1
|
Singh A, Arango JC, Shi A, d’Aliberti JB, Claridge SA. Surface-Templated Glycopolymer Nanopatterns Transferred to Hydrogels for Designed Multivalent Carbohydrate-Lectin Interactions across Length Scales. J Am Chem Soc 2023; 145:1668-1677. [PMID: 36640106 PMCID: PMC9881003 DOI: 10.1021/jacs.2c09937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Multivalent interactions between carbohydrates and proteins enable a broad range of selective chemical processes of critical biological importance. Such interactions can extend from the macromolecular scale (1-10 nm) up to much larger scales across a cell or tissue, placing substantial demands on chemically patterned materials aiming to leverage similar interactions in vitro. Here, we show that diyne amphiphiles with carbohydrate headgroups can be assembled on highly oriented pyrolytic graphite (HOPG) to generate nanometer-resolution carbohydrate patterns, with individual linear carbohydrate assemblies up to nearly 1 μm, and microscale geometric patterns. These are then photopolymerized and covalently transferred to the surfaces of hydrogels. This strategy suspends carbohydrate patterns on a relatively rigid polydiacetylene (persistence length ∼ 16 nm), exposed at the top surface of the hydrogel above the bulk pore structure. Transferred patterns of appropriate carbohydrates (e.g., N-acetyl-d-glucosamine, GlcNAc) enable selective, multivalent interactions (KD ∼ 40 nM) with wheat germ agglutinin (WGA), a model lectin that exhibits multivalent binding with appropriately spaced GlcNAc moieties. WGA binding affinity can be further improved (KD ∼ 10 nM) using diacetylenes that shift the polymer backbone closer to the displayed carbohydrate, suggesting that this strategy can be used to modulate carbohydrate presentation at interfaces. Conversely, GlcNAc-patterned surfaces do not induce specific binding of concanavalin A, and surfaces patterned with glucuronic acid, or with simple carboxylic acid or hydroxyl groups, do not induce WGA binding. More broadly, this approach may have utility in designing synthetic glycan-mimetic interfaces with features from molecular to mesoscopic scales, including soft scaffolds for cells.
Collapse
Affiliation(s)
- Anamika Singh
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Juan C. Arango
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Anni Shi
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Joseph B. d’Aliberti
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Shelley A. Claridge
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States,Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana47907, United States,. Phone: 765-494-6070
| |
Collapse
|
2
|
Arango JC, Williams LO, Shi A, Singh A, Nava EK, Fisher RV, Garfield JA, Claridge SA. Nanostructured Surface Functionalization of Polyacrylamide Hydrogels Below the Length Scale of Hydrogel Heterogeneity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43937-43945. [PMID: 36103382 DOI: 10.1021/acsami.2c12034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels are broadly used in applications where polymer materials must interface with biology. The hydrogel network is amorphous, with substantial heterogeneity on length scales up to hundreds of nanometers, in some cases raising challenges for applications that would benefit from highly structured interactions with biomolecules. Here, we show that it is possible to generate ordered patterns of functional groups on polyacrylamide hydrogel surfaces. We demonstrate that, when linear patterns of amines are transferred to polyacrylamide, they pattern interactions with DNA at the interface, a capability of potential importance for preconcentration in chromatographic applications, as well as for the development of nanostructured hybrid materials and supports for cell culture.
Collapse
Affiliation(s)
- Juan C Arango
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Laura O Williams
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anamika Singh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emmanuel K Nava
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Racheal V Fisher
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Joseph A Garfield
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Singh A, Shi A, Claridge SA. Nanometer-scale patterning of hard and soft interfaces: from photolithography to molecular-scale design. Chem Commun (Camb) 2022; 58:13059-13070. [DOI: 10.1039/d2cc05221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many areas of modern materials chemistry, from nanoscale electronics to regenerative medicine, require design of precisely-controlled chemical environments at near-molecular scales on both hard and soft surfaces.
