wide range of functional groups and complex molecular frameworks, including derivatives of natural products and marketed drugs. Our experimental and computational studies suggest a unique mechanism featuring a dynamic, ionic BrAcT process and excited-state copper-catalyzed redox reactions. We anticipate that this BrAcT process could serve as a broadly applicable and versatile strategy for β-acyloxylation-α-functionalization of styrenes, creating valuable intermediates for preparing new pharmaceuticals, agrochemicals, and functional materials.
Collapse
Affiliation(s)
- Upasana Mukherjee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jagrut A Shah
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
20
|
Derat E, Masson G, Claraz A. Electrochemically-Driven 1,4-Aryl Migration via Radical Fluoromethylation of N-Allylbenzamides: a Straightforward Access to Functionalized β-Arylethylamines. Angew Chem Int Ed Engl 2024; 63:e202406017. [PMID: 38687085 DOI: 10.1002/anie.202406017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
An electrochemical radical Truce Smiles rearrangement of N-allylbenzamides is documented herein. The selective 1,4-aryl migration was triggered by the radical fluoromethylation of the alkene providing a direct route to fluoro derivatives of the highly privileged β-arylethylamine pharmacophore. This practical transformation utilizes readily available starting materials and employs an electrical current to drive the oxidative process under mild reaction conditions. It accommodates a variety of migratory aryl groups with different electronic properties and substitution patterns. Careful selection of the protecting group on the nitrogen atom of the N-allylbenzamide is crucial to outcompete the undesired 6-endo cyclization and achieve high level of selectivity towards the 1,4-aryl migration. DFT calculations support the reaction mechanism and unveil the origin of selectivity between the two competitive pathways.
Collapse
Affiliation(s)
- Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris Cedex 05, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles (ICSN), CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Chang Z, Zhang X, Lv H, Sun H, Lian Z. Three-Component Radical Cross-Coupling: Asymmetric Vicinal Sulfonyl-Esterification of Alkenes Involving Sulfur Dioxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309069. [PMID: 38532287 PMCID: PMC11186061 DOI: 10.1002/advs.202309069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Indexed: 03/28/2024]
Abstract
A novel catalytic system for radical cross-coupling reactions based on copper and chiral Pyridyl-bis(imidazole) (PyBim) ligands is described. It overcomes the challenges of chemoselectivity and enantioselectivity, achieving a highly enantioselective vicinal sulfonyl-esterification reaction of alkenes involving sulfur dioxide. This strategy involves the use of earth-abundant metal catalyst, mild reaction conditions, a broad range of substrates (84 examples), high yields (up to 97% yield), and exceptional control over enantioselectivity. The reaction system is compatible with different types of radical precursors, including O-acylhydroxylamines, cycloketone oxime esters, aryldiazonium salts, and drug molecules. Chiral ligand PyBim is identified as particularly effective in achieving the desired high enantioselectivity. Mechanistic studies reveal that copper/PyBim system plays a vital role in C─O coupling, employing an outer-sphere model. In addition, the side arm effect of ligand is observed.
Collapse
Affiliation(s)
- Zhiqian Chang
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xuemei Zhang
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Haiping Lv
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Haotian Sun
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Zhong Lian
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
22
|
Hu SP, Gao CH, Liu TM, Miao BY, Wang HC, Yu W, Han B. Integrating Olefin Carboamination and Hofmann-Löffler-Freytag Reaction by Radical Deconstruction of Hydrazonyl N-N Bond. Angew Chem Int Ed Engl 2024; 63:e202400168. [PMID: 38380865 DOI: 10.1002/anie.202400168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
As a type of elementary organic compounds containing N-N single bond, hydrazone involved chemical conversions are extremely extensive, but they are mainly limited to N2-retention and N2-removal modes. We report herein an unprecedented protocol for the realization of division utilization of the N2-moiety of hydrazone by a radical facilitated N-N bond deconstruction strategy. This new conversion mode enables the successful combination of alkene carboamination and Hofmann-Löffler-Freytag reaction by the reaction of N-homoallyl mesitylenesulfonyl hydrazones with ethyl difluoroiodoacetate under photocatalytic redox neutral conditions. Mechanism studies reveal that the reaction undergoes a radical relay involving addition, crucial remote imino-N migration and H-atom transfer. Consequently, a series of structurally significant ϵ-N-sulphonamide-α,α-difluoro-γ-amino acid esters are efficiently produced via continuous C-C bond and dual C-N bonds forging.
