1
|
Campuzano S, Barderas R, Moreno-Casbas MT, Almeida Á, Pingarrón JM. Pursuing precision in medicine and nutrition: the rise of electrochemical biosensing at the molecular level. Anal Bioanal Chem 2024; 416:2151-2172. [PMID: 37420009 PMCID: PMC10951035 DOI: 10.1007/s00216-023-04805-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
In the era that we seek personalization in material things, it is becoming increasingly clear that the individualized management of medicine and nutrition plays a key role in life expectancy and quality of life, allowing participation to some extent in our welfare and the use of societal resources in a rationale and equitable way. The implementation of precision medicine and nutrition are highly complex challenges which depend on the development of new technologies able to meet important requirements in terms of cost, simplicity, and versatility, and to determine both individually and simultaneously, almost in real time and with the required sensitivity and reliability, molecular markers of different omics levels in biofluids extracted, secreted (either naturally or stimulated), or circulating in the body. Relying on representative and pioneering examples, this review article critically discusses recent advances driving the position of electrochemical bioplatforms as one of the winning horses for the implementation of suitable tools for advanced diagnostics, therapy, and precision nutrition. In addition to a critical overview of the state of the art, including groundbreaking applications and challenges ahead, the article concludes with a personal vision of the imminent roadmap.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Rodrigo Barderas
- UFIEC, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Maria Teresa Moreno-Casbas
- Nursing and Healthcare Research Unit (Investén-isciii), Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángeles Almeida
- Instituto de Biología Funcional y Genómica, CSIC, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
2
|
Watkins Z, McHenry A, Heikenfeld J. Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:223-282. [PMID: 38273210 DOI: 10.1007/10_2023_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Adam McHenry
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
3
|
Wang Y, Jie H, Ye H, Zhang Y, Li N, Zhuang J. Methylene Blue-Stained Single-Stranded DNA Aptamers as a Highly Efficient Electronic Switch for Quasi-Reagentless Exosomes Detection: An Old Dog with New Tricks. Anal Chem 2023; 95:18166-18173. [PMID: 38037816 DOI: 10.1021/acs.analchem.3c03715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Improving the convenience, sensitivity, and cost-effectiveness of electrochemical biosensors is crucial for advancing their clinical diagnostic applications. Herein, we presented an elegant approach to construct electrochemical aptasensors for tumor-derived exosome detection by harnessing the alterable interaction between methylene blue (MB) and DNA aptamer. In detail, the anti-EpCAM aptamer, named SYL3C, was found to exhibit a strong affinity toward MB due to the specific interaction between MB and unbound guanine bases. Thereby, SYL3C could be stained with MB to arouse a strong electrochemical signal on a gold electrode (AuE). Upon binding to EpCAM-positive exosomes, SYL3C underwent a conformational transformation. The resulting conformation, or exosomes-SYL3C complex, not only reduced the accumulation of MB on SYL3C by obstructing the accessibility of guanines to MB but also impeded the transfer of electrons from the bound MB to AuE, leading to a notable decrease in the electrochemical signal. Using MB-stained SYL3C as an electronic switch, an electrochemical aptasensor was readily established for the detection of EpCAM-positive exosome detection. Without the need for signal amplification strategies, expensive auxiliary reagents, and complex operation, this unique signal transduction mechanism alone could endow the aptasensor with ultrahigh sensitivity. A limit of detection (LOD) of 234 particles mL-1 was achieved, surpassing the performance of most reported methods. As a proof of concept, the aptasensor was applied to analyze clinical serum samples and effectively distinguish non-small-cell lung cancer (NSCLC) patients from healthy individuals. As EpCAM exhibits broad expression in exosomes derived from different tumor sources, the developed aptasensor holds promise for diagnosing other tumor types.
