1
|
Hou XN, Song B, Zhao C, Chu WT, Ruan MX, Dong X, Meng LS, Gong Z, Weng YX, Zheng J, Wang J, Tang C. Connecting Protein Millisecond Conformational Dynamics to Protein Thermal Stability. JACS AU 2024; 4:3310-3320. [PMID: 39211624 PMCID: PMC11350723 DOI: 10.1021/jacsau.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The stability of protein folded states is crucial for its function, yet the relationship with the protein sequence remains poorly understood. Prior studies have focused on the amino acid composition and thermodynamic couplings within a single folded conformation, overlooking the potential contribution of protein dynamics. Here, we address this gap by systematically analyzing the impact of alanine mutations in the C-terminal β-strand (β5) of ubiquitin, a model protein exhibiting millisecond timescale interconversion between two conformational states differing in the β5 position. Our findings unveil a negative correlation between millisecond dynamics and thermal stability, with alanine substitutions at seemingly flexible C-terminal residues significantly enhancing thermostability. Integrating spectroscopic and computational approaches, we demonstrate that the thermally unfolded state retains a substantial secondary structure but lacks β5 engagement, recapitulating the transition state for millisecond dynamics. Thus, alanine mutations that modulate the stabilities of the folded states with respect to the partially unfolded state impact both the dynamics and stability. Our findings underscore the importance of conformational dynamics with implications for protein engineering and design.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bin Song
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chang Zhao
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Mei-Xia Ruan
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu Dong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Ling-Shen Meng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Yu-Xiang Weng
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zheng
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, Newyork 11794-3400, United States
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, PKU-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Houlleberghs M, Helsper S, Dom D, Dubroca T, Trociewitz B, Schurko RW, Radhakrishnan S, Breynaert E. Building a Cost-Efficient High-Pressure Cell for Online High-Field NMR and MRI Using Standard Static Probe Heads: An In Situ Demonstration on Clathrate Hydrate Formation. Anal Chem 2023; 95:16936-16942. [PMID: 37931115 PMCID: PMC10666082 DOI: 10.1021/acs.analchem.3c03050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023]
Abstract
High-pressure nuclear magnetic resonance (NMR) spectroscopy finds remarkable applications in catalysis, protein biochemistry and biophysics, analytical chemistry, material science, energy, and environmental control but requires expensive probe heads and/or sample cells. This contribution describes the design, construction, and testing of a low-cost 5 mm NMR tube suitable for high-pressure NMR measurements of up to 30 MPa. The sample cell comprises a standard, 5 mm single-crystal sapphire tube that has been fitted to a section of a relatively inexpensive polyether ether ketone (PEEK) HPLC column. PEEK HPLC tubing and connectors enable integration with a gas rig or a standard HPLC pump located outside the stray field of the magnet. The cell is compatible with any 5 mm static NMR probe head, exhibits almost zero background in NMR experiments, and is compatible with any liquid, gas, temperature, or pressure range encountered in HPLC experimentation. A specifically designed transport case enables the safe handling of the pressurized tube outside the probe head. The performance of the setup was evaluated using in situ high-field NMR spectroscopy and MRI performed during the formation of bulk and nanoconfined clathrate hydrates occluding methane, ethane, and hydrogen.