Collapse
Affiliation(s)
- Si-Pei Hu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chen-Hui Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tu-Ming Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bing-Yang Miao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hong-Chen Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
23
|
Jia X, Hao GL, Feng M, Jiang H, Wang SG, Huang L. Rh(III)-Catalyzed Diastereo- and Enantioselective Regiodivergent (Hetero)Arylamidation of (Homo)Allylic Sulfides. J Am Chem Soc 2024; 146:9768-9778. [PMID: 38545837 DOI: 10.1021/jacs.3c14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A rhodium-catalyzed 3-component conjunctive diastereo- and regioselective arylamidation of (homo)allylic sulfides, organon boronic acids, and dioxazolones is reported. These reactions deliver the 1,2-insertion and 2,1-insertion arylamidation products, respectively, for allylic sulfides and homoallylic sulfides. The enantioselective arylamidation of terminal and internal allylic sulfides is achieved, furnishing various 1,3-N,S compounds featuring one or two contiguous stereocenters in high yields and with high diastereo- and enantioselectivities. Mechanistic studies suggest a change in the turnover-limiting and selectivity-determining steps induced by the native and easily removable sulfide group.
Collapse
Affiliation(s)
- Xiaoyan Jia
- State Key Laboratory of Pulp and Paper Engineering and Key Laboratory of Functional Molecular Engineering of Guangdong Province in School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Gui-Lin Hao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Mengxia Feng
- State Key Laboratory of Pulp and Paper Engineering and Key Laboratory of Functional Molecular Engineering of Guangdong Province in School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- State Key Laboratory of Pulp and Paper Engineering and Key Laboratory of Functional Molecular Engineering of Guangdong Province in School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Liangbin Huang
- State Key Laboratory of Pulp and Paper Engineering and Key Laboratory of Functional Molecular Engineering of Guangdong Province in School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
24
|
Hervieu C, Kirillova MS, Hu Y, Cuesta-Galisteo S, Merino E, Nevado C. Chiral arylsulfinylamides as reagents for visible light-mediated asymmetric alkene aminoarylations. Nat Chem 2024; 16:607-614. [PMID: 38228849 PMCID: PMC10997517 DOI: 10.1038/s41557-023-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Two- or one-electron-mediated difunctionalizations of internal alkenes represent straightforward approaches to assemble molecular complexity by the simultaneous formation of two contiguous Csp3 stereocentres. Although racemic versions have been extensively explored, asymmetric variants, especially those involving open-shell C-centred radical species, are much more limited both in number and scope. Here we describe enantioenriched arylsulfinylamides as all-in-one reagents for the efficient asymmetric, intermolecular aminoarylation of alkenes. Under mild photoredox conditions, nitrogen addition of the arylsulfinylamide onto the double bond, followed by 1,4-translocation of the aromatic ring, produce, in a single operation, the corresponding aminoarylation adducts in enantiomerically enriched form. The sulfinyl group acts here as a traceless chiral auxiliary, as it is eliminated in situ under the mild reaction conditions. Optically pure β,β-diarylethylamines, aryl-α,β-ethylenediamines and α-aryl-β-aminoalcohols, prominent motifs in pharmaceuticals, bioactive natural products and ligands for transition metals, are thereby accessible with excellent levels of regio-, relative and absolute stereocontrol.
Collapse
Affiliation(s)
- Cédric Hervieu
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Yawen Hu
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Estíbaliz Merino
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Andrés M. del Río (IQAR), Facultad de Farmacia, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Noten EA, Ng CH, Wolesensky RM, Stephenson CRJ. A general alkene aminoarylation enabled by N-centred radical reactivity of sulfinamides. Nat Chem 2024; 16:599-606. [PMID: 38228850 DOI: 10.1038/s41557-023-01404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/17/2023] [Indexed: 01/18/2024]
Abstract
Arylethylamines are popular structural elements in bioactive molecules but are often made through a linear series of synthetic steps. A modular protocol to assemble arylethylamines from alkenes in one step would represent a useful advance in discovery chemistry, though current limitations preclude a generally applicable method. In this work we disclose an aminoarylation of alkenes using aryl sulfinamide reagents as bifunctional amine and arene donors. This reaction features excellent regioselectivity and diastereoselectivity on a variety of activated and unactivated substrates. Using a weakly oxidizing photocatalyst, a nitrogen radical is generated under mild conditions and adds to an alkene to form a new C-N bond. A desulfinylative aryl migration event known as a Smiles-Truce rearrangement follows to form a new C-C bond. In this manner, arylethylamines can be rapidly assembled from abundant alkene feedstocks. Moreover, chiral information from the sulfinamide can be transferred via rearrangement to a new carbon stereocentre in the product, thus advancing the development of traceless asymmetric alkene difunctionalization.