Collapse
Affiliation(s)
- Yanhong Wang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Han Jie
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Huajuan Ye
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yuanyuan Zhang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ning Li
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, China
| | - Junyang Zhuang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
4
|
Thompson IA, Saunders J, Zheng L, Hariri AA, Maganzini N, Cartwright AP, Pan J, Yee S, Dory C, Eisenstein M, Vuckovic J, Soh HT. An antibody-based molecular switch for continuous small-molecule biosensing. SCIENCE ADVANCES 2023; 9:eadh4978. [PMID: 37738337 PMCID: PMC10516488 DOI: 10.1126/sciadv.adh4978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Abstract
We present a generalizable approach for designing biosensors that can continuously detect small-molecule biomarkers in real time and without sample preparation. This is achieved by converting existing antibodies into target-responsive "antibody-switches" that enable continuous optical biosensing. To engineer these switches, antibodies are linked to a molecular competitor through a DNA scaffold, such that competitive target binding induces scaffold switching and fluorescent signaling of changing target concentrations. As a demonstration, we designed antibody-switches that achieve rapid, sample preparation-free sensing of digoxigenin and cortisol in undiluted plasma. We showed that, by substituting the molecular competitor, we can further modulate the sensitivity of our cortisol switch to achieve detection at concentrations spanning 3.3 nanomolar to 3.3 millimolar. Last, we integrated this switch with a fiber optic sensor to achieve continuous sensing of cortisol in a buffer and blood with <5-min time resolution. We believe that this modular sensor design can enable continuous biosensor development for many biomarkers.
Collapse
Affiliation(s)
- Ian A.P. Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jason Saunders
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Liwei Zheng
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Amani A. Hariri
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Nicolò Maganzini
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alyssa P. Cartwright
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jing Pan
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Steven Yee
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Constantin Dory
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Jelena Vuckovic
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
6
|
Flynn CD, Chang D, Mahmud A, Yousefi H, Das J, Riordan KT, Sargent EH, Kelley SO. Biomolecular sensors for advanced physiological monitoring. NATURE REVIEWS BIOENGINEERING 2023; 1:1-16. [PMID: 37359771 PMCID: PMC10173248 DOI: 10.1038/s44222-023-00067-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/28/2023]
Abstract
Body-based biomolecular sensing systems, including wearable, implantable and consumable sensors allow comprehensive health-related monitoring. Glucose sensors have long dominated wearable bioanalysis applications owing to their robust continuous detection of glucose, which has not yet been achieved for other biomarkers. However, access to diverse biological fluids and the development of reagentless sensing approaches may enable the design of body-based sensing systems for various analytes. Importantly, enhancing the selectivity and sensitivity of biomolecular sensors is essential for biomarker detection in complex physiological conditions. In this Review, we discuss approaches for the signal amplification of biomolecular sensors, including techniques to overcome Debye and mass transport limitations, and selectivity improvement, such as the integration of artificial affinity recognition elements. We highlight reagentless sensing approaches that can enable sequential real-time measurements, for example, the implementation of thin-film transistors in wearable devices. In addition to sensor construction, careful consideration of physical, psychological and security concerns related to body-based sensor integration is required to ensure that the transition from the laboratory to the human body is as seamless as possible.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Dingran Chang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
| | - Alam Mahmud
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
| | - Hanie Yousefi
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Jagotamoy Das
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Kimberly T. Riordan
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Edward H. Sargent
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
- Department of Electrical and Computer Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Shana O. Kelley
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL USA
| |
Collapse
|
7
|
M Silva S, Langley DP, Cossins LR, Samudra AN, Quigley AF, Kapsa RMI, Tothill RW, Greene GW, Moulton SE. Rapid Point-of-Care Electrochemical Sensor for the Detection of Cancer Tn Antigen Carbohydrate in Whole Unprocessed Blood. ACS Sens 2022; 7:3379-3388. [PMID: 36374944 DOI: 10.1021/acssensors.2c01460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Improving outcomes for cancer patients during treatment and monitoring for cancer recurrence requires personalized care which can only be achieved through regular surveillance for biomarkers. Unfortunately, routine detection for blood-based biomarkers is cost-prohibitive using currently specialized laboratories. Using a rapid self-assembly sensing interface amenable to methods of mass production, we demonstrate the ability to detect and quantify a small carbohydrate-based cancer biomarker, Tn antigen (αGalNAc-Ser/Thr) in a small volume of blood, using a test format strip reminiscent of a blood glucose test. The detection of Tn antigen at picomolar levels is achieved through a new transduction mechanism based on the impact of Tn antigen interactions on the molecular dynamic motion of a lectin cross-linked lubricin antifouling brush. In tests performed on retrospective blood plasma samples from patients presenting three different tumor types, differentiation between healthy and diseased patients was achieved, highlighting the clinical potential for cancer monitoring.