Collapse
Affiliation(s)
- Maarten Houlleberghs
- NMR/X-Ray
Platform for Convergence Research (NMRCoRe), KU Leuven, Leuven 3001, Belgium
- Centre
for Surface Chemistry and Catalysis: Characterization and Application
Team (COK-kat), Leuven 3001, Belgium
| | - Shannon Helsper
- Biomedical
MRI, Department of Imaging & Pathology, KU Leuven, Leuven B-3000, Belgium
- National
High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Dirk Dom
- NMR/X-Ray
Platform for Convergence Research (NMRCoRe), KU Leuven, Leuven 3001, Belgium
- Centre
for Surface Chemistry and Catalysis: Characterization and Application
Team (COK-kat), Leuven 3001, Belgium
| | - Thierry Dubroca
- National
High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Bianca Trociewitz
- National
High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Robert W. Schurko
- National
High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
| | - Sambhu Radhakrishnan
- NMR/X-Ray
Platform for Convergence Research (NMRCoRe), KU Leuven, Leuven 3001, Belgium
- Centre
for Surface Chemistry and Catalysis: Characterization and Application
Team (COK-kat), Leuven 3001, Belgium
| | - Eric Breynaert
- NMR/X-Ray
Platform for Convergence Research (NMRCoRe), KU Leuven, Leuven 3001, Belgium
- Centre
for Surface Chemistry and Catalysis: Characterization and Application
Team (COK-kat), Leuven 3001, Belgium
- National
High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Centre for
Molecular Water Science (CMWS), 22607 Hamburg, Germany
| |
Collapse
|
3
|
Krempl C, Wurm JP, Beck Erlach M, Kremer W, Sprangers R. Insights into the Structure of Invisible Conformations of Large Methyl Group Labeled Molecular Machines from High Pressure NMR. J Mol Biol 2023; 435:167922. [PMID: 37330282 DOI: 10.1016/j.jmb.2022.167922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/19/2023]
Abstract
Most proteins are highly flexible and can adopt conformations that deviate from the energetically most favorable ground state. Structural information on these lowly populated, alternative conformations is often lacking, despite the functional importance of these states. Here, we study the pathway by which the Dcp1:Dcp2 mRNA decapping complex exchanges between an autoinhibited closed and an open conformation. We make use of methyl Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion (RD) experiments that report on the population of the sparsely populated open conformation as well as on the exchange rate between the two conformations. To obtain volumetric information on the open conformation as well as on the transition state structure we made use of RD measurements at elevated pressures. We found that the open Dcp1:Dcp2 conformation has a lower molecular volume than the closed conformation and that the transition state is close in volume to the closed state. In the presence of ATP the volume change upon opening of the complex increases and the volume of the transition state lies in-between the volumes of the closed and open state. These findings show that ATP has an effect on the volume changes that are associated with the opening-closing pathway of the complex. Our results highlight the strength of pressure dependent NMR methods to obtain insights into structural features of protein conformations that are not directly observable. As our work makes use of methyl groups as NMR probes we conclude that the applied methodology is also applicable to high molecular weight complexes.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Jan Philip Wurm
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Beck Erlach
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
4
|
Duchowny A, Denninger J, Lohmann L, Theis T, Lehmkuhl S, Adams A. SABRE Hyperpolarization with up to 200 bar Parahydrogen in Standard and Quickly Removable Solvents. Int J Mol Sci 2023; 24:2465. [PMID: 36768786 PMCID: PMC9917027 DOI: 10.3390/ijms24032465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Parahydrogen (p-H2)-based techniques are known to drastically enhance NMR signals but are usually limited by p-H2 supply. This work reports p-H2-based SABRE hyperpolarization at p-H2 pressures of hundreds of bar, far beyond the typical ten bar currently reported in the literature. A recently designed high-pressure setup was utilized to compress p-H2 gas up to 200 bar. The measurements were conducted using a sapphire high-pressure NMR tube and a 43 MHz benchtop NMR spectrometer. In standard methanol solutions, it could be shown that the signal intensities increased with pressure until they eventually reached a plateau. A polarization of about 2%, equal to a molar polarization of 1.2 mmol L-1, could be achieved for the sample with the highest substrate concentration. While the signal plateaued, the H2 solubility increased linearly with pressure from 1 to 200 bar, indicating that p-H2 availability is not the limiting factor in signal enhancement beyond a certain pressure, depending on sample composition. Furthermore, the possibility of using liquefied ethane and compressed CO2 as removable solvents for hyperpolarization was demonstrated. The use of high pressures together with quickly removable organic/non-organic solvents represents an important breakthrough in the field of hyperpolarization, advancing SABRE as a promising tool for materials science, biophysics, and molecular imaging.