Collapse
Affiliation(s)
- Efrey A Noten
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Cody H Ng
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
26
|
Smorodina AA, Buev EM, Moshkin VS, Sosnovskikh VY. Tunable Approach to Diverse Phenethylamines via Reduction of 5-Aryloxazolidines with Triethylsilane. J Org Chem 2024; 89:2294-2305. [PMID: 38315159 DOI: 10.1021/acs.joc.3c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A rapid pathway for the synthesis of various β-phenethylamines from aromatic aldehydes has been developed. Initially, a wide range of 5-aryloxazolidines was prepared via the [3 + 2] cycloaddition reaction of N-methylazomethine ylide derived from sarcosine and paraformaldehyde. The subsequent reduction of 5-aryloxazolidines with triethylsilane in trifluoroacetic acid yields three types of products: N,N-dimethylphenylethanolamines, N,N-dimethylphenethylamines, and tetrahydroisoquinolines, depending on the substituents in the aromatic ring and reaction conditions. Moreover, an additional step of oxazolidine hydrolysis or ring-opening with hydrogen cyanide allowed us to synthesize N-methyl- or N-methyl-N-(cyanomethyl)phenethylamines.
Collapse
Affiliation(s)
- Anastasia A Smorodina
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Evgeny M Buev
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Vladimir S Moshkin
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Vyacheslav Y Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| |
Collapse
|
27
|
Okumatsu D, Kiyokawa K, Bao Nguyen LT, Abe M, Minakata S. Photoexcitation of (diarylmethylene)amino benziodoxolones for alkylamination of styrene derivatives with carboxylic acids. Chem Sci 2024; 15:1068-1076. [PMID: 38239691 PMCID: PMC10793594 DOI: 10.1039/d3sc06090j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
The alkylamination of alkenes using pristine carboxylic acids was achieved by the photoexcitation of (diarylmethylene)amino benziodoxolones (DABXs), which serve as both an oxidant and an aminating reagent (an iminyl radical precursor). The developed method is a simple photochemical reaction without the need for external photosensitizers and shows a broad substrate scope for aliphatic carboxylic acids leading to the formation of primary, secondary, and tertiary alkyl radicals, thus enabling the facile synthesis of various structurally complex amines. Mechanistic investigations including transient absorption spectroscopy measurements using a laser flash photolysis (LFP) method disclosed the unique photochemical reactivity of DABXs, which undergoes homolysis of their I-N bonds to give an iminyl radical and ortho-iodobenzoyloxy radical, the latter of which participates in the single-electron oxidation of carboxylates.
Collapse
Affiliation(s)
- Daichi Okumatsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Yamadaoka 2-1 Suita Osaka 565-0871 Japan
| | - Kensuke Kiyokawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Yamadaoka 2-1 Suita Osaka 565-0871 Japan
| | - Linh Tran Bao Nguyen
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University Kagamiyama 1-3-1 Higashi-hiroshima Hiroshima 739-8526 Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University Kagamiyama 1-3-1 Higashi-hiroshima Hiroshima 739-8526 Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Yamadaoka 2-1 Suita Osaka 565-0871 Japan
| |
Collapse
|
28
|
Hwang Y, Wisniewski SR, Engle KM. Ligand-Enabled Carboamidation of Unactivated Alkenes through Enhanced Organonickel Electrophilicity. J Am Chem Soc 2023; 145:25293-25303. [PMID: 37938051 DOI: 10.1021/jacs.3c08855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Catalytic carboamination of alkenes is a powerful synthetic tool to access valuable amine scaffolds from abundant and readily available alkenes. Although a number of synthetic approaches have been developed to achieve the rapid buildup of molecular complexity in this realm, the installation of diverse carbon and nitrogen functionalities onto unactivated alkenes remains underdeveloped. Here we present a ligand design approach to enable nickel-catalyzed three-component carboamidation that is applicable to a wide range of alkenyl amine derivatives via a tandem process involving alkyl migratory insertion and inner-sphere metal-nitrenoid transfer. With this method, various nitrogen functionalities can be installed into both internal and terminal unactivated alkenes, leading to differentially substituted diamines that would otherwise be difficult to access. Mechanistic investigations reveal that the tailored Ni(cod)(BQiPr) precatalyst modulates the electronic properties of the presumed π-alkene-nickel intermediate via the quinone ligand, leading to enhanced carbonickelation efficiency across the unactivated C═C bond. These findings establish nickel's ability to catalyze multicomponent carboamidation with a high efficiency and exquisite selectivity.
