1
|
Zhang XC, Xue K, Salvi M, Schomburg B, Mehrens J, Giller K, Stopp M, Weisenburger S, Böning D, Sandoghdar V, Unden G, Becker S, Andreas LB, Griesinger C. Mechanism of sensor kinase CitA transmembrane signaling. Nat Commun 2025; 16:935. [PMID: 39843904 PMCID: PMC11754779 DOI: 10.1038/s41467-024-55671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA. Citrate binding in the sensory extracytoplasmic PAS domain (PASp) causes the linker to transmembrane helix 2 (TM2) to adopt a helical conformation. This triggers a piston-like pulling of TM2 and a quaternary structure rearrangement in the cytosolic PAS domain (PASc). Crystal structures of PASc reveal both anti-parallel and parallel dimer conformations. An anti-parallel to parallel transition upon citrate binding agrees with interdimer distances measured in the lipid embedded protein using a site-specific 19F label in PASc. These data show how Angstrom scale structural changes in the sensor domain are transmitted across the membrane to be converted and amplified into a nm scale shift in the linker to the phosphorylation subdomain of the kinase.
Collapse
Affiliation(s)
- Xizhou Cecily Zhang
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kai Xue
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michele Salvi
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Benjamin Schomburg
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jonas Mehrens
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karin Giller
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marius Stopp
- Institute for Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Mainz, Germany
| | - Siegfried Weisenburger
- Department of Physics, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department Nano-Optics, Plasmonics and Biophotonics, Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Daniel Böning
- Department of Physics, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department Nano-Optics, Plasmonics and Biophotonics, Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Department of Physics, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department Nano-Optics, Plasmonics and Biophotonics, Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Gottfried Unden
- Institute for Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Becker
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Loren B Andreas
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Christian Griesinger
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
2
|
Shcherbakov AA, Brousseau M, Henzler-Wildman KA, Hong M. Microsecond Motion of the Bacterial Transporter EmrE in Lipid Bilayers. J Am Chem Soc 2023; 145:10104-10115. [PMID: 37097985 PMCID: PMC10905379 DOI: 10.1021/jacs.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The bacterial transporter EmrE is a homo-dimeric membrane protein that effluxes cationic polyaromatic substrates against the concentration gradient by coupling to proton transport. As the archetype of the small multidrug resistance family of transporters, EmrE structure and dynamics provide atomic insights into the mechanism of transport by this family of proteins. We recently determined high-resolution structures of EmrE in complex with a cationic substrate, tetra(4-fluorophenyl)phosphonium (F4-TPP+), using solid-state NMR spectroscopy and an S64V-EmrE mutant. The substrate-bound protein exhibits distinct structures at acidic and basic pH, reflecting changes upon binding or release of a proton from residue E14, respectively. To obtain insight into the protein dynamics that mediate substrate transport, here we measure 15N rotating-frame spin-lattice relaxation (R1ρ) rates of F4-TPP+-bound S64V-EmrE in lipid bilayers under magic-angle spinning (MAS). Using perdeuterated and back-exchanged protein and 1H-detected 15N spin-lock experiments under 55 kHz MAS, we measured 15N R1ρ rates site-specifically. Many residues show spin-lock field-dependent 15N R1ρ relaxation rates. This relaxation dispersion indicates the presence of backbone motions at a rate of about 6000 s-1 at 280 K for the protein at both acidic and basic pH. This motional rate is 3 orders of magnitude faster than the alternating access rate but is within the range estimated for substrate binding. We propose that these microsecond motions may allow EmrE to sample different conformations to facilitate substrate binding and release from the transport pore.
Collapse
Affiliation(s)
- Alexander A. Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Merissa Brousseau
- Department of Biochemistry, University of Wisconsin at Madison, Madison, WI 53706, United States
| | | | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| |
Collapse
|
3
|
Cerofolini L, Parigi G, Ravera E, Fragai M, Luchinat C. Solid-state NMR methods for the characterization of bioconjugations and protein-material interactions. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101828. [PMID: 36240720 DOI: 10.1016/j.ssnmr.2022.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Protein solid-state NMR has evolved dramatically over the last two decades, with the development of new hardware and sample preparation methodologies. This technique is now ripe for complex applications, among which one can count bioconjugation, protein chemistry and functional biomaterials. In this review, we provide our account on this aspect of protein solid-state NMR.
Collapse
Affiliation(s)
- Linda Cerofolini
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy; Florence Data Science, Università degli Studi di Firenze, Italy.
| | - Marco Fragai
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
4
|
Lenard AJ, Mulder FAA, Madl T. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:113-139. [PMID: 36496256 DOI: 10.1016/j.pnmrs.2022.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Solvent paramagnetic relaxation enhancement (sPRE) is a versatile nuclear magnetic resonance (NMR)-based method that allows characterization of the structure and dynamics of biomolecular systems through providing quantitative experimental information on solvent accessibility of NMR-active nuclei. Addition of soluble paramagnetic probes to the solution of a biomolecule leads to paramagnetic relaxation enhancement in a concentration-dependent manner. Here we review recent progress in the sPRE-based characterization of structural and dynamic properties of biomolecules and their complexes, and aim to deliver a comprehensive illustration of a growing number of applications of the method to various biological systems. We discuss the physical principles of sPRE measurements and provide an overview of available co-solute paramagnetic probes. We then explore how sPRE, in combination with complementary biophysical techniques, can further advance biomolecular structure determination, identification of interaction surfaces within protein complexes, and probing of conformational changes and low-population transient states, as well as deliver insights into weak, nonspecific, and transient interactions between proteins and co-solutes. In addition, we present examples of how the incorporation of solvent paramagnetic probes can improve the sensitivity of NMR experiments and discuss the prospects of applying sPRE to NMR metabolomics, drug discovery, and the study of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Aneta J Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria.