Collapse
Affiliation(s)
- Anton Duchowny
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Johannes Denninger
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Lars Lohmann
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alina Adams
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
5
|
Jain S, Sekhar A. Elucidating the mechanisms underlying protein conformational switching using NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100034. [PMID: 35586549 PMCID: PMC7612731 DOI: 10.1016/j.jmro.2022.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
How proteins switch between various ligand-free and ligand-bound structures has been a key biophysical question ever since the postulation of the Monod-Wyman-Changeux and Koshland-Nemethy-Filmer models over six decades ago. The ability of NMR spectroscopy to provide structural and kinetic information on biomolecular conformational exchange places it in a unique position as an analytical tool to interrogate the mechanisms of biological processes such as protein folding and biomolecular complex formation. In addition, recent methodological developments in the areas of saturation transfer and relaxation dispersion have expanded the scope of NMR for probing the mechanics of transitions in systems where one or more states constituting the exchange process are sparsely populated and 'invisible' in NMR spectra. In this review, we highlight some of the strategies available from NMR spectroscopy for examining the nature of multi-site conformational exchange, using five case studies that have employed NMR, either in isolation, or in conjunction with other biophysical tools.
Collapse
|
6
|
Yamamoto S, Kimura F. Probing the solvation of the α-helix with extended amide III bands in Raman optical activity. Phys Chem Chem Phys 2022; 24:3191-3199. [PMID: 35043805 DOI: 10.1039/d1cp04480j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental and theoretical Raman optical activity (ROA) study of α-helical peptides and proteins has suggested that the relative intensity of two extended amide III ROA bands at ∼1340 cm-1 (I band) and ∼1300 cm-1 (II band) can be used to monitor the permittivity of the surrounding medium of the α-helix. So far, the ROA intensity ratio, II/III, has been interpreted from two different viewpoints. The first one is in terms of a direct effect of permittivity around the α-helix. The second one is based on a structural equilibrium of two types of α-helical structures, "hydrated" and "unhydrated" ones. In the present study, temperature- and solvent-dependences of II/III are measured for highly-α-helical peptides and compared to the theoretical spectra while varying the permittivity or the type of α-helical structure. A fragment method with partial optimization in the normal modes is adopted in density functional theory calculations. The main features of the experimental spectra and a trend of the observed II/III are well reproduced by the simulations, which leads us to a conclusion that the II/III is dominantly governed by a direct influence of the permittivity of the environment and just accessorily by the equilibrium of the two types of α-helices. The simulations also opposed the conventional assignments of the I and II bands to "hydrated" and "unhydrated" α-helical structures, respectively. In the case of α-helical proteins, solvent exposure of the α-helix may be monitored by the ROA ratio.
Collapse
Affiliation(s)
- Shigeki Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
| | - Fumiya Kimura
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
| |
Collapse
|
7
|
Dreydoppel M, Dorn B, Modig K, Akke M, Weininger U. Transition-State Compressibility and Activation Volume of Transient Protein Conformational Fluctuations. JACS AU 2021; 1:833-842. [PMID: 34467336 PMCID: PMC8395657 DOI: 10.1021/jacsau.1c00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 06/13/2023]
Abstract
Proteins are dynamic entities that intermittently depart from their ground-state structures and undergo conformational transitions as a critical part of their functions. Central to understanding such transitions are the structural rearrangements along the connecting pathway, where the transition state plays a special role. Using NMR relaxation at variable temperature and pressure to measure aromatic ring flips inside a protein core, we obtain information on the structure and thermodynamics of the transition state. We show that the isothermal compressibility coefficient of the transition state is similar to that of short-chain hydrocarbon liquids, implying extensive local unfolding of the protein. Our results further indicate that the required local volume expansions of the protein can occur not only with a net positive activation volume of the protein, as expected from previous studies, but also with zero activation volume by compaction of remote void volume, when averaged over the ensemble of states.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Britta Dorn
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Kristofer Modig
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Mikael Akke
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Ulrich Weininger
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
8
|
Pintér G, Hohmann K, Grün J, Wirmer-Bartoschek J, Glaubitz C, Fürtig B, Schwalbe H. Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:291-320. [PMID: 37904763 PMCID: PMC10539803 DOI: 10.5194/mr-2-291-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2021] [Indexed: 11/01/2023]
Abstract
The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.