Collapse
Affiliation(s)
- Yeongyu Hwang
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Steven R Wisniewski
- Chemical Process Development Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
29
|
Shi C, Guo L, Gao H, Luo M, Zhou X, Yang C, Xia W. Three-Component Aminoheteroarylation of Alkenes via Photoinduced EDA Complex Activation. Org Lett 2023; 25:7661-7666. [PMID: 37844134 DOI: 10.1021/acs.orglett.3c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A catalyst-free approach for the multicomponent aminoheteroarylation reaction of alkenes with N-aminopyridinium salts and heteroarenes is herein described. The reaction shows good functional group tolerance and allows the generation of valuable β-heteroarylethylamines in satisfying yields. In this transformation, N-aminopyridinium salts and heteroarenes are utilized to generate electron donor-acceptor complexes, which undergo a single-electron transfer process upon light irradiation to form key amidyl radicals and heteroaryl radical cations. The amidyl radical is subsequently captured by alkenes, followed by a Minisci-type reaction to yield the desired β-heteroarylamines as products.
Collapse
Affiliation(s)
- Chengcheng Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Han Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mengqi Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiao Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
30
|
Zhang W, Liu T, Ang HT, Luo P, Lei Z, Luo X, Koh MJ, Wu J. Modular and Practical 1,2-Aryl(Alkenyl) Heteroatom Functionalization of Alkenes through Iron/Photoredox Dual Catalysis. Angew Chem Int Ed Engl 2023; 62:e202310978. [PMID: 37699857 DOI: 10.1002/anie.202310978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Efficient methods for synthesizing 1,2-aryl(alkenyl) heteroatomic cores, encompassing heteroatoms such as nitrogen, oxygen, sulfur, and halogens, are of significant importance in medicinal chemistry and pharmaceutical research. In this study, we present a mild, versatile and practical photoredox/iron dual catalytic system that enables access to highly privileged 1,2-aryl(alkenyl) heteroatomic pharmacophores with exceptional efficiency and site selectivity. Our approach exhibits an extensive scope, allowing for the direct utilization of a wide range of commodity or commercially available (hetero)arenes as well as activated and unactivated alkenes with diverse functional groups, drug scaffolds, and natural product motifs as substrates. By merging iron catalysis with the photoredox cycle, a vast array of alkene 1,2-aryl(alkenyl) functionalization products that incorporate a neighboring azido, amino, halo, thiocyano and nitrooxy group were secured. The scalability and ability to rapid synthesize numerous bioactive small molecules from readily available starting materials highlight the utility of this protocol.
Collapse
Affiliation(s)
- Weigang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Tao Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hwee Ting Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Penghao Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhexuan Lei
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaohua Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
31
|
Pozhydaiev V, Muller C, Moran J, Lebœuf D. Catalytic Synthesis of β-(Hetero)arylethylamines: Modern Strategies and Advances. Angew Chem Int Ed Engl 2023; 62:e202309289. [PMID: 37599269 DOI: 10.1002/anie.202309289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/22/2023]
Abstract
β-(Hetero)arylethylamines appear in a myriad of pharmaceuticals due to their broad spectrum of biological properties, making them prime candidates for drug discovery. Conventional methods for their preparation often require engineered substrates that limit the flexibility of the synthetic routes and the diversity of compounds that can be accessed. Consequently, methods that provide rapid and versatile access to those scaffolds remain limited. To overcome these challenges, synthetic chemists have designed innovative and modular strategies to access the β-(hetero)arylethylamine motif, paving the way for their more extensive use in future pharmaceuticals. This review outlines recent progresses in the synthesis of (hetero)arylethylamines and emphasizes how these innovations have enabled new levels of molecular complexity, selectivity, and practicality.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Cyprien Muller
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
32
|
Liu S, Wang SL, Wan J, Peng S, Zhang JR, Ding HJ, Zhang B, Ni HL, Cao P, Hu P, Wang BQ, Chen B. Nickel-Catalyzed Reductive Cross-Coupling of Aziridines and Allylic Chlorides. Org Lett 2023; 25:6582-6586. [PMID: 37642345 DOI: 10.1021/acs.orglett.3c02399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A nickel-catalyzed reductive cross-coupling of aziridines and allylic chlorides was realized by using manganese metal as the reducing agent. This protocol afforded a convenient approach to obtain β-allyl-substituted arylethylamines bearing various functional groups. The utility of this reaction was also demonstrated by scale-up preparation and diverse transformations, including the synthesis of Baclofen and several bioactive molecular motifs.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Sen-Lin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Jie Wan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Shuang Peng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Jie-Rui Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Hua-Jiao Ding
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bin Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bin Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
33
|
Bauer T, Hakim YZ, Morawska P. Recent Advances in the Enantioselective Radical Reactions. Molecules 2023; 28:6252. [PMID: 37687085 PMCID: PMC10489153 DOI: 10.3390/molecules28176252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The review covers research published since 2017 and is focused on enantioselective synthesis using radical reactions. It describes recent approaches to the asymmetric synthesis of chiral molecules based on the application of the metal catalysis, dual metal and organocatalysis and finally, pure organocatalysis including enzyme catalysis. This review focuses on the synthetic aspects of the methodology and tries to show which compounds can be obtained in enantiomerically enriched forms.