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center and Department of Chemistry, University of Aarhus, DK-8000 Aarhus, Denmark; Institute of Biochemistry, Johannes Kepler Universität Linz, 4040 Linz, Austria.
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
5
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
6
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
7
|
Reif B. Deuteration for High-Resolution Detection of Protons in Protein Magic Angle Spinning (MAS) Solid-State NMR. Chem Rev 2021; 122:10019-10035. [PMID: 34870415 DOI: 10.1021/acs.chemrev.1c00681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton detection developed in the last 20 years as the method of choice to study biomolecules in the solid state. In perdeuterated proteins, proton dipolar interactions are strongly attenuated, which allows yielding of high-resolution proton spectra. Perdeuteration and backsubstitution of exchangeable protons is essential if samples are rotated with MAS rotation frequencies below 60 kHz. Protonated samples can be investigated directly without spin dilution using proton detection methods in case the MAS frequency exceeds 110 kHz. This review summarizes labeling strategies and the spectroscopic methods to perform experiments that yield assignments, quantitative information on structure, and dynamics using perdeuterated samples. Techniques for solvent suppression, H/D exchange, and deuterium spectroscopy are discussed. Finally, experimental and theoretical results that allow estimation of the sensitivity of proton detected experiments as a function of the MAS frequency and the external B0 field in a perdeuterated environment are compiled.
Collapse
Affiliation(s)
- Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at the Department of Chemistry, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
8
|
Tognetti J, Trent Franks W, Gallo A, Lewandowski JR. Accelerating 15N and 13C R 1 and R 1ρ relaxation measurements by multiple pathway solid-state NMR experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 331:107049. [PMID: 34508920 DOI: 10.1016/j.jmr.2021.107049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Magic angle spinning (MAS) Solid-state NMR is a powerful technique to probe dynamics of biological systems at atomic resolution. R1 and R1ρ relaxation measurements can provide detailed insight on amplitudes and time scales of motions, especially when information from several different site-specific types of probes is combined. However, such experiments are time-consuming to perform. Shortening the time necessary to record relaxation data for different nuclei will greatly enhance practicality of such approaches. Here, we present staggered acquisition experiments to acquire multiple relaxation experiments from a single excitation to reduce the overall experimental time. Our strategy enables one to collect 15N and 13C relaxation data in a single experiment in a fraction of the time necessary for two separate experiments, with the same signal to noise ratio.
Collapse
Affiliation(s)
- Jacqueline Tognetti
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom; Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - W Trent Franks
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom; Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Angelo Gallo
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Józef R Lewandowski
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
9
|
Jirasko V, Lends A, Lakomek N, Fogeron M, Weber ME, Malär AA, Penzel S, Bartenschlager R, Meier BH, Böckmann A. Dimer Organization of Membrane‐Associated NS5A of Hepatitis C Virus as Determined by Highly Sensitive
1
H‐Detected Solid‐State NMR. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Alons Lends
- Physical Chemistry ETH Zurich 8093 Zurich Switzerland
| | | | - Marie‐Laure Fogeron
- Molecular Microbiology and Structural Biochemistry Labex Ecofect UMR 5086 CNRS Université de Lyon 1 7 passage du Vercors 69367 Lyon France
| | | | | | | | - Ralf Bartenschlager
- Department of Infectious Diseases Molecular Virology Heidelberg University Im Neuenheimer Feld 345 69120 Heidelberg Germany
- German Centre for Infection Research (DZIF) Heidelberg partner site Heidelberg Germany
| | - Beat H. Meier
- Physical Chemistry ETH Zurich 8093 Zurich Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry Labex Ecofect UMR 5086 CNRS Université de Lyon 1 7 passage du Vercors 69367 Lyon France
| |
Collapse
|
10
|
Jirasko V, Lends A, Lakomek N, Fogeron M, Weber ME, Malär AA, Penzel S, Bartenschlager R, Meier BH, Böckmann A. Dimer Organization of Membrane-Associated NS5A of Hepatitis C Virus as Determined by Highly Sensitive 1 H-Detected Solid-State NMR. Angew Chem Int Ed Engl 2021; 60:5339-5347. [PMID: 33205864 PMCID: PMC7986703 DOI: 10.1002/anie.202013296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Indexed: 12/17/2022]
Abstract
The Hepatitis C virus nonstructural protein 5A (NS5A) is a membrane-associated protein involved in multiple steps of the viral life cycle. Direct-acting antivirals (DAAs) targeting NS5A are a cornerstone of antiviral therapy, but the mode-of-action of these drugs is poorly understood. This is due to the lack of information on the membrane-bound NS5A structure. Herein, we present the structural model of an NS5A AH-linker-D1 protein reconstituted as proteoliposomes. We use highly sensitive proton-detected solid-state NMR methods suitable to study samples generated through synthetic biology approaches. Spectra analyses disclose that both the AH membrane anchor and the linker are highly flexible. Paramagnetic relaxation enhancements (PRE) reveal that the dimer organization in lipids requires a new type of NS5A self-interaction not reflected in previous crystal structures. In conclusion, we provide the first characterization of NS5A AH-linker-D1 in a lipidic environment shedding light onto the mode-of-action of clinically used NS5A inhibitors.
