1
|
Huang JZ, Ying VY, Seyedsayamdost MR. Synthesis of Non-canonical Tryptophan Variants via Rh-catalyzed C-H Functionalization of Anilines. Angew Chem Int Ed Engl 2025; 64:e202414998. [PMID: 39263721 DOI: 10.1002/anie.202414998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Tryptophan and its non-canonical variants play critical roles in pharmaceutical molecules and various enzymes. Facile access to this privileged class of amino acids from readily available building blocks remains a long-standing challenge. Here, we report a regioselective synthesis of non-canonical tryptophans bearing C4-C7 substituents via Rh-catalyzed annulation between structurally diverse tert-butyloxycarbonyl (Boc)-protected anilines and alkynyl chlorides readily prepared from amino acid building blocks. This transformation harnesses Boc-directed C-H metalation and demetalation to afford a wide range of C2-unsubstituted indole products in a redox-neutral fashion. This umpolung approach compared to the classic Larock indole synthesis offers a novel mechanism for heteroarene annulation and will be useful for the synthesis of natural products and drug molecules containing non-canonical tryptophan residues in a highly regioselective manner.
Collapse
Affiliation(s)
- Jonathan Z Huang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Vanessa Y Ying
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
2
|
Korb M, Ghazvini SMBH, Karton A, Low PJ. Experimental and Computational Studies of Steric Factors in the Isomerization of Internal Alkynes within the Coordination Environment of Half-Sandwich Metal Complexes. Chemistry 2025; 31:e202403700. [PMID: 39429094 DOI: 10.1002/chem.202403700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
The isomerization of internal alkynes Ar1C≡CAr2 within the coordination environment of low-valent half-sandwich [Ru(dppe)Cp]+ complexes via a 1,2-migration process affords vinylidene species [Ru{=C=C(Ar1)Ar2}(dppe)Cp]+. The rearrangement reactions of symmetrically and asymmetrically substituted substrates featuring different electron-donating and -withdrawing groups and of varying steric bulk were modelled using density functional theory (DFT), and the conclusions supported by experimental observations. Examination of the reaction pathway and associated activation barriers reveal a high solvent dependency for the generation of the key intermediate species [Ru(dppe)Cp]+ from [RuCl(dppe)Cp] by halide dissociation in the presence of Na+ salts of weakly coordinating anions, with the lattice enthalpy of the NaCl by-product playing a critical role in the overall thermochemical balance of the reaction. The activation barriers associated with the reaction of [Ru(dppe)Cp]+ with Ar1C≡CAr2, and the relative energies of the alkyne complexes [Ru(η2-Ar1C≡CAr2)(dppe)Cp]+, are sensitive to the electron density of the alkyne and conformational changes associated with the 'bend-back' of the substrate. The latter differs by up to 66.1 kJ/mol, which in turn impacts the barrier height of the subsequent 1,2-migration step involved in the rearrangement process and ultimately the overall thermochemical nature of the complete reaction. The relative importance of these factors is evinced by the successful rearrangement of the very sterically congested 1(9-anthryl)-2(9-phenanthryl) acetylene into the fully characterized diaryl vinylidene complex, which was isolated in 89 % yield.
Collapse
Affiliation(s)
- Marcus Korb
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Seyed M B H Ghazvini
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| | - Paul J Low
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
3
|
Io KW, Shek HL, Li TY, Li KK, Chan DSH, Yiu SM, Wong CY. Controlling Chemoselectivity in Ruthenium(II)-Induced Cyclization of Aniline-Functionalized Alkynes. Chemistry 2024; 30:e202402959. [PMID: 39367668 DOI: 10.1002/chem.202402959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
The cyclization of heteroatom-functionalized alkynes induced by d6-transition-metal centers has traditionally been associated with the vinylidene pathway. However, recent evidence suggests that d6-transition-metal centers can also activate alkynes through non-vinylidene pathways. In this study, we conducted a comprehensive experimental and theoretical investigation into the reactions between the Ru(II) complex [Ru([9]aneS3)(bpy)(OH2)]2+ and 2-alkynylanilines. Our study revealed that the selectivity between the vinylidene and non-vinylidene pathways can be tuned by reaction temperature, substrate, and solvent polarity. This strategic control allows for the preferential formation of either C2- or C3-metalated indole zwitterion complexes. Additionally, we identified a rare decyclization mechanism that enables the conversion of C2-metalated indoles to C3-metalated indoles, underscoring the significance of product stability in these pathways. Overall, this work demonstrates practical approaches to control the preference between vinylidene and non-vinylidene pathways, which is crucial for the design of new catalysts and metalated heterocyclic complexes.
