1
|
Kasuya N, Furukawa T, Ishii H, Kobayashi N, Hirose K, Takayanagi H, Okamoto T, Watanabe S, Takeya J. Evolution of electronic correlation in highly doped organic two-dimensional hole gas. Nat Commun 2025; 16:3214. [PMID: 40210886 PMCID: PMC11986160 DOI: 10.1038/s41467-025-58215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 03/14/2025] [Indexed: 04/12/2025] Open
Abstract
Strong electron correlation is the essential mediator that creates various exotic phases in two-dimensional electronic systems which has been continuously intriguing in modern condensed-matter physics. Such electronic states as Mott insulators, charge orders, and high-temperature superconductivity would be simply Fermi-degenerated metals unless the strong correlation plays essential roles. However, how it emerges, particularly to overcome screening effects upon doping band insulators, has not been experimentally studied. In this study, we report evolution of a strongly correlated electron system from a band-insulating organic semiconductor. Carriers are continuously doped via electric double layers up to a density of 1014 cm-2. Notably, significant deviations from a simple metallic system are observed even at far from half-filled band, possibly due to charge-order instability. The findings reveal that off-site Coulomb energy can compete with Thomas-Fermi screening. This competition enables the emergence of strongly correlated exotic phases, even in systems distant from Mott insulators.
Collapse
Affiliation(s)
- Naotaka Kasuya
- Soft Device Research Center, Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Tomoki Furukawa
- Soft Device Research Center, Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Hiroyuki Ishii
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
- Research Center for Organic-Inorganic Quantum Spin Science and Technology (OIQSST), University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
| | - Nobuhiko Kobayashi
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Research Center for Organic-Inorganic Quantum Spin Science and Technology (OIQSST), University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kenji Hirose
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Hideaki Takayanagi
- Soft Device Research Center, Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Toshihiro Okamoto
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Shun Watanabe
- Soft Device Research Center, Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jun Takeya
- Soft Device Research Center, Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| |
Collapse
|
2
|
Kang TS, Morikawa MA, Singh M, Kimizuka N. Electric Field-Driven Long-Range Order and Enhanced Polarization Switching in High-Dipole Ionic Liquids. J Am Chem Soc 2025. [PMID: 40016219 DOI: 10.1021/jacs.5c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Ionic liquids (ILs) with significant dipole moments exhibit massive electric polarization (P) under an applied AC electric field (E) at room temperature. Among the various investigated ILs, the p-toluene sulfonate of 1-ethyl-3-methylimidazolium, [C2mim][Tos], which has a large dipole moment in the tosylate anion (∼10.99 D), shows large hysteresis in P-E curves with a high saturation polarization (Ps ∼ 92 μC cm-2) and a remanent polarization (Pr ∼ 68 μC cm-2) at a relatively low electric field E (1.75 kV cm-1). The mechanism of polarization and its switching in ILs are corroborated by the switching current peaks observed in current density (j) versus E (j-E) profiles and the change in fluorescence intensity of a cyanine dye doped in ILs. The reversible cyanine fluorescence intensity changes in response to the applied AC electric field reflect the dynamic orientational changes of the IL, synchronized with the polarization reversal. The dependence of Ps and Pr values on applied AC electric fields (E) is fitted by two straight lines with different slopes, below and above a threshold electric field Eth (∼1.25 kV cm-1). Long-range order is not obtained below the threshold potential of Eth. Under AC electric fields above Eth, more significant polarization and cyanine fluorescence responses to the electric field are observed. The present study indicates the presence of long-range ordering of molecular dipole moments over a distance of more than 1 μm from the interfacial adsorption layers through the transition zone to the bulk zone.
Collapse
Affiliation(s)
- Tejwant S Kang
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Chemistry, UGC- Center for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Masa-Aki Morikawa
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Manpreet Singh
- Department of Chemistry, UGC- Center for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Ye BB, Chen S, Wang ZG. GCMe: Efficient Implementation of the Gaussian Core Model with Smeared Electrostatic Interactions for Molecular Dynamics Simulations of Soft Matter Systems. J Chem Theory Comput 2024; 20:6870-6880. [PMID: 39013595 PMCID: PMC11325544 DOI: 10.1021/acs.jctc.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
In recent years, molecular dynamics (MD) simulations have emerged as an essential tool for understanding the structure, dynamics, and phase behavior of charged soft matter systems. To explore phenomena across greater length and time scales in MD simulations, molecules are often coarse-grained for better computational performance. However, commonly used force fields represent particles as hard-core interaction centers with point charges, which often overemphasizes the packing effect and short-range electrostatics, especially in systems with bulky deformable organic molecules and systems with strong coarse-graining. This underscores the need for an efficient soft-core model to physically capture the effective interactions between coarse-grained particles. To this end, we implement a soft-core model uniting the Gaussian core model with smeared electrostatic interactions that is phenomenologically equivalent to recent theoretical models. We first parametrize it generically using water as the model solvent. Then, we benchmark its performance in the OpenMM toolkit for different boundary conditions to highlight a computational speedup of up to 34 × compared to commonly used force fields and existing implementations. Finally, we demonstrate its utility by investigating how boundary polarizability affects the adsorption behavior of a polyelectrolyte solution on perfectly conducting and nonmetal boundaries.