Collapse
Affiliation(s)
| | - Alons Lends
- Physical ChemistryETH Zurich8093ZurichSwitzerland
| | | | - Marie‐Laure Fogeron
- Molecular Microbiology and Structural BiochemistryLabex EcofectUMR 5086 CNRSUniversité de Lyon 17 passage du Vercors69367LyonFrance
| | | | | | | | - Ralf Bartenschlager
- Department of Infectious DiseasesMolecular VirologyHeidelberg UniversityIm Neuenheimer Feld 34569120HeidelbergGermany
- German Centre for Infection Research (DZIF)Heidelberg partner siteHeidelbergGermany
| | | | - Anja Böckmann
- Molecular Microbiology and Structural BiochemistryLabex EcofectUMR 5086 CNRSUniversité de Lyon 17 passage du Vercors69367LyonFrance
| |
Collapse
|
11
|
Reif B, Ashbrook SE, Emsley L, Hong M. Solid-state NMR spectroscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:2. [PMID: 34368784 PMCID: PMC8341432 DOI: 10.1038/s43586-020-00002-1] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid systems. The fundamental nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials, and inorganic solids. Continuing development of sensitivity-enhancement approaches, including 1H-detected fast MAS experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, is described. We highlight recent applications of solid-state NMR to biological and materials chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and points to future avenues of development to further enhance the capabilities of this sophisticated spectroscopy for new applications.
Collapse
Affiliation(s)
- Bernd Reif
- Technische Universität München, Department Chemie, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Sharon E. Ashbrook
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Lyndon Emsley
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne, Switzerland
| | - Mei Hong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
12
|
Wiegand T. A solid-state NMR tool box for the investigation of ATP-fueled protein engines. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:1-32. [PMID: 32471533 DOI: 10.1016/j.pnmrs.2020.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Motor proteins are involved in a variety of cellular processes. Their main purpose is to convert the chemical energy released during adenosine triphosphate (ATP) hydrolysis into mechanical work. In this review, solid-state Nuclear Magnetic Resonance (NMR) approaches are discussed allowing studies of structures, conformational events and dynamic features of motor proteins during a variety of enzymatic reactions. Solid-state NMR benefits from straightforward sample preparation based on sedimentation of the proteins directly into the Magic-Angle Spinning (MAS) rotor. Protein resonance assignment is the crucial and often time-limiting step in interpreting the wealth of information encoded in the NMR spectra. Herein, potentials, challenges and limitations in resonance assignment for large motor proteins are presented, focussing on both biochemical and spectroscopic approaches. This work highlights NMR tools available to study the action of the motor domain and its coupling to functional processes, as well as to identify protein-nucleotide interactions during events such as DNA replication. Arrested protein states of reaction coordinates such as ATP hydrolysis can be trapped for NMR studies by using stable, non-hydrolysable ATP analogues that mimic the physiological relevant states as accurately as possible. Recent advances in solid-state NMR techniques ranging from Dynamic Nuclear Polarization (DNP), 31P-based heteronuclear correlation experiments, 1H-detected spectra at fast MAS frequencies >100 kHz to paramagnetic NMR are summarized and their applications to the bacterial DnaB helicase from Helicobacter pylori are discussed.
Collapse
Affiliation(s)
- Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
13
|
Koukos P, Bonvin A. Integrative Modelling of Biomolecular Complexes. J Mol Biol 2020; 432:2861-2881. [DOI: 10.1016/j.jmb.2019.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
|
14
|
Wei S, Zou X, Tian J, Huang H, Guo W, Chen Z. Control of Protein Conformation and Orientation on Graphene. J Am Chem Soc 2019; 141:20335-20343. [PMID: 31774666 DOI: 10.1021/jacs.9b10705] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Graphene-based biosensors have attracted considerable attention due to their advantages of label-free detection and high sensitivity. Many such biosensors utilize noncovalent van der Waals force to attach proteins onto graphene surface while preserving graphene's high conductivity. Maintaining the protein structure without denaturation/substantial conformational change and controlling proper protein orientation on the graphene surface are critical for biosensing applications of these biosensors fabricated with proteins on graphene. Based on the knowledge we obtained from our previous experimental study and computer modeling of amino acid residual level interactions between graphene and peptides, here we systemically redesigned an important protein for better conformational stability and desirable orientation on graphene. In this paper, immunoglobulin G (IgG) antibody-binding domain of protein G (protein GB1) was studied to demonstrate how we can preserve the protein native structure and control the protein orientation on graphene surface by redesigning protein mutants. Various experimental tools including sum frequency generation vibrational spectroscopy, attenuated total refection-Fourier transform infrared spectroscopy, fluorescence spectroscopy, and circular dichroism spectroscopy were used to study the protein GB1 structure on graphene, supplemented by molecular dynamics simulations. By carefully designing the protein GB1 mutant, we can avoid strong unfavorable interactions between protein and graphene to preserve protein conformation and to enable the protein to adopt a preferred orientation. The methodology developed in this study is general and can be applied to study different proteins on graphene and beyond. With the knowledge obtained from this research, one could apply this method to optimize protein function on surfaces (e.g., to enhance biosensor sensitivity).