Collapse
Affiliation(s)
- Anamika Singh
- Purdue University, Chemistry, West Lafayette, Indiana, USA
| | - Anni Shi
- Purdue University, Chemistry, West Lafayette, Indiana, USA
| | - Shelley A. Claridge
- Purdue University, Chemistry and Biomedical Engineering, 560 Oval Drive, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Shi A, Villarreal TA, Singh A, Hayes TR, Davis TC, Brooks JT, Claridge SA. Plenty of Room at the Top: A Multi‐Scale Understanding of nm‐Resolution Polymer Patterning on 2D Materials. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anni Shi
- Department of Chemistry Purdue University West Lafayette IN USA
| | | | - Anamika Singh
- Department of Chemistry Purdue University West Lafayette IN USA
| | - Tyler R. Hayes
- Department of Chemistry Purdue University West Lafayette IN USA
| | - Tyson C. Davis
- Department of Chemistry Purdue University West Lafayette IN USA
| | - Jacob T. Brooks
- Department of Chemistry Purdue University West Lafayette IN USA
| | - Shelley A. Claridge
- Department of Chemistry Purdue University West Lafayette IN USA
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
| |
Collapse
|
5
|
Shi A, Villarreal TA, Singh A, Hayes TR, Davis TC, Brooks JT, Claridge SA. Plenty of Room at the Top: A Multi-Scale Understanding of nm-Resolution Polymer Patterning on 2D Materials. Angew Chem Int Ed Engl 2021; 60:25436-25444. [PMID: 34549520 DOI: 10.1002/anie.202110517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/19/2021] [Indexed: 11/06/2022]
Abstract
Lamellar phases of alkyldiacetylenes in which the alkyl chains lie parallel to the substrate represent a straightforward means for scalable 1-nm-resolution interfacial patterning. This capability has the potential for substantial impacts in nanoscale electronics, energy conversion, and biomaterials design. Polymerization is required to set the 1-nm functional patterns embedded in the monolayer, making it important to understand structure-function relationships for these on-surface reactions. Polymerization can be observed for certain monomers at the single-polymer scale using scanning probe microscopy. However, substantial restrictions on the systems that can be effectively characterized have limited utility. Here, using a new multi-scale approach, we identify a large, previously unreported difference in polymerization efficiency between the two most widely used commercial diynoic acids. We further identify a core design principle for maximizing polymerization efficiency in these on-surface reactions, generating a new monomer that also exhibits enhanced polymerization efficiency.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Anamika Singh
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Tyler R Hayes
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Tyson C Davis
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Jacob T Brooks
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
6
|
Abstract
The evolution of lipids in nanoscience exemplifies the powerful coupling of advances in science and technology. Here, we describe two waves of discovery and innovation in lipid materials: one historical and one still building. The first wave leveraged the relatively simple capability for lipids to orient at interfaces, building layers of functional groups. This simple form of building with atoms yielded a stunning range of technologies: lubricant additives that dramatically extended machine lifetimes, molecules that enabled selective ore extraction in mining, and soaps that improved human health. It also set the stage for many areas of modern nanoscience. The second wave of lipid materials, still growing, uses the more complex toolkits lipids offer for building with atoms, including controlling atomic environment to control function (e.g., pKa tuning) and the generation of more arbitrary two-dimensional and three-dimensional structures, including lipid nanoparticles for COVID-19 mRNA vaccines.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Lang EN, Porter AG, Ouyang T, Shi A, Hayes TR, Davis TC, Claridge SA. Oleylamine Impurities Regulate Temperature-Dependent Hierarchical Assembly of Ultranarrow Gold Nanowires on Biotemplated Interfaces. ACS NANO 2021; 15:10275-10285. [PMID: 33998802 DOI: 10.1021/acsnano.1c02414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanocrystals are often synthesized using technical grade reagents such as oleylamine (OLAm), which contains a blend of 9-cis-octadeceneamine with trans-unsaturated and saturated amines. Here, we show that gold nanowires (AuNWs) synthesized with OLAm ligands undergo thermal transitions in interfacial assembly (ribbon vs. nematic); transition temperatures vary widely with the batch of OLAm used for synthesis. Mass spectra reveal that higher-temperature AuNW assembly transitions are correlated with an increased abundance of trans and saturated chains in certain blends. DSC thermograms show that both pure (synthesized) and technical-grade OLAm have primary melting transitions near -5 °C (20-30 °C lower than the literature melting temperature range of OLAm). A second, broader melting transition (in the previous reported melting range) appears in technical grade blends; its temperature varies with the abundance of trans and saturated chains. Our findings illustrate that, similar to biological membranes, blends of alkyl chains can be used to generate mesoscopic hierarchical nanocrystal assembly, particularly at interfaces that further modulate transition temperatures.