Collapse
Affiliation(s)
- Tomasz Bauer
- Faculty of Chemistry, University of Warsaw, L Pasteura 1, PL-02-093 Warsaw, Poland; (Y.Z.H.); (P.M.)
| | | | | |
Collapse
|
34
|
Qi XK, Zheng MJ, Yang C, Zhao Y, Guo L, Xia W. Metal-Free Amino(hetero)arylation and Aminosulfonylation of Alkenes Enabled by Photoinduced Energy Transfer. J Am Chem Soc 2023; 145:16630-16641. [PMID: 37486736 DOI: 10.1021/jacs.3c04073] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
β-(Hetero)arylethylamines are privileged structural motifs found in many high-value organic molecules, including pharmaceuticals and natural products. To construct these important molecular skeletons, previous methods are mainly achieved by amino(hetero)arylation reaction with the aid of transition metals and preactivated substrates. Herein, we report a metal-free and photoinduced intermolecular amino(hetero)arylation reaction for the single-step installation of both (hetero)aryl and iminyl groups across alkenes in an efficient and regioselective manner. This method shows broad scope (up to 124 examples) and excellent tolerance of various olefins─from the simplest ethylene to complex multisubstituted alkenes can all participate in the reaction. Furthermore, aminosulfonylation of alkenes can be also conducted in the presence of sodium bisulfite as the SO2 source.
Collapse
Affiliation(s)
- Xu-Kuan Qi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Meng-Jie Zheng
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yating Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
35
|
Nicely AM, Popov AG, Wendlandt HC, Trammel GL, Kohler DG, Hull KL. Cu-Catalyzed Three-Component Carboamination of Electron Deficient Olefins. Org Lett 2023; 25:5302-5307. [PMID: 37440170 PMCID: PMC10771120 DOI: 10.1021/acs.orglett.3c01866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The copper-catalyzed three-component carboamination of atropates for the synthesis of α-aryl amino acid derivatives is presented. The scope of the reaction is explored with respect to all three coupling partners: the alkyl halide, the atropate, and the aryl amine. A total of 41 examples are included, with yields of ≤92%. Both primary and secondary aryl amines participate in the carboamination along with α-haloesters, nitriles, and perfluoroiodoalkanes. Mechanistic investigations support a radical mechanism involving Cu-mediated C-N bond formation with the radical adduct.
Collapse
Affiliation(s)
- Aja M Nicely
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrei G Popov
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hannah C Wendlandt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Grace L Trammel
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61812, United States
| | - Daniel G Kohler
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61812, United States
| | - Kami L Hull
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61812, United States
| |
Collapse
|
36
|
Cai Y, Chatterjee S, Ritter T. Photoinduced Copper-Catalyzed Late-Stage Azidoarylation of Alkenes via Arylthianthrenium Salts. J Am Chem Soc 2023. [PMID: 37307146 DOI: 10.1021/jacs.3c04016] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The arylethylamine pharmacophore is conserved across a range of biologically active natural products and pharmaceuticals, particularly in molecules that act on the central nervous system. Herein, we present a photoinduced copper-catalyzed azidoarylation of alkenes at a late stage with arylthianthrenium salts, allowing access to highly functionalized acyclic (hetero)arylethylamine scaffolds that are otherwise difficult to access. A mechanistic study is consistent with a rac-BINAP-CuI-azide (2) as the photoactive catalytic species. We show the utility of the new method by the expedient synthesis of racemic melphalan in four steps through C-H functionalization.