Collapse
Affiliation(s)
- Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn3122, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn3122, Victoria, Australia
| | | | | | | | - Anita F Quigley
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne3001, Victoria, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne3065, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia
| | - Robert M I Kapsa
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne3001, Victoria, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne3065, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia
| | - Richard W Tothill
- Peter MacCallum Cancer Centre, Department of Clinical Pathology, University of Melbourne, Melbourne3010, Victoria, Australia
| | - George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Waurn Ponds3216, Victoria, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn3122, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn3122, Victoria, Australia
| |
Collapse
|
8
|
Radwan O, Brothers MC, Coyle V, Chapleau ME, Chapleau RR, Kim SS, Ruiz ON. Electrochemical biosensor for rapid detection of fungal contamination in fuel systems. Biosens Bioelectron 2022; 211:114374. [DOI: 10.1016/j.bios.2022.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
|
9
|
Imran A, Moyer BS, Wolfe AJ, Cosgrove MS, Makarov DE, Movileanu L. Interplay of Affinity and Surface Tethering in Protein Recognition. J Phys Chem Lett 2022; 13:4021-4028. [PMID: 35485934 PMCID: PMC9106920 DOI: 10.1021/acs.jpclett.2c00621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/27/2022] [Indexed: 05/10/2023]
Abstract
Surface-tethered ligand-receptor complexes are key components in biological signaling and adhesion. They also find increasing utility in single-molecule assays and biotechnological applications. Here, we study the real-time binding kinetics between various surface-immobilized peptide ligands and their unrestrained receptors. A long peptide tether increases the association of ligand-receptor complexes, experimentally proving the fly casting mechanism where the disorder accelerates protein recognition. On the other hand, a short peptide tether enhances the complex dissociation. Notably, the rate constants measured for the same receptor, but under different spatial constraints, are strongly correlated to one another. Furthermore, this correlation can be used to predict how surface tethering on a ligand-receptor complex alters its binding kinetics. Our results have immediate implications in the broad areas of biomolecular recognition, intrinsically disordered proteins, and biosensor technology.
Collapse
Affiliation(s)
- Ali Imran
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Brandon S. Moyer
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Aaron J. Wolfe
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
| | - Michael S. Cosgrove
- Department
of Biochemistry and Molecular Biology, State
University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving
Avenue, Syracuse, New York 13210, United States
| | - Dmitrii E. Makarov
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Oden
Institute
for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
- The BioInspired
Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
10
|
López-Laguna H, Voltà-Durán E, Parladé E, Villaverde A, Vázquez E, Unzueta U. Insights on the emerging biotechnology of histidine-rich peptides. Biotechnol Adv 2021; 54:107817. [PMID: 34418503 DOI: 10.1016/j.biotechadv.2021.107817] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
In the late 70's, the discovery of the restriction enzymes made possible the biological production of functional proteins by recombinant DNA technologies, a fact that largely empowered both biotechnological and pharmaceutical industries. Short peptides or small protein domains, with specific molecular affinities, were developed as purification tags in downstream processes to separate the target protein from the culture media or cell debris, upon breaking the producing cells. Among these tags, and by exploiting the interactivity of the imidazole ring of histidine residues, the hexahistidine peptide (H6) became a gold standard. Although initially used almost exclusively in protein production, H6 and related His-rich peptides are progressively proving a broad applicability in novel utilities including enzymatic processes, advanced drug delivery systems and diagnosis, through a so far unsuspected adaptation of their binding capabilities. In this context, the coordination of histidine residues and metals confers intriguing functionalities to His-rich sequences useable in the forward-thinking design of protein-based nano- and micro-materials and devices, through strategies that are comprehensively presented here.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain.