Collapse
Affiliation(s)
- Erin N Lang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashlin G Porter
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tianhong Ouyang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tyler R Hayes
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tyson C Davis
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Khazi MI, Balachandra C, Shin G, Jang GH, Govindaraju T, Kim JM. Co-solvent polarity tuned thermochromic nanotubes of cyclic dipeptide-polydiacetylene supramolecular system. RSC Adv 2020; 10:35389-35396. [PMID: 35515666 PMCID: PMC9056892 DOI: 10.1039/d0ra05656a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022] Open
Abstract
The cooperative non-covalent interactions arising from structurally integrated multiple molecules have emerged as a powerful tool for the creation of functional supramolecular structures. Herein, we constructed cyclic dipeptide (CDP)–polydiacetylene (PDA) conjugate (CDP–DA) by introducing cyclo(l-Phe-l-Lys) to the linear 10,12-pentacosadiynoic acid. Owing to extensive hydrogen bonding characteristics, together with structural chirality of cyclo(l-Phe-l-Lys) and strong π–π stacking diacetylenic template, CDP–DA generated supramolecular nanotubes. The structural visualization using scanning and transmission electron microscopy revealed chloroform/methanol co-solvent polarity tuned morphological transformation of intrinsic lamellar assemblies into nanotubes comprising single-wall and multi-wall structure. The mechanistic understanding by X-ray diffraction patterns confirms bilayer organization in lamellar structure, which forms nanotubes via a gradual lamellar curling-to-scrolling process. The supramolecular CDP–DA nanotubes are transformed into the rigid covalently cross-linked blue-phase polydiacetylene (CDP–PDA) by UV irradiation. Very interestingly, the blue-phase nanotubes display reversible thermochromic changing temperature up to 150 °C with excellent repeatability over a dozen thermal cycles. This work provides an efficient strategy for precise morphological control and aiding the perspective for development in nanostructures for functional devices. Co-solvent controlled fabrication of thermo-responsive chromogenic nanotubes of a cyclic dipeptide–polydiacetylene supramolecular system.![]()
Collapse
Affiliation(s)
| | - Chenikkayala Balachandra
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Geon Shin
- Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| | - Gang-Hee Jang
- Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Jong-Man Kim
- Institute of Nano Science and Technology, Hanyang University Seoul 04763 Korea .,Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| |
Collapse
|
9
|
Hayes TR, Lang EN, Shi A, Claridge SA. Large-Scale Noncovalent Functionalization of 2D Materials through Thermally Controlled Rotary Langmuir-Schaefer Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10577-10586. [PMID: 32852207 DOI: 10.1021/acs.langmuir.0c01914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As two-dimensional (2D) materials are more broadly utilized as components of hybrid materials, controlling their surface chemistry over large areas through noncovalent functionalization becomes increasingly important. Here, we demonstrate a thermally controlled rotary transfer stage that allows areas of a 2D material to be continuously cycled into contact with a Langmuir film. This approach enables functionalization of large areas of the 2D material and simultaneously improves long-range ordering, achieving ordered domain areas up to nearly 10 000 μm2. To highlight the layer-by-layer processing capability of the rotary transfer stage, large-area noncovalently adsorbed monolayer films from an initial rotary cycle were used as templates to assemble ultranarrow gold nanowires from solution. The process we demonstrate would be readily extensible to roll-to-roll processing, addressing a longstanding challenge in scaling Langmuir-Schaefer transfer for practical applications.