Collapse
Affiliation(s)
- Shuai Wei
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xingquan Zou
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jiayi Tian
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Hao Huang
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Wen Guo
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Zhan Chen
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
15
|
Tang M, Lam D. Paramagnetic solid-state NMR of proteins. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 103:9-16. [PMID: 31585788 DOI: 10.1016/j.ssnmr.2019.101621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The paramagnetic properties of metal ions and stable radicals can affect NMR spectra, which can lead to changes in peak intensities, relaxation times and chemical shifts. The changes from paramagnetic effects provide intriguing opportunities for solid-state NMR studies of proteins. In this review, we summarized the trends and progress of paramagnetic solid-state NMR of proteins in the past decade, and showed that paramagnetic effects have great potential applications for sensitivity enhancement, structure determination and topological analysis for microcrystalline proteins, protein complexes, protein aggregates and membrane proteins.
Collapse
Affiliation(s)
- Ming Tang
- Department of Chemistry, College of Staten Island - Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Dennis Lam
- Department of Chemistry, College of Staten Island - Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| |
Collapse
|
16
|
Joss D, Häussinger D. Design and applications of lanthanide chelating tags for pseudocontact shift NMR spectroscopy with biomacromolecules. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:284-312. [PMID: 31779884 DOI: 10.1016/j.pnmrs.2019.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 05/14/2023]
Abstract
In this review, lanthanide chelating tags and their applications to pseudocontact shift NMR spectroscopy as well as analysis of residual dipolar couplings are covered. A complete overview is presented of DOTA-derived and non-DOTA-derived lanthanide chelating tags, critical points in the design of lanthanide chelating tags as appropriate linker moieties, their stability under reductive conditions, e.g., for in-cell applications, the magnitude of the anisotropy transferred from the lanthanide chelating tag to the biomacromolecule under investigation and structural properties, as well as conformational bias of the lanthanide chelating tags are discussed. Furthermore, all DOTA-derived lanthanide chelating tags used for PCS NMR spectroscopy published to date are displayed in tabular form, including their anisotropy parameters, with all employed lanthanide ions, CB-Ln distances and tagging reaction conditions, i.e., the stoichiometry of lanthanide chelating tags, pH, buffer composition, temperature and reaction time. Additionally, applications of lanthanide chelating tags for pseudocontact shifts and residual dipolar couplings that have been reported for proteins, protein-protein and protein-ligand complexes, carbohydrates, carbohydrate-protein complexes, nucleic acids and nucleic acid-protein complexes are presented and critically reviewed. The vast and impressive range of applications of lanthanide chelating tags to structural investigations of biomacromolecules in solution clearly illustrates the significance of this particular field of research. The extension of the repertoire of lanthanide chelating tags from proteins to nucleic acids holds great promise for the determination of valuable structural parameters and further developments in characterizing intermolecular interactions.
Collapse
Affiliation(s)
- Daniel Joss
- University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| | | |
Collapse
|
17
|
Samoson A. H-MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:167-172. [PMID: 31331763 DOI: 10.1016/j.jmr.2019.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
We characterize a new generation of MAS probes, designed for 1H detection in solid and viscous structures. High top speed (currently 170 kHz), existence of a wide speed range and quick acceleration enable numerous new experiment categories. Most notably, massive biomolecular structures become amenable to a detailed structural and dynamics studies.
Collapse
|
18
|
Miao Q, Liu WM, Kock T, Blok A, Timmer M, Overhand M, Ubbink M. A Double-Armed, Hydrophilic Transition Metal Complex as a Paramagnetic NMR Probe. Angew Chem Int Ed Engl 2019; 58:13093-13100. [PMID: 31314159 PMCID: PMC6771572 DOI: 10.1002/anie.201906049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/15/2019] [Indexed: 01/20/2023]
Abstract
Synthetic metal complexes can be used as paramagnetic probes for the study of proteins and protein complexes. Herein, two transition metal NMR probes (TraNPs) are reported. TraNPs are attached through two arms to a protein to generate a pseudocontact shift (PCS) using cobalt(II), or paramagnetic relaxation enhancement (PRE) with manganese(II). The PCS analysis of TraNPs attached to three different proteins shows that the size of the anisotropic component of the magnetic susceptibility depends on the probe surroundings at the surface of the protein, contrary to what is observed for lanthanoid‐based probes. The observed PCS are relatively small, making cobalt‐based probes suitable for localized studies, such as of an active site. The obtained PREs are stronger than those obtained with nitroxide spin labels and the possibility to generate both PCS and PRE offers advantages. The properties of TraNPs in comparison with other cobalt‐based probes are discussed.