| |
Collapse
|
11
|
Liu G. Grand Challenges in Biosensors and Biomolecular Electronics. Front Bioeng Biotechnol 2021; 9:707615. [PMID: 34422782 PMCID: PMC8377753 DOI: 10.3389/fbioe.2021.707615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
12
|
Kanso H, Ben Jrad A, Inguimbert N, Rammal W, Philouze C, Thomas F, Noguer T, Calas-Blanchard C. Synthesis and Characterization of Bis-1,2,3-Triazole Ligand and its Corresponding Copper Complex for the Development of Electrochemical Affinity Biosensors. Chemistry 2021; 27:9580-9588. [PMID: 33822403 DOI: 10.1002/chem.202100250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 12/11/2022]
Abstract
The bis-triazole ligand and its corresponding copper complexes were synthesized and characterized for the first time and proposed as new labels for the development of electrochemical aptasensors. The bis-triazole ligand was prepared from methyl 1,6-heptadiyne-4-carboxylate and 2-(azidomethyl)phenol using classical CuAAC in presence of different copper salts. The X-ray structure of bis-triazole showed a symmetry center (C1). UV-Vis and X-band EPR spectra showed that the coordination capacity of the bis-triazole ligand was improved in the presence of triethylamine due to deprotonation of the triazole and phenolate moieties. After complexation with copper, the obtained complex was successfully attached to an anti-estradiol aptamer through thiol-maleimide coupling, and the resulting labelled aptamer was immobilized on a carbon screen-printed electrode by carbodiimide coupling. The electrochemical response of the resulting sensor was shown to decrease in the presence of estradiol, demonstrating that the developed complexes can be applied for the development of aptasensors.
Collapse
Affiliation(s)
- Hussein Kanso
- Biocapteurs-Analyses-Environnement, Université de Perpignan Via Domitia, 66860, Perpignan, France.,Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France.,Faculté de Médecine Dentaire, Université Libanaise, Campus Rafic Hariri, Hadath, Liban
| | - Amani Ben Jrad
- Biocapteurs-Analyses-Environnement, Université de Perpignan Via Domitia, 66860, Perpignan, France.,Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | - Nicolas Inguimbert
- Centre de Recherche Insulaire et Observatoire de l'Environnement (CRIOBE), USR CNRS 3278, Université de Perpignan Via Domitia, Bâtiment T, 58 avenue P. Alduy, 66860, Perpignan, France
| | - Wassim Rammal
- Faculté des Sciences, Université Libanaise Section V, Nabatieh, Liban
| | - Christian Philouze
- Département de Chimie Moléculaire, UMR-5250 CNRS, Université de Grenoble Alpes, B.P. 53, 38041, Grenoble Cedex 9, France
| | - Fabrice Thomas
- Département de Chimie Moléculaire, UMR-5250 CNRS, Université de Grenoble Alpes, B.P. 53, 38041, Grenoble Cedex 9, France
| | - Thierry Noguer
- Biocapteurs-Analyses-Environnement, Université de Perpignan Via Domitia, 66860, Perpignan, France.,Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | - Carole Calas-Blanchard
- Biocapteurs-Analyses-Environnement, Université de Perpignan Via Domitia, 66860, Perpignan, France.,Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| |
Collapse
|
13
|
Reagentless biomolecular analysis using a molecular pendulum. Nat Chem 2021; 13:428-434. [PMID: 33686229 DOI: 10.1038/s41557-021-00644-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
The development of reagentless sensors that can detect molecular analytes in biological fluids could enable a broad range of applications in personalized health monitoring. However, only a limited set of molecular inputs can currently be detected using reagentless sensors. Here, we report a sensing mechanism that is compatible with the analysis of proteins that are important physiological markers of stress, allergy, cardiovascular health, inflammation and cancer. The sensing method is based on the motion of an inverted molecular pendulum that exhibits field-induced transport modulated by the presence of a bound analyte. We measure the sensor's electric field-mediated transport using the electron-transfer kinetics of an attached reporter molecule. Using time-resolved electrochemical measurements that enable unidirectional motion of our sensor, the presence of an analyte bound to our sensor complex can be tracked continuously in real time. We show that this sensing approach is compatible with making measurements in blood, saliva, urine, tears and sweat and that the sensors can collect data in situ in living animals.