Collapse
Affiliation(s)
- Kai-Wa Io
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Hau-Lam Shek
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Tsun-Yin Li
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Ka-Kit Li
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Daniel Shiu-Hin Chan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| |
Collapse
|
4
|
Ibarra-Gutiérrez JG, Solorio-Alvarado CR, Chacón-García L, López JA, Delgado-Piedra BY, Segura-Quezada LA, Hernández-Velázquez ED, García-Dueñas AK. Gold(I)-Catalyzed Synthesis of 2,2'-Biindoles via One-Pot Double Cycloisomerization Strategy. J Org Chem 2024; 89:17069-17089. [PMID: 39540907 DOI: 10.1021/acs.joc.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The first systematic, concise and target-directed gold(I)-catalyzed synthesis of a family of 2,2'-biindoles containing different substitution patterns is described. The developed protocol involves the synthesis of 1,3-diyne-anilines followed by a one-pot gold(I)-catalyzed double cycloisomerization, giving rise to an efficient, broad and general protocol to get different 2,2'-biindoles under mild reaction conditions. Due to the methodological restriction of present methods for accessing this class of compounds, herein we present our synthetic proposal which allowed the preparation of several examples of 2,2'-biindoles. Their functionalization-guided us to the discovery that the chemical stability, is substitution structure-dependent.
Collapse
Affiliation(s)
- Jaime G Ibarra-Gutiérrez
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050 Guanajuato, Guanajuato, México
| | - César R Solorio-Alvarado
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050 Guanajuato, Guanajuato, México
| | - Luis Chacón-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Michoacan, Morelia 58033, México
| | - Jesús Adrián López
- MicroRNAs and Cancer Laboratory, Universidad Autónoma de Zacatecas, 98066 Zacatecas, Zac, Mexico
| | - B Yoaly Delgado-Piedra
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Michoacan, Morelia 58033, México
| | - Luis A Segura-Quezada
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050 Guanajuato, Guanajuato, México
| | - Edson D Hernández-Velázquez
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050 Guanajuato, Guanajuato, México
| | - Ana K García-Dueñas
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Michoacan, Morelia 58033, México
| |
Collapse
|
5
|
Zheng Y, Chen C, Lu Y, Huang S. Recent advances in electrochemically enabled construction of indoles from non-indole-based substrates. Chem Commun (Camb) 2024; 60:8516-8525. [PMID: 39036971 DOI: 10.1039/d4cc03040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Indole motifs are important heterocycles found in natural products, pharmaceuticals, agricultural chemicals, and materials. Although there are well-established classical name reactions for indole synthesis, these transformations often require harsh reaction conditions, have a limited substrate scope, and exhibit poor regioselectivity. As a result, organic synthesis chemists have been exploring efficient and practical methods, leading to numerous strategies for synthesizing a variety of functionalized indoles. In recent years, electrochemistry has emerged as an environmentally friendly and sustainable synthetic tool, with widespread applications in organic synthesis. This technology allows for elegant synthetic routes to be developed for the construction of indoles under external oxidant-free conditions. This feature article specifically focuses on recent advancements in indole synthesis from non-indole-based substrates, as well as the mechanisms underlying these transformations.
Collapse
Affiliation(s)
- Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Chunxi Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Korb M, Ghazvini SMBH, Low PJ. Migration of Condensed Aromatic Hydrocarbons During Alkyne-Vinylidene Rearrangements. Chemistry 2024; 30:e202400930. [PMID: 38780030 DOI: 10.1002/chem.202400930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Diarylacetylenes ArC≡CAr featuring condensed aromatic hydrocarbon fragments (Ar) such as naphthalene, anthracene, phenanthrene and pyrene were converted into vinylidene ligands by 1,2-migration reactions within the coordination sphere of half-sandwich complexes [MII(dppe)Cp]+ (MII = RuII, FeII). Comparison of the extent of conversion of the alkyne substrates to the vinylidene complexes [Ru{=C=CAr2}(dppe)Cp]+ with those obtained from acetylenes functionalized by smaller groups (H, CH3, Ph) show that the molecular volume (VM) of the migrating group and relief of steric congestion plays a role during the rearrangement process. Conversely, the H-atoms from the larger condensed ring aryl groups that are in close proximity to the migrating sites also have a significant influence on the efficacy and extent of the reaction by restricting access of the alkyne to the metal center, resulting in a less effective migration reaction. This combination of competing steric factors (acceleration due to relief of steric congestion and restricted access of the alkyne moiety to the reaction site) is exemplified by the facile migration of 1-pyryl entities and the low yields of vinylidene products formed from 1,2-bis(9-anthryl)acetylene.
Collapse
Affiliation(s)
- Marcus Korb
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Seyed M B H Ghazvini
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Paul J Low
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
7
|
Iwamoto T, Mitsubo T, Sakajiri K, Ishii Y. Vinylidene rearrangements of internal borylalkynes via 1,2-boryl migration. Dalton Trans 2024; 53:9715-9723. [PMID: 38804850 DOI: 10.1039/d4dt01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Vinylidene rearrangement of alkynes is a well-established and powerful method for alkyne transformations, while use of borylalkynes has remained largely unexplored. This paper describes vinylidene rearrangements of internal borylalkynes using a cationic ruthenium complex. This rearrangement is applicable to alkynes with both tri-(B(pin), B(dan)) and tetracoordinate (B(mida)) boryl groups, and the reaction rate is dramatically affected by the Lewis acidity of the boryl group. Mechanistic study revealed that the rearrangement proceeds via 1,2-boryl migration regardless of the coordination number of the boron center. The migration mode was elucidated by theoretical calculations to indicate that the migration of the tricoordinate boryl groups is an electrophilic process in contrast to the previous vinylidene rearrangements of internal alkynes with two carbon substituents.