Collapse
Affiliation(s)
- Qing Miao
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Wei-Min Liu
- Department of Chemistry, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New, Taipei City, 24205, Taiwan
| | - Thomas Kock
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Anneloes Blok
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Monika Timmer
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Mark Overhand
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marcellus Ubbink
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
19
|
Miao Q, Liu W, Kock T, Blok A, Timmer M, Overhand M, Ubbink M. A Double‐Armed, Hydrophilic Transition Metal Complex as a Paramagnetic NMR Probe. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing Miao
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Wei‐Min Liu
- Department of Chemistry Fu Jen Catholic University No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 24205 Taiwan
| | - Thomas Kock
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Anneloes Blok
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Monika Timmer
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Mark Overhand
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Marcellus Ubbink
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
20
|
Kosol S, Jenner M, Lewandowski JR, Challis GL. Protein-protein interactions in trans-AT polyketide synthases. Nat Prod Rep 2019; 35:1097-1109. [PMID: 30280735 DOI: 10.1039/c8np00066b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2018 The construction of polyketide natural products by type I modular polyketide synthases (PKSs) requires the coordinated action of several protein subunits to ensure biosynthetic fidelity. This is particularly the case for trans-AT PKSs, which in contrast to most cis-AT PKSs, contain split modules and employ several trans-acting catalytic domains. This article summarises recent advances in understanding the protein-protein interactions underpinning subunit assembly and intra-subunit communication in such systems and highlights potential avenues and approaches for future research.
Collapse
Affiliation(s)
- Simone Kosol
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | | | |
Collapse
|
21
|
Gallo A, Franks WT, Lewandowski JR. A suite of solid-state NMR experiments to utilize orphaned magnetization for assignment of proteins using parallel high and low gamma detection. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:219-231. [PMID: 31319283 DOI: 10.1016/j.jmr.2019.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 05/18/2023]
Abstract
We present a suite of two-receiver solid-state NMR experiments for backbone and side chain resonance assignment. The experiments rely on either dipolar coupling or scalar coupling for polarization transfer and are devised to acquire a 1H-detected 3D experiment AND a nested 13C-detected 2D from a shared excitation pulse. In order to compensate for the lower sensitivity of detection on 13C nucleus, 2D rows are signal averaged during 3D planes. The 3D dual receiver experiments do not suffer from any appreciable signal loss compared to their single receiver versions and require no extra optimization. The resulting data is higher in information content with no additional experiment time. The approach is expected to become widespread as multiple receivers become standard for new NMR spectrometers.
Collapse
Affiliation(s)
- A Gallo
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK
| | - W T Franks
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK; Department of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK
| | - J R Lewandowski
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK.
| |
Collapse
|
22
|
Öster C, Kosol S, Lewandowski JR. Quantifying Microsecond Exchange in Large Protein Complexes with Accelerated Relaxation Dispersion Experiments in the Solid State. Sci Rep 2019; 9:11082. [PMID: 31366983 PMCID: PMC6668460 DOI: 10.1038/s41598-019-47507-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/16/2019] [Indexed: 01/20/2023] Open
Abstract
Solid state NMR is a powerful method to obtain information on the structure and dynamics of protein complexes that, due to solubility and size limitations, cannot be achieved by other methods. Here, we present an approach that allows the quantification of microsecond conformational exchange in large protein complexes by using a paramagnetic agent to accelerate 15N R1ρ relaxation dispersion measurements and overcome sensitivity limitations. The method is validated on crystalline GB1 and then applied to a >300 kDa precipitated complex of GB1 with full length human immunoglobulin G (IgG). The addition of a paramagnetic agent increased the signal to noise ratio per time unit by a factor of 5, which allowed full relaxation dispersion curves to be recorded on a sample containing less than 50 μg of labelled material in 5 and 10 days on 850 and 700 MHz spectrometers, respectively. We discover a similar exchange process across the β-sheet in GB1 in crystals and in complex with IgG. However, the slow motion observed for a number of residues in the α-helix of crystalline GB1 is not detected in the complex.