Collapse
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - J. Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
9
|
Ramanujam V, Alderson TR, Pritišanac I, Ying J, Bax A. Protein structural changes characterized by high-pressure, pulsed field gradient diffusion NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 312:106701. [PMID: 32113145 PMCID: PMC7153785 DOI: 10.1016/j.jmr.2020.106701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Pulsed-field gradient NMR spectroscopy is widely used to measure the translational diffusion and hydrodynamic radius (Rh) of biomolecules in solution. For unfolded proteins, the Rh provides a sensitive reporter on the ensemble-averaged conformation and the extent of polypeptide chain expansion as a function of added denaturant. Hydrostatic pressure is a convenient and reversible alternative to chemical denaturants for the study of protein folding, and enables NMR measurements to be performed on a single sample. While the impact of pressure on the viscosity of water is well known, and our water diffusivity measurements agree closely with theoretical expectations, we find that elevated pressures increase the Rh of dioxane and other small molecules by amounts that correlate with their hydrophobicity, with parallel increases in rotational friction indicated by 13C longitudinal relaxation times. These data point to a tighter coupling with water for hydrophobic surfaces at elevated pressures. Translational diffusion measurement of the unfolded state of a pressure-sensitized ubiquitin mutant (VA2-ubiquitin) as a function of hydrostatic pressure or urea concentration shows that Rh values of both the folded and the unfolded states remain nearly invariant. At ca 23 Å, the Rh of the fully pressure-denatured state is essentially indistinguishable from the urea-denatured state, and close to the value expected for an idealized random coil of 76 residues. The intrinsically disordered protein (IDP) α-synuclein shows slight compaction at pressures above 2 kbar. Diffusion of unfolded ubiquitin and α-synuclein is significantly impacted by sample concentration, indicating that quantitative measurements need to be carried out under dilute conditions.
Collapse
Affiliation(s)
- Venkatraman Ramanujam
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - T Reid Alderson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Iva Pritišanac
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Alderson TR, Kay LE. Unveiling invisible protein states with NMR spectroscopy. Curr Opin Struct Biol 2020; 60:39-49. [DOI: 10.1016/j.sbi.2019.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
|
11
|
Steele J, Ames J, Augustine MP. Experimental estimates of compression heating and decompression cooling in ethylene glycol. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:163-169. [PMID: 31671221 PMCID: PMC6980274 DOI: 10.1002/mrc.4961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/17/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
The chemical shift difference, Δσ, between the methylene and hydroxyl protons in the high resolution 1 H nuclear magnetic resonance spectrum of ethylene glycol is shown to be pressure dependent. The equilibrium Δσ values for ethylene glycol are reported as a function of temperature and pressure between ambient conditions, 323 K and 2 kbar, respectively. This surface is used along with Δσ values measured in response to a rapid pressure increase to calculate a temperature rise that is used to infer a temperature change for water that is consistent with theoretical estimates. This work implies that compression heating and decompression cooling are not significant enough to interfere with pressure induced protein folding studies.
Collapse
|
12
|
Saliba EP, Barnes AB. Fast electron paramagnetic resonance magic angle spinning simulations using analytical powder averaging techniques. J Chem Phys 2019; 151:114107. [PMID: 31542017 PMCID: PMC7043854 DOI: 10.1063/1.5113598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/27/2019] [Indexed: 11/14/2022] Open
Abstract
Simulations describing the spin physics underpinning nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy play an important role in the design of new experiments. When experiments are performed in the solid state, samples are commonly composed of powders or glasses, with molecules oriented at a large number of angles with respect to the laboratory frame. These powder angles must be represented in simulations to account for anisotropic interactions. Numerical techniques are typically used to accurately compute such powder averages. A large number of Euler angles are usually required, leading to lengthy simulation times. This is particularly true in broad spectra, such as those observed in EPR. The combination of the traditionally separate techniques of EPR and magic angle spinning (MAS) NMR could play an important role in future electron detected experiments, combined with dynamic nuclear polarization, which will allow for exceptional detection sensitivity of NMR spin coherences. Here, we present a method of reducing the required number of Euler angles in magnetic resonance simulations by analytically performing the powder average over one of the Euler angles in the static and MAS cases for the TEMPO nitroxide radical in a 7 T field. In the static case, this leads to a 97.5% reduction in simulation time over the fully numerical case and reproduces the expected spinning sideband manifold when simulated with a MAS frequency of 150 kHz. This technique is applicable to more traditional NMR experiments as well, such as those involving quadrupolar nuclei or multiple dimensions.