Collapse
|
14
|
Clifford A, Das J, Yousefi H, Mahmud A, Chen JB, Kelley SO. Strategies for Biomolecular Analysis and Continuous Physiological Monitoring. J Am Chem Soc 2021; 143:5281-5294. [PMID: 33793215 DOI: 10.1021/jacs.0c13138] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Portable devices capable of rapid disease detection and health monitoring are crucial to decentralizing diagnostics from clinical laboratories to the patient point-of-need. Although technologies have been developed targeting this challenge, many require the use of reporter molecules or reagents that complicate the automation and autonomy of sensors. New work in the field has targeted reagentless approaches to enable breakthroughs that will allow personalized monitoring of a wide range of biomarkers on demand. This Perspective focuses on the ability of reagentless platforms to revolutionize the field of sensing by allowing rapid and real-time analysis in resource-poor settings. First, we will highlight advantages of reagentless sensing techniques, specifically electrochemical detection strategies. Advances in this field, including the development of wearable and in situ sensors capable of real-time monitoring of biomarkers such as nucleic acids, proteins, viral particles, bacteria, therapeutic agents, and metabolites, will be discussed. Reagentless platforms which allow for wash-free, calibration free-detection with increased dynamic range are highlighted as a key technological advance for autonomous sensing applications. Furthermore, we will highlight remaining challenges which must be overcome to enable widespread use of reagentless devices. Finally, future prospects and potential breakthroughs in precision medicine that will arise as a result of further development of reagentless sensing approaches are discussed.
Collapse
Affiliation(s)
- Amanda Clifford
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jagotamoy Das
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Hanie Yousefi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Alam Mahmud
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jenise B Chen
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shana O Kelley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
15
|
Li S, Wang Y, Zhang Z, Wang Y, Li H, Xia F. Exploring End-Group Effect of Alkanethiol Self-Assembled Monolayers on Electrochemical Aptamer-Based Sensors in Biological Fluids. Anal Chem 2021; 93:5849-5855. [PMID: 33787229 DOI: 10.1021/acs.analchem.1c00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The continuous, real-time monitoring of specific analytes in situ in biological fluids would provide personalized, high-precision pharmacokinetic information for the goal of precision medicine. Due to their conformationally linked signaling mechanism, electrochemical aptamer-based (E-AB) sensors are promising candidates for accurate measurements in such complex media. They suffer, however, from severe baseline drift when interrogated continuously and in real-time manner. In response, here, we investigate a couple of self-assembled monolayers in the application of E-AB sensors, achieving the improvement of their baseline stability and simultaneous modulation of sensor performance, e.g., target affinity and specificity.
Collapse
Affiliation(s)
- Shaoguang Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yuanyuan Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yiming Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
16
|
Glieberman AL, Pope BD, Melton DA, Parker KK. Building Biomimetic Potency Tests for Islet Transplantation. Diabetes 2021; 70:347-363. [PMID: 33472944 PMCID: PMC7881865 DOI: 10.2337/db20-0297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Diabetes is a disease of insulin insufficiency, requiring many to rely on exogenous insulin with constant monitoring to avoid a fatal outcome. Islet transplantation is a recent therapy that can provide insulin independence, but the procedure is still limited by both the availability of human islets and reliable tests to assess their function. While stem cell technologies are poised to fill the shortage of transplantable cells, better methods are still needed for predicting transplantation outcome. To ensure islet quality, we propose that the next generation of islet potency tests should be biomimetic systems that match glucose stimulation dynamics and cell microenvironmental preferences and rapidly assess conditional and continuous insulin secretion with minimal manual handing. Here, we review the current approaches for islet potency testing and outline technologies and methods that can be used to arrive at a more predictive potency test that tracks islet secretory capacity in a relevant context. With the development of potency tests that can report on islet secretion dynamics in a context relevant to their intended function, islet transplantation can expand into a more widely accessible and reliable treatment option for individuals with diabetes.