Collapse
Affiliation(s)
- Takahiro Iwamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Takuya Mitsubo
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Kosuke Sakajiri
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Youichi Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| |
Collapse
|
8
|
Watanabe K, Nakano K, Sato H, Yamaoka T, Yoshida Y, Takita R, Kasashima Y, Sakamoto M, Mino T. Synthesis of Branch-Type 3-Allylindoles from N-Alkyl- N-cinnamyl-2-ethynylaniline Derivatives Using π-Allylpalladium Chloride Complex as a Catalyst. J Org Chem 2024. [PMID: 38728550 DOI: 10.1021/acs.joc.4c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The reaction of N-alkyl-N-cinnamyl-2-ethynylaniline derivatives 1 via annulation and aza-Claisen-type rearrangement easily afforded corresponding branch-type 3-allylindoles 2 with high regioselectivities in good yields using π-allylpalladium chloride complex as a catalyst.
Collapse
Affiliation(s)
- Kohei Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keita Nakano
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hayato Sato
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Toshiki Yamaoka
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yasushi Yoshida
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Soft Molecular Activation Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ryo Takita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshio Kasashima
- Education Center, Chiba Institute of Technology, Shibazono 2-2-1, Narashino, Chiba 275-0023, Japan
| | - Masami Sakamoto
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takashi Mino
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Soft Molecular Activation Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
9
|
Zhang H, Cheng R, Qiu Z, Xie Z. Iridium-catalyzed regioselective B(3,6)-dialkenylation or B(4)-alkenylation of o-carboranes via B-H activation and 1,2-carbon migration of alkynes. Chem Commun (Camb) 2023; 59:740-743. [PMID: 36541286 DOI: 10.1039/d2cc05890a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient Ir-catalyzed cage boron alkenylation of 1-(2'-picolyl)-o-carboranes with diarylacetylenes has been developed, leading to a wide variety of B-H geminal addition products via 1,2-carbon migration of alkynes. The steric effect of cage carbon substituents has a great impact on the regioselectivity of such alkenylation reactions.
Collapse
Affiliation(s)
- Huifang Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China.
| | - Ruofei Cheng
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China.
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China. .,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China. .,Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T, Hong Kong, China.
| |
Collapse
|
10
|
The synthesis, biological evaluation, and fluorescence study of 3-aminocoumarin and their derivatives: a brief review. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-022-03010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Iwamoto T, Saito K, Mitsubo T, Kuwabara T, Ishii Y. Retro-Vinylidene Rearrangements of P- and S-Substituted Ruthenium Vinylidene Complexes. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Takahiro Iwamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kyoka Saito
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Takuya Mitsubo
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Takuya Kuwabara
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Youichi Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
12
|
Wei Z, Jing X, Yang Y, Yuan J, Liu M, He C, Duan C. A Platinum(II)-Based Molecular Cage with Aggregation-Induced Emission for Enzymatic Photocyclization of Alkynylaniline. Angew Chem Int Ed Engl 2023; 62:e202214577. [PMID: 36342165 DOI: 10.1002/anie.202214577] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 11/09/2022]
Abstract
Enzymes facilitate chemical conversions through the collective activity of aggregated components, but the marriage of aggregation-induced emission (AIE) with molecular containers to emulate enzymatic conversion remains challenging. Herein, we report a new approach to construct a PtII -based octahedral cage with AIE characteristics for the photocyclization of alkynylaniline by restricting the rotation of the pendant phenyl rings peripheral to the PtII corner. With the presence of water, the C-H⋅⋅⋅π interactions involving the triphenylphosphine fragments resulted in aggregation of the molecular cages into spherical particles and significantly enhanced the PtII -based luminescence. The kinetically inert Pt-NP chelator, with highly differentiated redox potentials in the ground and excited states, and the efficient coordination activation of the platinum corner facilitated excellent catalysis of the photocyclization of alkynylaniline. The enzymatic kinetics and the advantages of binding and activating substrates in an aqueous medium provide a new avenue to develop mimics for efficient photosynthesis.
Collapse
Affiliation(s)
- Zhong Wei
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yang Yang
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jiayou Yuan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Mingxu Liu
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
13
|
Medici F, Montinari F, Donato E, Raimondi L, Benaglia M. A convenient protocol for a zinc-catalysed synthesis of electron-poor indoles. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Álvarez-Constantino A, Álvarez-Pérez A, Varela JA, Sciortino G, Ujaque G, Saá C. Chemoselective Ru-Catalyzed Oxidative Lactamization vs Hydroamination of Alkynylamines: Insights from Experimental and Density Functional Theory Studies. J Org Chem 2022; 88:1185-1193. [PMID: 36579612 PMCID: PMC9872091 DOI: 10.1021/acs.joc.2c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Ru-catalyzed intramolecular oxidative amidation (lactamization) of aromatic alkynylamines with 4-picoline N-oxide as an external oxidant has been developed. This chemoselective process is very efficient to achieve medium-sized ε- and ζ-lactams (seven- and eight-membered rings) but not for the formation of common δ-lactams (six-membered rings). DFT studies unveiled the capital role of the chain length between the amine and the alkyne functionalities: the longer the connector, the more favored the lactamization process vs hydroamination.