Collapse
Affiliation(s)
- Tyler R Hayes
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Erin N Lang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Porter AG, Ouyang T, Hayes TR, Biechele-Speziale J, Russell SR, Claridge SA. 1-nm-Wide Hydrated Dipole Arrays Regulate AuNW Assembly on Striped Monolayers in Nonpolar Solvent. Chem 2019. [DOI: 10.1016/j.chempr.2019.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Davis TC, Bechtold JO, Hayes TR, Villarreal TA, Claridge SA. Hierarchically patterned striped phases of polymerized lipids: toward controlled carbohydrate presentation at interfaces. Faraday Discuss 2019; 219:229-243. [PMID: 31298259 DOI: 10.1039/c9fd00022d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microcontact printing can be used to generate well-defined microscopic areas of striped phases of both single-chain and dual-chain amphiphiles.
Collapse
Affiliation(s)
- Tyson C. Davis
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | | | - Tyler R. Hayes
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | | | - Shelley A. Claridge
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
- Weldon School of Biomedical Engineering
| |
Collapse
|
12
|
Khanantong C, Charoenthai N, Phuangkaew T, Kielar F, Traiphol N, Traiphol R. Phase transition, structure and color-transition behaviors of monocarboxylic diacetylene and polydiacetylene assemblies: The opposite effects of alkyl chain length. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.081] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Chen SL, Zhu XF, Yang FY, Pan XC, Gan W, Yuan QH. Order-Disorder transition of carboxyl terminated chains in polydiacetylenes vesicles probed by second harmonic generation and two-photon fluorescence. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1712238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shun-li Chen
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xue-feng Zhu
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Fang-yuan Yang
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xue-cong Pan
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Wei Gan
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
- School of Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qun-hui Yuan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
14
|
Bang JJ, Porter AG, Davis TC, Hayes TR, Claridge SA. Spatially Controlled Noncovalent Functionalization of 2D Materials Based on Molecular Architecture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5454-5463. [PMID: 29708753 DOI: 10.1021/acs.langmuir.8b00553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymerizable amphiphiles can be assembled into lying-down phases on 2D materials such as graphite and graphene to create chemically orthogonal surface patterns at 5-10 nm scales, locally modulating functionality of the 2D basal plane. Functionalization can be carried out through Langmuir-Schaefer conversion, in which a subset of molecules is transferred out of a standing phase film on water onto the 2D substrate. Here, we leverage differences in molecular structure to spatially control transfer at both nanoscopic and microscopic scales. We compare transfer properties of five different single- and dual-chain amphiphiles, demonstrating that those with strong lateral interactions (e.g., hydrogen-bonding networks) exhibit the lowest transfer efficiencies. Since molecular structures also influence microscopic domain morphologies in Langmuir films, we show that it is possible to transfer such microscale patterns, taking advantage of variations in the local transfer rates based on the structural heterogeneity in Langmuir films. Nanoscale domain morphologies also vary in ways that are consistent with predicted relative transfer and diffusion rates. These results suggest strategies to tailor noncovalent functionalization of 2D substrates through controlled LS transfer.