Collapse
Affiliation(s)
- Aaron L Glieberman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Benjamin D Pope
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Douglas A Melton
- Harvard Department of Stem Cell and Regenerative Biology, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| |
Collapse
|
17
|
Li S, Lin L, Chang X, Si Z, Plaxco KW, Khine M, Li H, Xia F. A wrinkled structure of gold film greatly improves the signaling of electrochemical aptamer-based biosensors. RSC Adv 2021; 11:671-677. [PMID: 35423693 PMCID: PMC8693351 DOI: 10.1039/d0ra09174j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023] Open
Abstract
Electrochemical aptamer-based (E-AB) sensors provide a great opportunity towards the goal of point-of-care and wearable sensing technologies due to their good sensitivity and selectivity. Nevertheless, the output signals from this sensor class remain low when sensors are interrogated via square-wave voltammetry. This low signaling limits the sensor's precision for its capability to detect small changes in target concentrations. To circumvent this, we proposed here the use of a readily shrink-induced, wrinkled Au-coating polyolefin film to immobilize a greater number of DNA probes and thus improve the signaling. Specifically, wrinkled gold film exhibits a 5.5-fold increase of surface area in comparison to the unwrinkled ones. Using these substrates we fabricated a set of E-AB sensors of three biological molecules, including kanamycin, doxorubicin and ATP. We achieved up to 10-fold increase in its current and also good accuracies within ±20% error in the target concentration range across 2 orders of magnitude. A wrinkled gold substrate greatly improves the signaling of electrochemical aptamer-based biosensors, achieving up to 10-fold increase in signals.![]()
Collapse
Affiliation(s)
- Shaoguang Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Lancy Lin
- Department of Biomedical Engineering
- University of California, Irvine
- Irvine
- USA
| | - Xueman Chang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Zhixiao Si
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry
- University of California Santa Barbara
- Santa Barbara
- USA
- Center for Bioengineering
| | - Michelle Khine
- Department of Biomedical Engineering
- University of California, Irvine
- Irvine
- USA
| | - Hui Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| |
Collapse
|
18
|
Piccoli JP, Soares AC, Oliveira ON, Cilli EM. Nanostructured functional peptide films and their application in C-reactive protein immunosensors. Bioelectrochemistry 2020; 138:107692. [PMID: 33291002 DOI: 10.1016/j.bioelechem.2020.107692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022]
Abstract
Peptides with an active redox molecule are incorporated into nanostructured films for electrochemical biosensors with stable and controllable physicochemical properties. In this study, we synthesized three ferrocene (Fc)-containing peptides with the sequence Fc-Glu-(Ala)n-Cys-NH2, which could form self-assembled monolayers on gold and be attached to antibodies. The peptide with two alanines (n = 2) yielded the immunosensor with the highest performance in detecting C-reactive protein (CRP), a biomarker of inflammation. Using electrochemical impedance-derived capacitive spectroscopy, the limit of detection was 240 pM with a dynamic range that included clinically relevant CRP concentrations. With a combination of electrochemical methods and polarization-modulated infrared reflection-absorption spectroscopy, we identified the chemical groups involved in the antibody-CRP interaction, and were able to relate the highest performance for the peptide with n = 2 to chain length and efficient packing in the organized films. These strategies to design peptides and methods to fabricate the immunosensors are generic, and can be applied to other types of biosensors, including in low cost platforms for point-of-care diagnostics.