Collapse
Affiliation(s)
- Yuan Cai
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Sagnik Chatterjee
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
37
|
Fu L, Chen X, Fan W, Chen P, Liu G. Copper-Catalyzed Asymmetric Functionalization of Vinyl Radicals for the Access to Vinylarene Atropisomers. J Am Chem Soc 2023. [PMID: 37300506 DOI: 10.1021/jacs.3c04498] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel asymmetric radical strategy for the straightforward synthesis of atropisomerically chiral vinyl arenes has been established herein, proceeding through copper-catalyzed atroposelective cyanation/azidation of aryl-substituted vinyl radicals. Critical to the success of the radical relay process is the atroposelective capture of the highly reactive vinyl radicals with chiral L*Cu(II) cyanide or azide species. Moreover, these axially chiral vinylarene products can be easily transformed into atropisomerically enriched amides and amines, enantiomerically enriched benzyl nitriles via an axis-to-center chirality transfer process, and an atropisomerically pure organocatalyst for the chemo-, diastereo-, and enantioselective (4 + 2) cyclization reaction.
Collapse
Affiliation(s)
- Liang Fu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xin Chen
- Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wenzheng Fan
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guosheng Liu
- Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
38
|
Kong L, Han X, Hu P, Wang F, Li X. Three-component regioselective carboamidation of 1,3-enynes via rhodium(III)-catalyzed C-H activation. Chem Commun (Camb) 2023; 59:6690-6693. [PMID: 37161763 DOI: 10.1039/d3cc01666h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Rhodium-catalyzed regio- and stereoselective three-component carboamidation of 1,3-enynes has been realized using indoles and dioxazolones as the functionalizing reagents. A wide range of multi-substituted skipped 1,4-dienes have been constructed in good yields and excellent stereoselectivity. The stereoselectivity is under substrate control. 1,3-Enynes bearing a relatively bulky alkyne terminus reacted with Z-selectivity. In contrast, a sterically less hindered alkyne terminus tends to predominantly give the E-configured skipped diene.
Collapse
Affiliation(s)
- Lingheng Kong
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, China
| | - Xi Han
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
| | - Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
| |
Collapse
|
39
|
Wei S, Zhang G, Wang Y, You M, Wang Y, Zhou L, Zhang Z. Modular synthesis of unsaturated aza-heterocycles via copper catalyzed multicomponent cascade reaction. iScience 2023; 26:106137. [PMID: 36895640 PMCID: PMC9988680 DOI: 10.1016/j.isci.2023.106137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
The unsaturated aza-heterocycles such as tetrahydropyridines pose significant applications in both drug discovery and development. However, the methods to construct polyfunctionalized tetrahydropyridines are still limited. Herein, we report a modular synthesis of tetrahydropyridines via copper catalyzed multicomponent radical cascade reaction. The reaction features mild conditions and broad substrate scope. In addition, the reaction could scale up to gram scale with similar yield. A variety of 1,2,5,6-tetrahydropyridines with C3 and C5 substituents could be assembled from simple starting materials. More importantly, the products could serve as versatile intermediate to access various functionalized aza-heterocycles which further demonstrates its utility.
Collapse
Affiliation(s)
- Siqi Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Guocong Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Yahui Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Mengwei You
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| |
Collapse
|
40
|
Pozhydaiev V, Vayer M, Fave C, Moran J, Lebœuf D. Synthesis of Unprotected β-Arylethylamines by Iron(II)-Catalyzed 1,2-Aminoarylation of Alkenes in Hexafluoroisopropanol. Angew Chem Int Ed Engl 2023; 62:e202215257. [PMID: 36541580 DOI: 10.1002/anie.202215257] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
β-Arylethylamines are prevalent structural motifs in molecules exhibiting biological activity. Here we report a sequential one-pot protocol for the 1,2-aminoarylation of alkenes with hydroxylammonium triflate salts and (hetero)arenes. Unlike existing methods, this reaction provides a direct entry to unprotected β-arylethylamines with remarkable functional group tolerance, allowing key drug-oriented functional groups to be installed in a two-step process. The use of hexafluoroisopropanol as a solvent in combination with an iron(II) catalyst proved essential to reaching high-value nitrogen-containing molecules.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Marie Vayer
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Claire Fave
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, 75013, Paris, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France.,Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
41
|
Lamartina CW, Chartier CA, Lee S, Shah NH, Rovis T. Modular Synthesis of Unnatural Peptides via Rh(III)-Catalyzed Diastereoselective Three-Component Carboamidation Reaction. J Am Chem Soc 2023; 145:1129-1135. [PMID: 36576945 PMCID: PMC10580301 DOI: 10.1021/jacs.2c10793] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein we report a modular peptide ligation methodology that couples dioxazolones, arylboronic acids, and acrylamides to construct amide bonds in a diastereoselective manner under mild conditions, facilitated by Rh(III) catalysis. By converting the C-terminus of one peptide into a dioxazolone and the N-terminus of a second peptide into an acrylamide, the two pieces can be bridged by an arylboronic acid to construct unnatural phenylalanine, tyrosine, and tryptophan residues at the junction point with diastereoselectivity for their corresponding d-stereocenters. The reaction exhibits excellent functional group tolerance with a large substrate scope and is compatible with a wide array of protected amino acid residues that are utilized in Fmoc solid phase peptide synthesis. The methodology is applied to the synthesis of six diastereomeric proteasome inhibitor analogs, as well as the ligation of two 10-mer oligopeptides to construct a 21-mer polypeptide with an unnatural phenylalanine residue at the center.