Collapse
|
15
|
Davis TC, Bang JJ, Brooks JT, McMillan DG, Claridge SA. Hierarchically Patterned Noncovalent Functionalization of 2D Materials by Controlled Langmuir-Schaefer Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1353-1362. [PMID: 29341626 DOI: 10.1021/acs.langmuir.7b03845] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Noncovalent monolayer chemistries are often used to functionalize 2D materials. Nanoscopic ligand ordering has been widely demonstrated (e.g., lying-down lamellar phases of functional alkanes); however, combining this control with micro- and macroscopic patterning for practical applications remains a significant challenge. A few reports have demonstrated that standing phase Langmuir films on water can be converted into nanoscopic lying-down molecular domains on 2D substrates (e.g., graphite), using horizontal dipping (Langmuir-Schaefer, LS, transfer). Molecular patterns are known to form at scales up to millimeters in Langmuir films, suggesting the possibility of transforming such structures into functional patterns on 2D materials. However, to our knowledge, this approach has not been investigated, and the rules governing LS conversion are not well understood. In part, this is because the conversion process is mechanistically very different from classic LS transfer of standing phases; challenges also arise due to the need to characterize structure in noncovalently adsorbed ligand layers <0.5 nm thick, at scales ranging from millimeters to nanometers. Here, we show that scanning electron microscopy enables diynoic acid lying-down phases to be imaged across this range of scales; using this structural information, we establish conditions for LS conversion to create hierarchical microscopic and nanoscopic functional patterns. Such control opens the door to tailoring noncovalent surface chemistry of 2D materials to pattern local interactions with the environment.
Collapse
Affiliation(s)
- Tyson C Davis
- Department of Chemistry, ‡Bechtel Innovation Design Center, and §Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Jae Jin Bang
- Department of Chemistry, ‡Bechtel Innovation Design Center, and §Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Jacob T Brooks
- Department of Chemistry, ‡Bechtel Innovation Design Center, and §Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - David G McMillan
- Department of Chemistry, ‡Bechtel Innovation Design Center, and §Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, ‡Bechtel Innovation Design Center, and §Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Claridge SA. Standing, lying, and sitting: translating building principles of the cell membrane to synthetic 2D material interfaces. Chem Commun (Camb) 2018; 54:6681-6691. [DOI: 10.1039/c8cc02596g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lessons can be drawn from cell membranes in controlling noncovalent functionalization of 2D materials to optimize interactions with the environment.
Collapse
Affiliation(s)
- S. A. Claridge
- Department of Chemistry and Weldon School of Biomedical Engineering
- Purdue University
- West Lafayette
- USA
| |
Collapse
|
17
|
Hayes TR, Bang JJ, Davis TC, Peterson CF, McMillan DG, Claridge SA. Multimicrometer Noncovalent Monolayer Domains on Layered Materials through Thermally Controlled Langmuir-Schaefer Conversion for Noncovalent 2D Functionalization. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36409-36416. [PMID: 28990761 DOI: 10.1021/acsami.7b11683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As functionalized 2D materials are incorporated into hybrid materials, ensuring large-area structural control in noncovalently adsorbed films becomes increasingly important. Noncovalent functionalization avoids disrupting electronic structure in 2D materials; however, relatively weak molecular interactions in such monolayers typically reduce stability toward solution processing and other common material handling conditions. Here, we find that controlling substrate temperature during Langmuir-Schaefer conversion of a standing phase monolayer of diynoic amphiphiles on water to a horizontally oriented monolayer on a 2D substrate routinely produces multimicrometer domains, at least an order of magnitude larger than those typically achieved through drop-casting. Following polymerization, these highly ordered monolayers retain their structures during vigorous washing with solvents including water, ethanol, tetrahydrofuran, and toluene. These findings point to a convenient and broadly applicable strategy for noncovalent functionalization of 2D materials in applications that require large-area structural control, for instance, to minimize desorption at defects during subsequent solution processing.
Collapse
Affiliation(s)
- Tyler R Hayes
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Jae Jin Bang
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Tyson C Davis
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Caroline F Peterson
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - David G McMillan
- Bechtel Innovation Design Center, Purdue University , West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|