Collapse
Affiliation(s)
- Andrés
M. Álvarez-Constantino
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Andrea Álvarez-Pérez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Jesús A. Varela
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Giuseppe Sciortino
- Departament
de Química and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain,
| | - Gregori Ujaque
- Departament
de Química and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain,
| | - Carlos Saá
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain,
| |
Collapse
|
15
|
Patra P, Manna S, Patra S, Samanta K, Roy D. A Brief Review on the Synthesis of Pyrrolo[2,3- c]coumarins, including Lamellarin and Ningalin Scaffolds. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Prasanta Patra
- Department of Chemistry, Jhargram Raj College, Jhargram, India
| | - Sibasish Manna
- Department of Chemistry, Jhargram Raj College, Jhargram, India
| | - Susanta Patra
- Department of Chemistry, IIT(ISM) Dhanbad, Dhanbad, India
| | - Khokan Samanta
- Department of Chemistry, Haldia Government College, Haldia, Purba Medinipur, India
| | - Debnarayan Roy
- Department of Zoology, Jhargram Raj College, Jhargram, India
| |
Collapse
|
16
|
Patra P. A short review on the synthesis of pyrrolo[3,4- c]coumarins an isolamellarin-B scaffolds. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2119413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Prasanta Patra
- Department of Chemistry, Jhargram Raj College, Jhargram, India
| |
Collapse
|
17
|
Cheng H, Yu C, Wang H, Liu X, Ma L, Lai F. Macrolactonization of methyl 15-hydroxypentadecanoate to cyclopentadecanolide using KF-La/γ-Al 2O 3 catalyst. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211479. [PMID: 36117871 PMCID: PMC9459669 DOI: 10.1098/rsos.211479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
It has been a challenge to synthesize macrolide musk in excellent yields with high purity. KF-La/γ-Al2O3 catalyst was prepared from a highly basic mesoporous framework using a mild method. The prepared KF-La/γ-Al2O3 catalyst was employed for the synthesis of cyclopentadecanolide from methyl 15-hydroxypentadecanoate. The morphology and structure of prepared catalysts were characterized using XRD, TG-DTG, SEM, EDX, TEM, BET and CO2-TPD. The results revealed that the K3AlF6 and LaOF are produced on the surface of KF-La/γ-Al2O3, and LaO can promote the dispersion of KF on the surface of Al2O3. Catalysts pore size main distribution ranges between 10 and 30 nm, the maximum CO2 desorption temperature is 715°C when the La loading is 25%. Because F- ion has a higher electronegativity than O2- ion, the KF-promoted metal oxide (Al2O3 or/and La2O3) contained more strong basic sites, compared with that of the corresponding metal oxide. The yield of cyclopentadecanolide obtained at 0.5 g KF-25La/γ-Al2O3 catalyst and a reaction temperature of 190°C for 7 h were 58.50%, and the content after reactive distillation is 98.8%. The KF-La/γ-Al2O3 catalyst has a larger pore size and basic strength, which is more conducive to the macrolactonization of long-chain hydroxy ester.
Collapse
Affiliation(s)
- Haijun Cheng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning Guangxi 530004, People's Republic of China
| | - Chang Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning Guangxi 530004, People's Republic of China
| | - Hongyun Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning Guangxi 530004, People's Republic of China
| | - Xiongmin Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning Guangxi 530004, People's Republic of China
| | - Li Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning Guangxi 530004, People's Republic of China
| | - Fang Lai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning Guangxi 530004, People's Republic of China
| |
Collapse
|
18
|
Chen Z, Zeng P, Zhang S, Sun J. Recent Advances in Organic Synthesis of 3-Amino- or 4-Aminocoumarins. MINI-REV ORG CHEM 2022. [DOI: 10.2174/1570193x18666211001124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Coumarin is a privileged scaffold that contains the unique 2H-chromen-2-one motif, and its
derivatives are widely distributed in nature, especially in plants. In recent years, due to their diverse
pharmacological activities and remarkable photochemical properties, they have attracted significant
attention from scientists, which has also prompted the research on the synthesis approaches and the
availability of substrates for these compounds. This article is a brief description of the methods for the
synthesis of various coumarin derivatives via two- or multi-component reactions involving 3-amino
or 4-aminocoumarin reported during 2015-2021. This review may help expand the development of
various analogues with coumarin as the basic unit.