Collapse
Affiliation(s)
- Edward P Saliba
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Alexander B Barnes
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
13
|
Fast pressure-jump all-atom simulations and experiments reveal site-specific protein dehydration-folding dynamics. Proc Natl Acad Sci U S A 2019; 116:5356-5361. [PMID: 30837309 DOI: 10.1073/pnas.1814927116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As theory and experiment have shown, protein dehydration is a major contributor to protein folding. Dehydration upon folding can be characterized directly by all-atom simulations of fast pressure drops, which create desolvated pockets inside the nascent hydrophobic core. Here, we study pressure-drop refolding of three λ-repressor fragment (λ6-85) mutants computationally and experimentally. The three mutants report on tertiary structure formation via different fluorescent helix-helix contact pairs. All-atom simulations of pressure drops capture refolding and unfolding of all three mutants by a similar mechanism, thus validating the nonperturbative nature of the fluorescent contact probes. Analysis of simulated interprobe distances shows that the α-helix 1-3 pair distance displays a slower characteristic time scale than the 1-2 or 3-2 pair distance. To see whether slow packing of α-helices 1 and 3 is reflected in the rate-limiting folding step, fast pressure-drop relaxation experiments captured refolding on a millisecond time scale. These experiments reveal that refolding monitored by 1-3 contact formation indeed is much slower than when monitored by 1-2 or 3-2 contact formation. Unlike the case of the two-state folder [three-α-helix bundle (α3D)], whose drying and core formation proceed in concert, λ6-85 repeatedly dries and rewets different local tertiary contacts before finally forming a solvent-excluded core, explaining the non-two-state behavior observed during refolding in molecular dynamics simulations. This work demonstrates that proteins can explore desolvated pockets and dry globular states numerous times before reaching the native conformation.
Collapse
|
14
|
Schiavone NM, Pirrone GF, Guetschow ED, Mangion I, Makarov AA. Combination of circular dichroism spectroscopy and size-exclusion chromatography coupled with HDX-MS for studying global conformational structures of peptides in solution. Talanta 2019; 194:177-182. [DOI: 10.1016/j.talanta.2018.09.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/10/2023]
|
15
|
Röder K, Joseph JA, Husic BE, Wales DJ. Energy Landscapes for Proteins: From Single Funnels to Multifunctional Systems. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800175] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Konstantin Röder
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Jerelle A. Joseph
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Brooke E. Husic
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - David J. Wales
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| |
Collapse
|
16
|
Roche J, Royer CA, Roumestand C. Exploring Protein Conformational Landscapes Using High-Pressure NMR. Methods Enzymol 2019; 614:293-320. [DOI: 10.1016/bs.mie.2018.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Charlier C, Courtney JM, Anfinrud P, Bax A. Interrupted Pressure-Jump NMR Experiments Reveal Resonances of On-Pathway Protein Folding Intermediate. J Phys Chem B 2018; 122:11792-11799. [PMID: 30256104 DOI: 10.1021/acs.jpcb.8b08456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Previous pressure-jump NMR experiments on a pressure-sensitized double mutant of ubiquitin showed evidence that its folding occurs via two parallel, comparably efficient pathways: a single barrier and a two-barrier pathway. An interrupted folding NMR experiment is introduced, where for a brief period the pressure is dropped to atmospheric conditions (1 bar), followed by a jump back to high pressure for signal detection. Conventional, forward sampling of the indirect dimension during the low-pressure period correlates the 15N or 13C' chemical shifts of the unfolded protein at 1 bar to the 1H frequencies of both the unfolded and folded proteins at high pressure. Remarkably, sampling the data of the same experiment in the reverse direction yields the frequencies of proteins present at the end of the low-pressure interval, which include unfolded, intermediate, and folded species. Although the folding intermediate 15N shifts differ strongly from natively folded protein, its 13C' chemical shifts, which are more sensitive probes for secondary structure, closely match those of the folded protein and indicate that the folding intermediate must have a structure that is quite similar to the native state.