Collapse
Affiliation(s)
- Carl Öster
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Simone Kosol
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Józef R Lewandowski
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
23
|
Cerofolini L, Giuntini S, Ravera E, Luchinat C, Berti F, Fragai M. Structural characterization of a protein adsorbed on aluminum hydroxide adjuvant in vaccine formulation. NPJ Vaccines 2019; 4:20. [PMID: 31149351 PMCID: PMC6538755 DOI: 10.1038/s41541-019-0115-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
The heterogeneous composition of vaccine formulations and the relatively low concentration make the characterization of the protein antigens extremely challenging. Aluminum-containing adjuvants have been used to enhance the immune response of several antigens over the last 90 years and still remain the most commonly used. Here, we show that solid-state NMR and isotope labeling methods can be used to characterize the structural features of the protein antigen component of vaccines and to investigate the preservation of the folding state of proteins adsorbed on Alum hydroxide matrix, providing the way to identify the regions of the protein that are mainly affected by the presence of the inorganic matrix. l-Asparaginase from E. coli has been used as a pilot model of protein antigen. This methodology can find application in several steps of the vaccine development pipeline, from the antigen optimization, through the design of vaccine formulation, up to stability studies and manufacturing process.
Collapse
Affiliation(s)
- Linda Cerofolini
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Stefano Giuntini
- 2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Francesco Berti
- Technical R&D, GSK Vaccines, Via Fiorentina 1, 53100 Siena, Italy
| | - Marco Fragai
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
24
|
Pell AJ, Pintacuda G, Grey CP. Paramagnetic NMR in solution and the solid state. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 111:1-271. [PMID: 31146806 DOI: 10.1016/j.pnmrs.2018.05.001] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 05/22/2023]
Abstract
The field of paramagnetic NMR has expanded considerably in recent years. This review addresses both the theoretical description of paramagnetic NMR, and the way in which it is currently practised. We provide a review of the theory of the NMR parameters of systems in both solution and the solid state. Here we unify the different languages used by the NMR, EPR, quantum chemistry/DFT, and magnetism communities to provide a comprehensive and coherent theoretical description. We cover the theory of the paramagnetic shift and shift anisotropy in solution both in the traditional formalism in terms of the magnetic susceptibility tensor, and using a more modern formalism employing the relevant EPR parameters, such as are used in first-principles calculations. In addition we examine the theory first in the simple non-relativistic picture, and then in the presence of spin-orbit coupling. These ideas are then extended to a description of the paramagnetic shift in periodic solids, where it is necessary to include the bulk magnetic properties, such as magnetic ordering at low temperatures. The description of the paramagnetic shift is completed by describing the current understanding of such shifts due to lanthanide and actinide ions. We then examine the paramagnetic relaxation enhancement, using a simple model employing a phenomenological picture of the electronic relaxation, and again using a more complex state-of-the-art theory which incorporates electronic relaxation explicitly. An additional important consideration in the solid state is the impact of bulk magnetic susceptibility effects on the form of the spectrum, where we include some ideas from the field of classical electrodynamics. We then continue by describing in detail the solution and solid-state NMR methods that have been deployed in the study of paramagnetic systems in chemistry, biology, and the materials sciences. Finally we describe a number of case studies in paramagnetic NMR that have been specifically chosen to highlight how the theory in part one, and the methods in part two, can be used in practice. The systems chosen include small organometallic complexes in solution, solid battery electrode materials, metalloproteins in both solution and the solid state, systems containing lanthanide ions, and multi-component materials used in pharmaceutical controlled-release formulations that have been doped with paramagnetic species to measure the component domain sizes.
Collapse
Affiliation(s)
- Andrew J Pell
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106 91 Stockholm, Sweden.
| | - Guido Pintacuda
- Institut des Sciences Analytiques (CNRS UMR 5280, ENS de Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
25
|
Li W, Zhang Q, Joos JJ, Smet PF, Schmedt Auf der Günne J. Blind spheres of paramagnetic dopants in solid state NMR. Phys Chem Chem Phys 2019; 21:10185-10194. [PMID: 31063169 DOI: 10.1039/c9cp00953a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR on paramagnetically doped crystal structures gives information about the spatial distribution of dopants in the host. Paramagnetic dopants may render NMR active nuclei virtually invisible by relaxation, paramagnetic broadening or shielding. In this contribution blind sphere radii r0 have been reported, which could be extracted through fitting the NMR signal visibility function f(x) = exp(-ar03x) to experimental data obtained on several model compound series: La1-xLnxPO4 (Ln = Nd, Sm, Gd, Dy, Ho, Er, Tm, Yb), Sr1-xEuxGa2S4 and (Zn1-xMnx)3(PO4)2·4H2O. Radii were extracted for 1H, 31P and 71Ga, and dopants like Nd3+, Gd3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+ and Mn2+. The observed radii determined differed in all cases and covered a range from 5.5 to 13.5 Å. While these radii were obtained from the amount of invisible NMR signal, we also show how to link the visibility function to lineshape parameters. We show under which conditions empirical correlations of linewidth and doping concentration can be used to extract blind sphere radii from second moment or linewidth parameter data. From the second moment analysis of La1-xSmxPO431P MAS NMR spectra for example, a blind sphere size of Sm3+ can be determined, even though the visibility function remains close to 100% over the entire doping range. Dependence of the blind sphere radius r0 on the NMR isotope and on the paramagnetic dopant could be suggested and verified: for different nuclei, r0 shows a -dependence, γ being the gyromagnetic ratio. The blind sphere radii r0 for different paramagnetic dopants in a lanthanide series could be predicted from the pseudo-contact term.