Collapse
Affiliation(s)
- Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, and Institute of Drug Synthesis, Zhejiang University
of Technology, Hangzhou 310014, P.R. China
| | - Piaopiao Zeng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, and Institute of Drug Synthesis, Zhejiang University
of Technology, Hangzhou 310014, P.R. China
| | - Shuo Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, and Institute of Drug Synthesis, Zhejiang University
of Technology, Hangzhou 310014, P.R. China
| | - Jie Sun
- College of Pharmaceutical Sciences, Zhejiang University of Technology, and Institute of Drug Synthesis, Zhejiang University
of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
19
|
Fernández-Canelas P, Barrio P, González JM. Merging gold catalysis and haloethynyl frames: emphasis on halide-shift processes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Jadhav SD, Singh T, Thakur N, Singh A. Silver Triflate Catalyzed Domino Reactions of
o
‐Alkynylanilines: An Approach Toward Unsymmetrical Diarylacetates and Triarylmethanes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Naveen Thakur
- Department of Chemistry IIT Kanpur Kanpur-208016 India
| | - Anand Singh
- Department of Chemistry IIT Kanpur Kanpur-208016 India
| |
Collapse
|
21
|
Xu T, He Q, Fan R. Synthesis of C7-Functionalized Indoles through an Aromaticity Destruction-Reconstruction Process. Org Lett 2022; 24:2665-2669. [PMID: 35377659 DOI: 10.1021/acs.orglett.2c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A process for the synthesis of C7-functionalized indoles using para-substituted 2-alkynylanilines as starting materials was reported. The process involves a dearomatization, an 1,2-addition by organic lithium or Grignard reagents, an aromatization-driven allylic rearrangement, and a cyclization. A variety of groups including alkyl, aryl, alkenyl, or alkynyl groups were selectively installed at the C7 site of indoles leading to the formation of 2,5,7-trisubstituted indoles.
Collapse
Affiliation(s)
- Tingxuan Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Qiuqin He
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Renhua Fan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
22
|
Festa A, Raspertov P, Voskressensky L. 2‐(Alkynyl)anilines and derivatives – versatile reagents for heterocyclic synthesis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexey Festa
- Peoples' Friendship University of Russia RUSSIAN FEDERATION
| | | | | |
Collapse
|
23
|
Mandal M, Balamurugan R. TfOH-promoted synthesis of indoles and benzofurans involving cyclative transposition of vinyl ketone. Chem Commun (Camb) 2022; 58:9778-9781. [DOI: 10.1039/d2cc03730k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free approach to construct indole ring from vinylogous amides derived from o-alkynylanilines involving cyclization, retro-aza-Michael and amine trapping cascade is reported here. This atom-economical transformation has been extended to...
Collapse
|
24
|
Zhang H, Yang D, Zhao XF, Niu JL, Song MP. Cobalt-catalyzed C(sp3)-H bond functionalization to access indole derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo00562j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we develop an efficient method of cobalt-catalyzed C(sp3)-H bond functionalization to synthesize indole derivatives. The highlight of this protocol is accomplished by the sequential C-H activation. This “cobalt/ organic...
Collapse
|
25
|
Mathada BS, Yernale NG, Basha JN, Badiger J. An insight into the advanced synthetic recipes to access ubiquitous indole heterocycles. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153458] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Hu R, Tao Y, Zhang X, Su W. 1,2‐Aryl Migration Induced by Amide C−N Bond‐Formation: Reaction of Alkyl Aryl Ketones with Primary Amines Towards α,α‐Diaryl β,γ‐Unsaturated γ‐Lactams. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rong Hu
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
- Shanghai Advanced Research Institute Chinese Academy of Sciences China
| | - Yigao Tao
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
- Shanghai Advanced Research Institute Chinese Academy of Sciences China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou Fujian 350002 China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|
27
|
Hu R, Tao Y, Zhang X, Su W. 1,2-Aryl Migration Induced by Amide C-N Bond-Formation: Reaction of Alkyl Aryl Ketones with Primary Amines Towards α,α-Diaryl β,γ-Unsaturated γ-Lactams. Angew Chem Int Ed Engl 2021; 60:8425-8430. [PMID: 33432640 DOI: 10.1002/anie.202014900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Rearrangement reactions incorporated into cascade reactions play an important role in rapidly increasing molecular complexity from readily available starting materials. Reported here is a Cu-catalyzed cascade reaction of α-(hetero)aryl-substituted alkyl (hetero)aryl ketones with primary amines that incorporates an unusual 1,2-aryl migration induced by amide C-N bond formation to produce a class of structurally novel α,α-diaryl β,γ-unsaturated γ-lactams in generally good-to-excellent yields. This cascade reaction has a broad substrate scope with respect to primary amines, allows a wide spectrum of (hetero)aryl groups to smoothly undergo 1,2-migration, and tolerates electronically diverse α-substituents on the (hetero)aryl ring of the ketones. Mechanistically, this 1,2-aryl migration may stem from the intramolecular amide C-N bond formation which induces nucleophilic migration of the aryl group from the acyl carbon center to the electrophilic carbon center that is conjugated with the resulting iminium moiety.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, China
| | - Yigao Tao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| |
Collapse
|
28
|
Silyanova EA, Samet AV, Semenova MN, Semenov VV. Synthesis and antiproliferative properties of 3,4-diarylpyrrole-2-carboxamides. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3115-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Tayu M, Watanabe R, Isogi S, Saito N. A Catalytic Construction of Indoles via Formation of Ruthenium Vinylidene Species from
N
‐Arylynamides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Masanori Tayu
- Meiji Pharmaceutical University 2-522-1 Noshio, Kiyose Tokyo 204-8588 Japan
| | - Ryuta Watanabe
- Meiji Pharmaceutical University 2-522-1 Noshio, Kiyose Tokyo 204-8588 Japan
| | - Satoshi Isogi
- Meiji Pharmaceutical University 2-522-1 Noshio, Kiyose Tokyo 204-8588 Japan
| | - Nozomi Saito
- Meiji Pharmaceutical University 2-522-1 Noshio, Kiyose Tokyo 204-8588 Japan
| |
Collapse
|
30
|
Li S, Wang Z, Xiao H, Bian Z, Wang JJ. Enantioselective synthesis of indole derivatives by Rh/Pd relay catalysis and their anti-inflammatory evaluation. Chem Commun (Camb) 2021; 56:7573-7576. [PMID: 32510073 DOI: 10.1039/d0cc03158e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient Rh/Pd relay catalyzed intermolecular and cascade intramolecular hydroamination for the synthesis of exclusive trans 1-indolyl dihydronaphthalenols (up to 88% yield, 99% ee) is described under mild conditions. Moreover, the in silico and in vitro screening showed that the novel 1-indolyl dihydronaphthalenol products are potent lead compounds for treating inflammation disease.