Collapse
Affiliation(s)
- Cyril Charlier
- Laboratory of Chemical Physics, NIDDK , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - Joseph M Courtney
- Laboratory of Chemical Physics, NIDDK , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - Philip Anfinrud
- Laboratory of Chemical Physics, NIDDK , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - Ad Bax
- Laboratory of Chemical Physics, NIDDK , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| |
Collapse
|
18
|
Caro JA, Wand AJ. Practical aspects of high-pressure NMR spectroscopy and its applications in protein biophysics and structural biology. Methods 2018; 148:67-80. [PMID: 29964175 PMCID: PMC6133745 DOI: 10.1016/j.ymeth.2018.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023] Open
Abstract
Pressure and temperature are the two fundamental variables of thermodynamics. Temperature and chemical perturbation are central experimental tools for the exploration of macromolecular structure and dynamics. Though it has long been recognized that hydrostatic pressure offers a complementary and often unique view of macromolecular structure, stability and dynamics, it has not been employed nearly as much. For solution NMR applications the limited use of high-pressure is undoubtedly traced to difficulties of employing pressure in the context of modern multinuclear and multidimensional NMR. Limitations in pressure tolerant NMR sample cells have been overcome and enable detailed studies of macromolecular energy landscapes, hydration, dynamics and function. Here we review the practical considerations for studies of biological macromolecules at elevated pressure, with a particular emphasis on applications in protein biophysics and structural biology.
Collapse
Affiliation(s)
- José A Caro
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6509, United States
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6509, United States.
| |
Collapse
|
19
|
Dreydoppel M, Becker P, Raum HN, Gröger S, Balbach J, Weininger U. Equilibrium and Kinetic Unfolding of GB1: Stabilization of the Native State by Pressure. J Phys Chem B 2018; 122:8846-8852. [PMID: 30185038 DOI: 10.1021/acs.jpcb.8b06888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
NMR spectroscopy allows an all-atom view on pressure-induced protein folding, separate detection of different folding states, determination of their population, and the measurement of the folding kinetics at equilibrium. Here, we studied the folding of protein GB1 at pH 2 in a temperature and pressure dependent way. We find that the midpoints of temperature-induced unfolding increase with higher pressure. NMR relaxation dispersion experiments disclosed that the unfolding kinetics slow down at elevated pressure while the folding kinetics stay virtually the same. Therefore, pressure is stabilizing the native state of GB1. These findings extend the knowledge of the influence of pressure on protein folding kinetics, where so far typically a destabilization by increased activation volumes of folding was observed. Our findings thus point toward an exceptional section in the pressure-temperature phase diagram of protein unfolding. The stabilization of the native state could potentially be caused by a shift of p Ka values of glutamates and aspartates in favor of the negatively charged state as judged from pH sensitive chemical shifts.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Paul Becker
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Heiner N Raum
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Stefan Gröger
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| |
Collapse
|
20
|
Charlier C, Courtney JM, Alderson TR, Anfinrud P, Bax A. Monitoring 15N Chemical Shifts During Protein Folding by Pressure-Jump NMR. J Am Chem Soc 2018; 140:8096-8099. [PMID: 29923716 DOI: 10.1021/jacs.8b04833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pressure-jump hardware permits direct observation of protein NMR spectra during a cyclically repeated protein folding process. For a two-state folding protein, the change in resonance frequency will occur nearly instantaneously when the protein clears the transition state barrier, resulting in a monoexponential change of the ensemble-averaged chemical shift. However, protein folding pathways can be more complex and contain metastable intermediates. With a pseudo-3D NMR experiment that utilizes stroboscopic observation, we measure the ensemble-averaged chemical shifts, including those of exchange-broadened intermediates, during the folding process. Such measurements for a pressure-sensitized mutant of ubiquitin show an on-pathway kinetic intermediate whose 15N chemical shifts differ most from the natively folded protein for strands β5, its preceding turn, and the two strands that pair with β5 in the native structure.