Collapse
Affiliation(s)
- Wenyu Li
- Inorganic Materials Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| | | | | | | | | |
Collapse
|
26
|
Najbauer EE, Movellan KT, Schubeis T, Schwarzer T, Castiglione K, Giller K, Pintacuda G, Becker S, Andreas LB. Probing Membrane Protein Insertion into Lipid Bilayers by Solid-State NMR. Chemphyschem 2018; 20:302-310. [PMID: 30452110 DOI: 10.1002/cphc.201800793] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/08/2018] [Indexed: 11/09/2022]
Abstract
Determination of the environment surrounding a protein is often key to understanding its function and can also be used to infer the structural properties of the protein. By using proton-detected solid-state NMR, we show that reduced spin diffusion within the protein under conditions of fast magic-angle spinning, high magnetic field, and sample deuteration allows the efficient measurement of site-specific exposure to mobile water and lipids. We demonstrate this site specificity on two membrane proteins, the human voltage dependent anion channel, and the alkane transporter AlkL from Pseudomonas putida. Transfer from lipids is observed selectively in the membrane spanning region, and an average lipid-protein transfer rate of 6 s-1 was determined for residues protected from exchange. Transfer within the protein, as tracked in the 15 N-1 H 2D plane, was estimated from initial rates and found to be in a similar range of about 8 to 15 s-1 for several resolved residues, explaining the site specificity.
Collapse
Affiliation(s)
- Eszter E Najbauer
- Department of NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Kumar Tekwani Movellan
- Department of NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Tobias Schubeis
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280/CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Villeurbanne, France
| | - Tom Schwarzer
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, D-85748, Garching, Germany
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Karin Giller
- Department of NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280/CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Villeurbanne, France
| | - Stefan Becker
- Department of NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
27
|
Theint T, Xia Y, Nadaud PS, Mukhopadhyay D, Schwieters CD, Surewicz K, Surewicz WK, Jaroniec CP. Structural Studies of Amyloid Fibrils by Paramagnetic Solid-State Nuclear Magnetic Resonance Spectroscopy. J Am Chem Soc 2018; 140:13161-13166. [PMID: 30295029 DOI: 10.1021/jacs.8b06758] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Application of paramagnetic solid-state NMR to amyloids is demonstrated, using Y145Stop human prion protein modified with nitroxide spin-label or EDTA-Cu2+ tags as a model. By using sample preparation protocols based on seeding with preformed fibrils, we show that paramagnetic protein analogs can be induced into adopting the wild-type amyloid structure. Measurements of residue-specific intramolecular and intermolecular paramagnetic relaxation enhancements enable determination of protein fold within the fibril core and protofilament assembly. These methods are expected to be widely applicable to other amyloids and protein assemblies.
Collapse
Affiliation(s)
- Theint Theint
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Yongjie Xia
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Philippe S Nadaud
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Dwaipayan Mukhopadhyay
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Charles D Schwieters
- Center for Information Technology , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Krystyna Surewicz
- Department of Physiology and Biophysics , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Witold K Surewicz
- Department of Physiology and Biophysics , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
28
|
Sternberg U, Witter R, Kuprov I, Lamley JM, Oss A, Lewandowski JR, Samoson A. 1H line width dependence on MAS speed in solid state NMR - Comparison of experiment and simulation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:32-39. [PMID: 29679841 DOI: 10.1016/j.jmr.2018.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Recent developments in magic angle spinning (MAS) technology permit spinning frequencies of ≥100 kHz. We examine the effect of such fast MAS rates upon nuclear magnetic resonance proton line widths in the multi-spin system of β-Asp-Ala crystal. We perform powder pattern simulations employing Fokker-Plank approach with periodic boundary conditions and 1H-chemical shift tensors calculated using the bond polarization theory. The theoretical predictions mirror well the experimental results. Both approaches demonstrate that homogeneous broadening has a linear-quadratic dependency on the inverse of the MAS spinning frequency and that, at the faster end of the spinning frequencies, the residual spectral line broadening becomes dominated by chemical shift distributions and susceptibility effects even for crystalline systems.
Collapse
Affiliation(s)
- Ulrich Sternberg
- Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; COSMOS GbR, Jena, Germany.