Collapse
Affiliation(s)
- Sifeng Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China. and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Zihao Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China. and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518066, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Jun Joelle Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
31
|
Tse SKS, Sung HHY, Williams ID, Jia G. Vinylidene, allenylidene, cyclic oxycarbene, and η 2-alkyne complexes from reactions of (η 5-C 5Me 5)OsCl(PPh 3) 2 with alkynes and alkynols. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactions of Cp*OsCl(PPh3)2 (Cp* = pentamethylcyclopentadienyl) with alkynes and alkynols are described. Treatment of Cp*OsCl(PPh3)2 with phenylacetylene and trimethylsilylacetylene gave the vinylidene complexes Cp*OsCl(=C=CHPh)(PPh3) and Cp*OsCl(=C=CH2)(PPh3), respectively. Treatment of Cp*OsCl(PPh3)2 with the internal alkyne dimethyl acetylenedicarboxylate produced the η2-alkyne complex Cp*OsCl(η2-MeO2C≡CCO2Me)(PPh3). Treatment of Cp*OsCl(PPh3)2 with the propargylic alcohol HC≡CC(OH)Ph2 gave the osmium allenylidene complex Cp*OsCl(=C = C=CPh2)(PPh3). The outcomes of the reactions of Cp*OsCl(PPh3)2 with ω-alkynols HC≡C(CH2)nOH are dependent on the length of the -(CH2)n- linker. The reaction with 3-butyn-1-ol produced the cyclic oxycarbene complex Cp*OsCl{=C(CH2)3O}(PPh3) exclusively. The reactions with 4-pentyn-1-ol produced a mixture of the hydroxyalkyl vinylidene complex Cp*OsCl{=C=CH(CH2)3OH}(PPh3) and the cyclic oxycarbene complex Cp*OsCl{=C(CH2)4O}(PPh3) in about 10:1 molar ratio. The reaction with 5-hexyn-1-ol gave exclusively the hydroxyalkyl vinylidene complex Cp*OsCl{=C=CH(CH2)4OH}(PPh3).
Collapse
Affiliation(s)
- Sunny Kai San Tse
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Herman Ho-Yung Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ian Duncan Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
32
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Qiu W, Wang W, Liu Y, Fan R. Synthesis of N-indolated amino acids or peptides from 2-alkynylanilines via a dearomatization process. Org Chem Front 2021. [DOI: 10.1039/d1qo01257f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A process for the rapid synthesis of N-indolated amino acids or peptides from readily available 2-alkynylanilines via dearomatization was reported.
Collapse
Affiliation(s)
- Weilian Qiu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Weiyi Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yin Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Renhua Fan
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
34
|
Zhou S, Liu Q, Bao M, Huang J, Wang J, Hu W, Xu X. Gold(i)-catalyzed redox transformation of o-nitroalkynes with indoles for the synthesis of 2,3′-biindole derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00134e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A gold(i)-catalyzed cascade reaction of o-nitroalkynes with indoles has been reported for the rapid assembly of 2-indolyl indolone N-oxides, which exhibit high anticancer potency against SCLC cells.
Collapse
Affiliation(s)
- Su Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Qianqian Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jie Huang
- Guangdong Lung Cancer Institute
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer
- Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences
- Guangzhou 510080
- China
| | - Junjian Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
35
|
Chan SC, Yeung CF, Shek HL, Ng SW, Tse SY, Tse MK, Yiu SM, Wong CY. Iron(ii)-induced cycloisomerization of alkynes via"non-vinylidene" pathways for iron(ii)-indolizine and -indolizinone complexes. Chem Commun (Camb) 2020; 56:12644-12647. [PMID: 32960203 DOI: 10.1039/d0cc05081d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Reactions between pyridine-functionalized alkynes and an Fe(ii) precursor supported by 2,5,8-trithia[9](2,9)-1,10-phenanthrolinophane afforded the first Fe(ii)-indolizine and -indolizinone complexes. Structural analysis and theoretical calculations revealed the existence of unconventional "non-vinylidene" pathways and challenged the generality of vinylidene intermediacy in Fe(ii)-induced alkyne transformations.