Collapse
Affiliation(s)
- Cyril Charlier
- Laboratory of Chemical Physics, NIDDK , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - Joseph M Courtney
- Laboratory of Chemical Physics, NIDDK , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - T Reid Alderson
- Laboratory of Chemical Physics, NIDDK , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - Philip Anfinrud
- Laboratory of Chemical Physics, NIDDK , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - Ad Bax
- Laboratory of Chemical Physics, NIDDK , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| |
Collapse
|
21
|
Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell. Proc Natl Acad Sci U S A 2018; 115:E4169-E4178. [PMID: 29666248 PMCID: PMC5939115 DOI: 10.1073/pnas.1803642115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Development of specialized instrumentation enables rapid switching of the hydrostatic pressure inside an operating NMR spectrometer. This technology allows observation of protein signals during the repeated folding process. Applied to ubiquitin, a previously extensively studied model of protein folding, the methodology reveals an initially highly dynamic state that deviates relatively little from random coil behavior but also provides evidence for numerous repeatedly failed folding events, previously only observed in computer simulations. Above room temperature, direct NMR evidence shows a ∼50% fraction of proteins folding through an on-pathway kinetic intermediate, thereby revealing two equally efficient parallel folding pathways. In general, small proteins rapidly fold on the timescale of milliseconds or less. For proteins with a substantial volume difference between the folded and unfolded states, their thermodynamic equilibrium can be altered by varying the hydrostatic pressure. Using a pressure-sensitized mutant of ubiquitin, we demonstrate that rapidly switching the pressure within an NMR sample cell enables study of the unfolded protein under native conditions and, vice versa, study of the native protein under denaturing conditions. This approach makes it possible to record 2D and 3D NMR spectra of the unfolded protein at atmospheric pressure, providing residue-specific information on the folding process. 15N and 13C chemical shifts measured immediately after dropping the pressure from 2.5 kbar (favoring unfolding) to 1 bar (native) are close to the random-coil chemical shifts observed for a large, disordered peptide fragment of the protein. However, 15N relaxation data show evidence for rapid exchange, on a ∼100-μs timescale, between the unfolded state and unstable, structured states that can be considered as failed folding events. The NMR data also provide direct evidence for parallel folding pathways, with approximately one-half of the protein molecules efficiently folding through an on-pathway kinetic intermediate, whereas the other half fold in a single step. At protein concentrations above ∼300 μM, oligomeric off-pathway intermediates compete with folding of the native state.
Collapse
|
22
|
Current Solution NMR Techniques for Structure-Function Studies of Proteins and RNA Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1105:43-58. [DOI: 10.1007/978-981-13-2200-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Alderson TR, Lee JH, Charlier C, Ying J, Bax A. Propensity for cis-Proline Formation in Unfolded Proteins. Chembiochem 2017; 19:37-42. [PMID: 29064600 DOI: 10.1002/cbic.201700548] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 12/19/2022]
Abstract
In unfolded proteins, peptide bonds involving Pro residues exist in equilibrium between the minor cis and major trans conformations. Folded proteins predominantly contain trans-Pro bonds, and slow cis-trans Pro isomerization in the unfolded state is often found to be a rate-limiting step in protein folding. Moreover, kinases and phosphatases that act upon Ser/Thr-Pro motifs exhibit preferential recognition of either the cis- or trans-Pro conformer. Here, NMR spectra obtained at both atmospheric and high pressures indicate that the population of cis-Pro falls well below previous estimates, an effect attributed to the use of short peptides with charged termini in most prior model studies. For the intrinsically disordered protein α-synuclein, cis-Pro populations at all of its five X-Pro bonds are less than 5 %, with only modest ionic strength dependence and no detectable effect of the previously demonstrated interaction between the N- and C-terminal halves of the protein. Comparison to small peptides with the same amino-acid sequence indicates that peptides, particularly those with unblocked, oppositely charged amino and carboxyl end groups, strongly overestimate the amount of cis-Pro.
Collapse
Affiliation(s)
- T Reid Alderson
- Laboratory of Chemical Physics, National Institutes of Health, 5 Memorial Drive, Bethesda, MD, 20892, USA
| | - Jung Ho Lee
- Laboratory of Chemical Physics, National Institutes of Health, 5 Memorial Drive, Bethesda, MD, 20892, USA
| | - Cyril Charlier
- Laboratory of Chemical Physics, National Institutes of Health, 5 Memorial Drive, Bethesda, MD, 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institutes of Health, 5 Memorial Drive, Bethesda, MD, 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institutes of Health, 5 Memorial Drive, Bethesda, MD, 20892, USA
| |
Collapse
|