Collapse
Affiliation(s)
| | - Cassandra A. Chartier
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sumin Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
42
|
Rachor SG, Ahrens M, Braun T. Conversion of a Au I Fluorido Complex into an N-Fluoroamido Derivative: N-F versus Au-N Reactivity. Angew Chem Int Ed Engl 2022; 61:e202212858. [PMID: 36279190 PMCID: PMC10099710 DOI: 10.1002/anie.202212858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/06/2022]
Abstract
The AuI complex [Au{N(F)SO2 Ph}(SPhos)] (SPhos=dicyclohexyl(2',6'-dimethoxy[1,1'-biphenyl]-2-yl)phosphane) (2) bearing a fluoroamido ligand has been synthesized by reaction of the fluorido complex [Au(F)(SPhos)] (1) with NFSI (NFSI=N-fluorobenzenesulfonimide). A reaction with CO resulted in an unprecedented insertion into the N-F bond at 2. With the carbene precursor N2 CH(CO2 Et) N-F bond cleavage gave the Au-F bond insertion product [Au{CHF(CO2 C2 H5 )}(SPhos)] (7). The presence of CNtBu led to Au-N cleavage at 2 and concomitant amide formation to give the cationic complex [Au(CNtBu)(SPhos)][N(F)SO2 Ph)] (5), which reacted further to give FtBu as well as the cyanido complex [Au(CN)(SPhos)] (6). These results led to the development of a process for the amination of electrophilic organic substrates by transfer of the fluoroamido group NF(SO2 Ph)- .
Collapse
Affiliation(s)
- Simon G Rachor
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Mike Ahrens
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
43
|
Ogundipe OO, Shoberu A, Xiao M, Zou JP. Copper-Catalyzed Radical Hydrazono-Phosphorylation of Alkenes. J Org Chem 2022; 87:15820-15829. [PMID: 36374155 DOI: 10.1021/acs.joc.2c01832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An efficient copper-catalyzed radical hydrazono-phosphorylation of alkenes with hydrazine derivatives and diarylphosphine oxides is described. The reaction provides a general and convenient method toward the synthesis of diverse β-hydrazonophosphine oxides in satisfactory yields. Based on conducted mechanistic experiments, a mechanism involving Ag-catalyzed oxidative generation of phosphinoyl radicals and subsequent addition to alkenes followed by Cu-assisted hydrazonation is proposed. Moreover, the practicability of the reaction is successfully demonstrated by its successful application on a gram scale.
Collapse
Affiliation(s)
- Olukayode Olamiji Ogundipe
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Adedamola Shoberu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Mei Xiao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Jian-Ping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| |
Collapse
|
44
|
Copper-promoted C1−H amination of pyrrolo[1,2-a]quinoxaline with N‑fluorobenzenesulfonimide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Yang Y, Hammond GB, Umemoto T. Self-Sustaining Fluorination of Active Methylene Compounds and High-Yielding Fluorination of Highly Basic Aryl and Alkenyl Lithium Species with a Sterically Hindered N-Fluorosulfonamide Reagent. Angew Chem Int Ed Engl 2022; 61:e202211688. [PMID: 36066942 PMCID: PMC9588725 DOI: 10.1002/anie.202211688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/11/2022]
Abstract
Fluorination of carbanions is pivotal for the synthesis of fluorinated compounds, but the current N-F fluorinating agents have significant drawbacks due to many reactive locations that surround the reactive N-F site. By developing a sterically hindered N-fluorosulfonamide reagent, namely N-fluoro-N-(tert-butyl)-tert-butanesulfonamide (NFBB), we discovered a conceptually novel base-catalyzed, self-sustaining fluorination of active methylene compounds and achieved the high-yielding fluorination of the hitherto difficult highly basic (hetero)aryl and alkenyl lithium species. In the former, the mild and high yield fluorination of active methylene compounds exhibited wide functional group tolerance and its novel catalytic fluorination-deprotonation cycle mechanism was demonstrated by deuterium-tracing experiments. In the latter, NFBB reacted with a variety of highly basic (hetero)aryl and alkenyl lithium species to provide the desired fluoro (hetero)arenes and alkenes in unprecedented high or quantitative yields.