Collapse
Affiliation(s)
- Julia P Piccoli
- São Carlos Institute of Physics, University of São Paulo, 13566-590 São Carlos - SP, Brazil
| | - Andrey C Soares
- São Carlos Institute of Physics, University of São Paulo, 13566-590 São Carlos - SP, Brazil; Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos - SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13566-590 São Carlos - SP, Brazil.
| | - Eduardo M Cilli
- Institute of Chemistry, São Paulo State University, 14800-060 Araraquara - SP, Brazil.
| |
Collapse
|
19
|
Campuzano S, Pedrero M, Gamella M, Serafín V, Yáñez-Sedeño P, Pingarrón JM. Beyond Sensitive and Selective Electrochemical Biosensors: Towards Continuous, Real-Time, Antibiofouling and Calibration-Free Devices. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3376. [PMID: 32560028 PMCID: PMC7348748 DOI: 10.3390/s20123376] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022]
Abstract
Nowadays, electrochemical biosensors are reliable analytical tools to determine a broad range of molecular analytes because of their simplicity, affordable cost, and compatibility with multiplexed and point-of-care strategies. There is an increasing demand to improve their sensitivity and selectivity, but also to provide electrochemical biosensors with important attributes such as near real-time and continuous monitoring in complex or denaturing media, or in vivo with minimal intervention to make them even more attractive and suitable for getting into the real world. Modification of biosensors surfaces with antibiofouling reagents, smart coupling with nanomaterials, and the advances experienced by folded-based biosensors have endowed bioelectroanalytical platforms with one or more of such attributes. With this background in mind, this review aims to give an updated and general overview of these technologies as well as to discuss the remarkable achievements arising from the development of electrochemical biosensors free of reagents, washing, or calibration steps, and/or with antifouling properties and the ability to perform continuous, real-time, and even in vivo operation in nearly autonomous way. The challenges to be faced and the next features that these devices may offer to continue impacting in fields closely related with essential aspects of people's safety and health are also commented upon.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (M.P.); (M.G.); (V.S.); (P.Y.-S.)
| | | | | | | | | | - José Manuel Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (M.P.); (M.G.); (V.S.); (P.Y.-S.)
| |
Collapse
|
20
|
Photoswitchable peptide-based ‘on-off’ biosensor for electrochemical detection and control of protein-protein interactions. Biosens Bioelectron 2018; 118:188-194. [DOI: 10.1016/j.bios.2018.07.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/24/2022]
|
21
|
|
22
|
Deng C, Zhang M, Liu C, Deng H, Huang Y, Yang M, Xiang J, Ren B. Electrostatic Force Triggering Elastic Condensation of Double-Stranded DNA for High-Performance One-Step Immunoassay. Anal Chem 2018; 90:11446-11452. [PMID: 30178657 DOI: 10.1021/acs.analchem.8b02556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current strategies for high-performance immunoassay generally require a sandwich structure for signal amplification. This strategy is limited to multivalent antigens and complicates the detection scheme. Herein we demonstrate a class of simple one-step ultrasensitive immunoassay with the adoption of double-stranded DNA (dsDNA) as "conductive spring" to bridge the electrode and redox-reporter/antibody-receptor comodified gold nanoparticles (AbFc@AuNPs). Upon biorecognition between antigen and antibody, the charge of the AuNPs changes, enhancing the electrostatic interaction between the AuNPs and Au electrode surface, and condensing the dsDNA chain. For the first time, the sensitive response of the electrochemical redox current to the DNA chain length is utilized to achieve an ultrahigh sensitivity down to fM level. Only the primary antibody needed in the recognition interface ensures the one-step immunoreaction works well with monovalent antigens, which ensure this method as a promising general alternative means for fast, high-throughput or point-of-care clinical applications even for very challenging clinically relevant samples.