Collapse
Affiliation(s)
- Siu-Chung Chan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yeung CF, Chung LH, Tse SY, Shek HL, Tse MK, Yiu SM, Wong CY. Conventional and unconventional alkyne activations by Ru and Os for unprecedented dimetalated quinolizinium complexes. Chem Commun (Camb) 2020; 56:8908-8911. [PMID: 32649734 DOI: 10.1039/d0cc03480k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two types of unexpected quinolizinium complexes were obtained from the reactions between pyridine-functionalized propargylic alcohol HC[triple bond, length as m-dash]CC(OH)(Ph)(CH2(2-py)) (L1) and cis-[M(L^L)2Cl2] (M = Ru, Os; L^L = 1,1-bis(diphenylphosphino)methane (dppm), 2,2'-bipyridine (bpy)). Their molecular structures revealed that L1 can be activated by Ru and Os via the conventional "vinylidene-involving" or unconventional "non-vinylidene-involving" pathways.
Collapse
Affiliation(s)
- Chi-Fung Yeung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR.
| | | | | | | | | | | | | |
Collapse
|
37
|
Song L, Tian G, Van Meervelt L, Van der Eycken EV. Synthesis of Pyrrolo[1,2-b]isoquinolines via Gold(I)-Catalyzed Cyclization/Enyne Cycloisomerization/1,2-Migration Cascade. Org Lett 2020; 22:6537-6542. [DOI: 10.1021/acs.orglett.0c02310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Guilong Tian
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
| |
Collapse
|
38
|
Mutoh Y, Ishii Y, Saito S. Direct Formation of Disubstituted Vinylidenes from Internal Alkynes at Group 8 Metal Complexes and its Application to Organic Synthesis. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuichiro Mutoh
- Department of Chemistry, Tokyo University of Science
- Department of Applied Chemistry, Chuo University
| | | | | |
Collapse
|
39
|
Chung LH, Yeung CF, Wong CY. Ruthenium-Induced Cyclization of Heteroatom-Functionalized Alkynes: Progress, Challenges and Perspectives. Chemistry 2020; 26:6102-6112. [PMID: 31943425 DOI: 10.1002/chem.201905506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 01/05/2023]
Abstract
Metal-induced cyclization of functionalized alkynes represents one of the most general approaches to prepare organic heterocycles. Although RuII centers are well-established to promote alkyne to vinylidene rearrangements and many RuII -mediated alkyne cyclizations have been rationalized to be the results of post-vinylidene transformations, recent discoveries indicate that RuII centers can serve as electrophiles and induce alkyne cyclizations without vinylidene intermediacy. In this Minireview, an overview of the RuII -induced cyclization of heteroatom-functionalized alkynes in the last decade is provided, with an emphasis on the discoveries and validations of the unconventional "non-vinylidene-involving" pathways.
Collapse
Affiliation(s)
- Lai-Hon Chung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, SAR, P. R. China
| | - Chi-Fung Yeung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, SAR, P. R. China.,State Key Laboratory of Terahertz and Millimeter Waves, Tat Chee Avenue, Hong Kong, SAR, P. R. China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, SAR, P. R. China.,State Key Laboratory of Terahertz and Millimeter Waves, Tat Chee Avenue, Hong Kong, SAR, P. R. China
| |
Collapse
|
40
|
Kuwabara T, Aoki Y, Sakajiri K, Deguchi K, Takamori S, Hamano A, Takano K, Houjou H, Ishii Y. Ruthenium Vinylidene Complexes Generated by Selective 1,2-Migration of P- and S-Substituents: Synthesis, Structures, and Dichromism Arising from an Intramolecular CH···O Hydrogen Bond. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Takuya Kuwabara
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yutaka Aoki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kousuke Sakajiri
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuki Deguchi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Shuhei Takamori
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Ai Hamano
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Keiko Takano
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Hirohiko Houjou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Youichi Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
41
|
Ajarul S, Kayet A, Pati TK, Maiti DK. A competitive and highly selective 7-, 6- and 5-annulation with 1,3-migration through C-H and N-H - alkyne coupling. Chem Commun (Camb) 2020; 56:474-477. [PMID: 31829322 DOI: 10.1039/c9cc07360d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrated a highly competitive and selective C-C and N-C cross-coupled 7-, 6- and 5-annulation utilizing 2-ethynylanilides to afford functionalized 1H-benzo[b]azepin-2(5H)-ones, 2-quinolinones, and 3-acylindoles in high yield. ZnCl2 was found to be the smart catalyst for 7- and 5-annulation with 1,3-migration through C-H and N-H functionalization, respectively, whereas molecular iodine performed the C-H functionalized 6-annulation with a nonconventional 1,3 H-shift. The mechanism was investigated by intermediate trapping, control, and labeling experiments.
Collapse
Affiliation(s)
- Sk Ajarul
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | | | | | | |
Collapse
|
42
|
Hong K, Zhou S, Hu W, Xu X. Rh-Catalyzed nitrene alkyne metathesis/formal C–N bond insertion cascade: synthesis of 3-iminoindolines. Org Chem Front 2020. [DOI: 10.1039/d0qo00294a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A Rh-catalyzed nitrene/alkyne metathesis (NAM) cascade reaction terminated by a formal C–N bond insertion has been developed, which provides facile access to the tricyclic 3-iminoindolines in good yields with broad substrate scope.