| | - Raiker Witter
- School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia; Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; NMR Institute MTÜ, Tallinn, Estonia
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, UK
| | | | - Andres Oss
- School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia; NMR Institute MTÜ, Tallinn, Estonia
| | | | - Ago Samoson
- School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia; NMR Institute MTÜ, Tallinn, Estonia
| |
Collapse
|
29
|
Aucoin D, Xia Y, Theint T, Nadaud PS, Surewicz K, Surewicz WK, Jaroniec CP. Protein-solvent interfaces in human Y145Stop prion protein amyloid fibrils probed by paramagnetic solid-state NMR spectroscopy. J Struct Biol 2018; 206:36-42. [PMID: 29679649 DOI: 10.1016/j.jsb.2018.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/24/2018] [Accepted: 04/13/2018] [Indexed: 11/16/2022]
Abstract
The C-terminally truncated Y145Stop variant of prion protein (PrP23-144), which is associated with heritable PrP cerebral amyloid angiopathy in humans and also capable of triggering a transmissible prion disease in mice, serves as a useful in vitro model for investigating the molecular and structural basis of amyloid strains and cross-seeding specificities. Here, we determine the protein-solvent interfaces in human PrP23-144 amyloid fibrils generated from recombinant 13C,15N-enriched protein and incubated in aqueous solution containing paramagnetic Cu(II)-EDTA, by measuring residue-specific 15N longitudinal paramagnetic relaxation enhancements using two-dimensional magic-angle spinning solid-state NMR spectroscopy. To further probe the interactions of the amyloid core residues with solvent molecules we perform complementary measurements of amide hydrogen/deuterium exchange detected by solid-state NMR and solution NMR methods. The solvent accessibility data are evaluated in the context of the structural model for human PrP23-144 amyloid.
Collapse
Affiliation(s)
- Darryl Aucoin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Yongjie Xia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Theint Theint
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Philippe S Nadaud
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Krystyna Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Gong Z, Schwieters CD, Tang C. Theory and practice of using solvent paramagnetic relaxation enhancement to characterize protein conformational dynamics. Methods 2018; 148:48-56. [PMID: 29656079 DOI: 10.1016/j.ymeth.2018.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/19/2018] [Accepted: 04/06/2018] [Indexed: 01/01/2023] Open
Abstract
Paramagnetic relaxation enhancement (PRE) has been established as a powerful tool in NMR for investigating protein structure and dynamics. The PRE is usually measured with a paramagnetic probe covalently attached at a specific site of an otherwise diamagnetic protein. The present work provides the numerical formulation for probing protein structure and conformational dynamics based on the solvent PRE (sPRE) measurement, using two alternative approaches. An inert paramagnetic cosolute randomly collides with the protein, and the resulting sPRE manifests the relative solvent exposure of protein nuclei. To make the back-calculated sPRE values most consistent with the observed values, the protein structure is either refined against the sPRE, or an ensemble of conformers is selected from a pre-generated library using a Monte Carlo algorithm. The ensemble structure comprises either N conformers of equal occupancy, or two conformers with different relative populations. We demonstrate the sPRE method using GB1, a structurally rigid protein, and calmodulin, a protein comprising two domains and existing in open and closed states. The sPRE can be computed with a stand-alone program for rapid evaluation, or with the invocation of a module in the latest release of the structure calculation software Xplor-NIH. As a label-free method, the sPRE measurement can be readily integrated with other biophysical techniques. The current limitations of the sPRE method are also discussed, regarding accurate measurement and theoretical calculation, model selection and suitable timescale.
Collapse
Affiliation(s)
- Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, and National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Charles D Schwieters
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Building 12A, Bethesda, MD 20892, United States
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, and National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China.
| |
Collapse
|
31
|
Gaalswyk K, Muniyat MI, MacCallum JL. The emerging role of physical modeling in the future of structure determination. Curr Opin Struct Biol 2018; 49:145-153. [DOI: 10.1016/j.sbi.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
|
32
|
Paramagnetic NMR as a new tool in structural biology. Emerg Top Life Sci 2018; 2:19-28. [DOI: 10.1042/etls20170084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022]
Abstract
NMR (nuclear magnetic resonance) investigation through the exploitation of paramagnetic effects is passing from an approach limited to few specialists in the field to a generally applicable method that must be considered, especially for the characterization of systems hardly affordable with other techniques. This is mostly due to the fact that paramagnetic data are long range in nature, thus providing information for the structural and dynamic characterization of complex biomolecular architectures in their native environment. On the other hand, this information usually needs to be complemented by data from other sources. Integration of paramagnetic NMR with other techniques, and the development of protocols for a joint analysis of all available data, is fundamental for achieving a comprehensive characterization of complex biological systems. We describe here a few examples of the new possibilities offered by paramagnetic data used in integrated structural approaches.
Collapse
|
33
|
Atomic structural details of a protein grafted onto gold nanoparticles. Sci Rep 2017; 7:17934. [PMID: 29263419 PMCID: PMC5738368 DOI: 10.1038/s41598-017-18109-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/05/2017] [Indexed: 12/18/2022] Open
Abstract
The development of a methodology for the structural characterization at atomic detail of proteins conjugated to nanoparticles would be a breakthrough in nanotechnology. Solution and solid-state NMR spectroscopies are currently used to investigate molecules and peptides grafted onto nanoparticles, but the strategies used so far fall short in the application to proteins, which represent a thrilling development in theranostics. We here demonstrate the feasibility of highly-resolved multidimensional heteronuclear spectra of a large protein assembly conjugated to PEGylated gold nanoparticles. The spectra have been obtained by direct proton detection under fast MAS and allow for both a fast fingerprinting for the assessment of the preservation of the native fold and for resonance assignment. We thus demonstrate that the structural characterization and the application of the structure-based methodologies to proteins bound to gold nanoparticles is feasible and potentially extensible to other hybrid protein-nanomaterials.
Collapse
|