Collapse
Affiliation(s)
- Chunyan Deng
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , P. R. China
| | - Manman Zhang
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , P. R. China
| | - Chunyan Liu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , P. R. China
| | - Honghua Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , P. R. China
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| |
Collapse
|
23
|
Kang D, Parolo C, Sun S, Ogden NE, Dahlquist FW, Plaxco KW. Expanding the Scope of Protein-Detecting Electrochemical DNA "Scaffold" Sensors. ACS Sens 2018; 3:1271-1275. [PMID: 29877078 DOI: 10.1021/acssensors.8b00311] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to measure the levels of diagnostically relevant proteins, such as antibodies, directly at the point of care could significantly impact healthcare. Thus motivated, we explore here the E-DNA "scaffold" sensing platform, a rapid, convenient, single-step means to this end. These sensors comprise a rigid nucleic acid "scaffold" attached via a flexible linker to an electrode and modified on its distal end with a redox reporter and a protein binding "recognition element". The binding of a targeted protein reduces the efficiency with which the redox reporter approaches the electrode, resulting in an easily measured signal change when the sensor is interrogated voltammetrically. Previously we have demonstrated scaffold sensors employing a range of low molecular weight haptens and linear peptides as their recognition elements. Expanding on this here we have characterized sensors employing much larger recognition elements (up to and including full length proteins) in order to (1) define the range of recognition elements suitable for use in the platform; (2) better characterize the platform's signaling mechanism to aid its design and optimization; and (3) demonstrate the analytical performance of sensors employing full-length proteins as recognition elements. In doing so we have enlarged the range of molecular targets amenable to this rapid and convenient sensing platform.
Collapse
|
24
|
Tian Y, Xin C, Liu S, Liu Y, Liu S. Affinity Binding-Induced Hg 2+ Release and Quantum Dot Doping for General, Label-Free, and Homogenous Fluorescence Protein Assay. ACS Sens 2018; 3:1401-1408. [PMID: 29905068 DOI: 10.1021/acssensors.8b00316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, a general protein conversion and analysis strategy was developed for homogeneous, label-free, and sensitive protein detection, on the basis of the affinity binding-induced Hg2+ release for protein conversion, and the succeeding Hg2+ doping-induced ZnSe quantum dot (QD) photoluminescence for signal readout. Two DNA motifs were designed, each of which was conjugated with a protein-specific recognition ligand. The mercury ions were initially introduced into one DNA motif by T-Hg2+-T interaction. The Hg2+ releasing was then accomplished after protein recognition-initiated strand exchange reaction between two DNA motifs. Then, the simultaneous incorporation of the released Hg2+ into ZnSe QD resulted in a doping-dependent fluorescence emission at 560 nm correlated with protein analysis. The protein assay is outperformed only by a simple one-step mixing operation but no separation or washing steps. Also, the use of doped QD as a fluorogenic reporter can avoid the fluorophore and/or quencher labeling, and eliminate complex DNA manipulation procedures for signal readout or amplification involved in most existing nucleic acid-based protein conversion and analysis methods. The versatile and sensitive detection toward multivalent proteins was verified with the detection limits achieved at 0.034 nM for anti-Dig antibody, 0.012 nM for streptavidin, and 0.025 nM for thrombin. Thus, it shows great promise for protein analysis to accommodate the applications in disease diagnosis, biomarker screening, and clinical medicine.
Collapse
Affiliation(s)
- Yishen Tian
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53, Rd. Zhengzhou, Qingdao, Shandong 266042, China
| | - Chen Xin
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53, Rd. Zhengzhou, Qingdao, Shandong 266042, China
| | - Shuang Liu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53, Rd. Zhengzhou, Qingdao, Shandong 266042, China
| | - Ying Liu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53, Rd. Zhengzhou, Qingdao, Shandong 266042, China
| | - Shufeng Liu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53, Rd. Zhengzhou, Qingdao, Shandong 266042, China
| |
Collapse
|
25
|
The emerging role of nanomaterials in immunological sensing - a brief review. Mol Immunol 2018; 98:28-35. [PMID: 29325980 DOI: 10.1016/j.molimm.2017.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
Nanomaterials are beginning to play an important role in the next generation of immunological assays and biosensors, with potential impacts both in research and clinical practice. In this brief review, we highlight two areas in which nanomaterials are already making new and important contributions in the past 5-10 years: firstly, in the improvement of assay and biosensor sensitivity for detection of low abundance proteins of immunological significance, and secondly, in the real-time and continuous monitoring of protein secretion from arrays of individual cells. We finish by challenging the immunology/sensing communities to work together to develop nanomaterials that can provide real-time, continuous, and sensitive molecular readouts in vivo, a lofty goal that will require significant collaborative effort.
Collapse
|
26
|
Recent trends in the development of complementary metal oxide semiconductor image sensors to detect foodborne bacterial pathogens. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|