Collapse
Affiliation(s)
- Kemiao Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Su Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
43
|
Neto JSS, Zeni G. Recent advances in the synthesis of indoles from alkynes and nitrogen sources. Org Chem Front 2020. [DOI: 10.1039/c9qo01315f] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review highlights ten years of success in the synthesis of indoles using alkynes and nitrogen sources as substrates.
Collapse
Affiliation(s)
- José Sebastião Santos Neto
- Laboratório de Síntese
- Reatividade
- Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE
- UFSM
- Santa Maria
| | - Gilson Zeni
- Laboratório de Síntese
- Reatividade
- Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE
- UFSM
- Santa Maria
| |
Collapse
|
44
|
Yu Y, Wang XY, Peng JY, Liu T, Zhao YL. Copper-catalyzed cascade cyclization reaction of 3-aminocyclobutenones with electron-deficient internal alkynes: synthesis of fully substituted indoles. Chem Commun (Camb) 2020; 56:9815-9818. [DOI: 10.1039/d0cc00512f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel copper-catalyzed cascade cyclization reaction of 3-aminocyclobutenones with electron-deficient internal alkynes has been developed. This reaction provides a new method for the synthesis of fully substituted indoles by formation of four new bonds and two rings in a single step.
Collapse
Affiliation(s)
- Yang Yu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Xin-Yu Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Ju-Yin Peng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Tao Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
45
|
Watanabe T, Mutoh Y, Saito S. Synthesis of lactone-fused pyrroles by ruthenium-catalyzed 1,2-carbon migration-cycloisomerization. Org Biomol Chem 2019; 18:81-85. [PMID: 31782470 DOI: 10.1039/c9ob02363a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ruthenium-catalyzed cycloisomerization of 3-amino-4-alkynyl-2H-chromen-2-ones via 1,2-carbon migration was developed. Various 1-arylchromeno[3,4-b]pyrrol-4(3H)-ones were synthesized in good to excellent yields. The reaction was applied to the formal total synthesis of marine natural products Ningalin B and Lamellarin H. The efficient synthesis of γ-butyrolactone-fused pyrrole derivatives was also achieved.
Collapse
Affiliation(s)
- Takuma Watanabe
- Department of Chemistry, Faculty of Science Tokyo University of Science, 1-3 Kagurazaka Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | |
Collapse
|
46
|
Chung LH, Yeung CF, Shek HL, Wong CY. Isolation of a C3-metalated indolizine complex and a phosphonium ring-fused bicyclic metallafuran from the osmium-induced transformation of pyridine-tethered alkynes. Faraday Discuss 2019; 220:196-207. [PMID: 31517351 DOI: 10.1039/c9fd00048h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The first C3-metalated indolizine complex was prepared from the reaction between cis-[Os(dppm)2Cl2] (dppm = 1,1-bis(diphenylphosphino)methane) and propargylic pyridine, HC[triple bond, length as m-dash]CC(OH)(2-py)2. A phosphonium ring-fused bicyclic osmafuran complex was also prepared from the reaction between cis-[Os(dppm)2Cl2] and pyridyl ynone, HC[triple bond, length as m-dash]C(C[double bond, length as m-dash]O)(2-py). The formation of these two products revealed the intermediacy of metal-vinylidene species regarding [Os(dppm)2Cl]+-mediated alkyne transformations. Comparison of the d6 transition-metal precursors employed to activate HC[triple bond, length as m-dash]CC(OH)(2-py)2 suggests that precursors with higher π-basicity favor the vinylidene-involving pathway.
Collapse
Affiliation(s)
- Lai-Hon Chung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | | | | | | |
Collapse
|
47
|
Song L, Feng Q, Wang Y, Ding S, Wu YD, Zhang X, Chung LW, Sun J. Ru-Catalyzed Migratory Geminal Semihydrogenation of Internal Alkynes to Terminal Olefins. J Am Chem Soc 2019; 141:17441-17451. [DOI: 10.1021/jacs.9b09658] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lijuan Song
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Qiang Feng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yong Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Shengtao Ding
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- College of Chemistry, Peking University, Beijing 100871, China
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Lung Wa Chung
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
48
|
Murai M, Takai K. Rhenium-Catalyzed Cyclization via 1,2-Iodine and 1,5-Hydrogen Migration for the Synthesis of 2-Iodo-1H-indenes. Org Lett 2019; 21:6756-6760. [DOI: 10.1021/acs.orglett.9b02380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Masahito Murai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
49
|
Rong MG, Qin TZ, Zi W. Rhenium-Catalyzed Intramolecular Carboalkoxylation and Carboamination of Alkynes for the Synthesis of C3-Substituted Benzofurans and Indoles. Org Lett 2019; 21:5421-5425. [DOI: 10.1021/acs.orglett.9b01619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ming-Guang Rong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tian-Zhu Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
50
|
Cao Z, Zhu JB, Wang L, Liao S, Tang Y. A Synthesis of Multifunctionalized Indoles from [3 + 2] Annulation of 2-Bromocyclopropenes with Anilines. Org Lett 2019; 21:4097-4100. [DOI: 10.1021/acs.orglett.9b01276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhu Cao
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Jian-Bo Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Lijia Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Saihu Liao
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|