Collapse
Affiliation(s)
- Yuhao Yang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Teruo Umemoto
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
46
|
Yang Y, Hammond G, Umemoto T. Self‐Sustaining Fluorination of Active Methylene Compounds andFluorination of Aryl and Alkenyl Lithium Species with a StericallyHindered N‐Fluorosulfonamide Reagent. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuhao Yang
- University of Louisville College of Arts and Sciences Chemistry UNITED STATES
| | - Gerald Hammond
- University of Louisville College of Arts and Sciences Chemistry 2320 S. Brook 40208 Louisville UNITED STATES
| | - Teruo Umemoto
- University of Louisville College of Arts and Sciences Chemistry UNITED STATES
| |
Collapse
|
47
|
Kwon Y, Wang Q. Recent Advances in 1,2-Amino(hetero)arylation of Alkenes. Chem Asian J 2022; 17:e202200215. [PMID: 35460596 PMCID: PMC9357224 DOI: 10.1002/asia.202200215] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Indexed: 11/06/2022]
Abstract
Alkene amino(hetero)arylation presents a highly efficient and straightforward strategy for direct installation of amino groups and heteroaryl rings across a double bond simultaneously. An extensive array of practical transformations has been developed via alkene difunctionalization approach to access a broad range of medicinally valuable (hetero)arylethylamine motifs. This review presents recent progress in 1,2-amino(hetero)arylation of alkenes organized in three different modes. First, intramolecular transformations employing C, N-tethered alkenes will be introduced. Next, two-component reactions will be discussed with different combination of precursors, N-tethered alkenes and external aryl precursor, C-tethered alkenes and external amine precursor, or C, N-tethered reagents, and alkenes. Last, three-component intermolecular amino(hetero)arylation reactions will be covered.
Collapse
Affiliation(s)
- Yungeun Kwon
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
48
|
Wu D, Wu L, Chen P, Liu G. Asymmetric Alkynylation of Tertiary
Carbon‐Centered
Radical via
Copper‐Catalyzed
Radical Relay. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dunqi Wu
- Chang‐Kung Chuang Institute, East China Normal University Shanghai 200062
| | - Lianqian Wu
- State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032
| | - Guosheng Liu
- Chang‐Kung Chuang Institute, East China Normal University Shanghai 200062
- State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032
| |
Collapse
|
49
|
He Y, Du C, Han J, Han J, Zhu C, Xie J. Manganese‐Catalyzed Anti‐Markovnikov
Hydroarylation of Enamides: Modular Synthesis of Arylethylamines. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yijie He
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chaoyu Du
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jian Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 China
| |
Collapse
|
50
|
Lee J, Ju X, Lee M, Jiang Q, Jang H, Kim WS, Wu L, Williams S, Wang XJ, Zeng X, Payne J, Han ZS. Copper Catalyzed Regioselective and Stereospecific Aziridine Opening with Pyridyl Grignard Nucleophiles. Org Lett 2022; 24:2655-2659. [PMID: 35377668 DOI: 10.1021/acs.orglett.2c00703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper catalyzed regioselective and stereospecific coupling between aziridines and in situ generated pyridine Grignard reagents is reported. This method provides β-pyridylethylamines with diverse structures and functionalities from aziridines and iodopyridines. β-Pyridylethylamines are potential scaffolds for the synthesis of biologically active compounds often found in pharmaceuticals. The synthesis of challenging chiral dihydroazaindoles was also achieved through mild one-pot reaction conditions via aziridine opening followed by nucleophilic cyclization.
Collapse
Affiliation(s)
- Jaehee Lee
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Xuan Ju
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Miseon Lee
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Qi Jiang
- Department of Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Hwanjong Jang
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Wan Shin Kim
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Linglin Wu
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Suja Williams
- Department of Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Xiao-Jun Wang
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Xingzhong Zeng
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Jenna Payne
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Zhengxu S Han
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| |
Collapse
|