Collapse
Affiliation(s)
- Benjamin Bobin Ye
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Shensheng Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Escobar J, Molina J, Gil-Santos E, Ruz JJ, Malvar Ó, Kosaka PM, Tamayo J, San Paulo Á, Calleja M. Nanomechanical Sensing for Mass Flow Control in Nanowire-Based Open Nanofluidic Systems. ACS NANO 2023; 17:21044-21055. [PMID: 37903505 PMCID: PMC10655260 DOI: 10.1021/acsnano.3c04020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023]
Abstract
Open nanofluidic systems, where liquids flow along the outer surface of nanoscale structures, provide otherwise unfeasible capabilities for extremely miniaturized liquid handling applications. A critical step toward fully functional applications is to obtain quantitative mass flow control. We demonstrate the application of nanomechanical sensing for this purpose by integrating voltage-driven liquid flow along nanowire open channels with mass detection based on flexural resonators. This approach is validated by assembling the nanowires with microcantilever resonators, enabling high-precision control of larger flows, and by using the nanowires as resonators themselves, allowing extremely small liquid volume handling. Both implementations are demonstrated by characterizing voltage-driven flow of ionic liquids along the surface of the nanowires. We find a voltage range where mass flow rate follows a nonlinear monotonic increase, establishing a steady flow regime for which we show mass flow control at rates from below 1 ag/s to above 100 fg/s and precise liquid handling down to the zeptoliter scale. The observed behavior of mass flow rate is consistent with a voltage-induced transition from static wetting to dynamic spreading as the mechanism underlying liquid transport along the nanowires.
Collapse
Affiliation(s)
- Javier
E. Escobar
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - Juan Molina
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - Eduardo Gil-Santos
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - José J. Ruz
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - Óscar Malvar
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - Priscila M. Kosaka
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - Javier Tamayo
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - Álvaro San Paulo
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - Montserrat Calleja
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| |
Collapse
|
5
|
Hayakawa R, Wakayama Y. Vertical molecular transistors: a new strategy towards practical quantum devices. NANOTECHNOLOGY 2023; 34:502002. [PMID: 37800179 DOI: 10.1088/1361-6528/acfb0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Considerable effort has been dedicated to improving molecular devices since they were initially proposed by Aviram and Ratner in 1974. Organic molecules are small and have discrete molecular orbitals. These features can facilitate fascinating quantum transport phenomena, such as single-carrier tunneling, resonant tunneling, and quantum interference. The effective gate modulation of these quantum transport phenomena holds the promise of realizing a new computing architecture that differs from that of current Si electronics. In this article, we review the recent research progress on molecular transistors, specifically vertical molecular transistors (VMTs). First, we discuss the benefits of VMTs for future molecular-scale transistors compared with the currently dominant lateral molecular transistors. Subsequently, we describe representative examples of VMTs, where single molecules, self-assembled monolayers, and isolated molecules are used as transistor channels. Finally, we present our conclusions and perspectives about the use of VMTs for attractive quantum devices.
Collapse
Affiliation(s)
- Ryoma Hayakawa
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yutaka Wakayama
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
6
|
Chen X, Sun YF, Wu X, Shi S, Wang Z, Zhang J, Fang WH, Huang W. Breaking the Trade-Off Between Polymer Dielectric Constant and Loss via Aluminum Oxo Macrocycle Dopants for High-Performance Neuromorphic Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306260. [PMID: 37660306 DOI: 10.1002/adma.202306260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Indexed: 09/05/2023]
Abstract
The dielectric layer is crucial in regulating the overall performance of field-effect transistors (FETs), the key component in central processing units, sensors, and displays. Despite considerable efforts being devoted to developing high-permittivity (k) dielectrics, limited progress is made due to the inherent trade-off between dielectric constant and loss. Here, a solution is presented by designing a monodispersed disk-shaped Ce-Al-O-macrocycle as a dopant in polymer dielectrics. The molecule features a central Ce(III) core connected with eight Al atoms through sixteen bridging hydroxyls and eight 3-aminophenyl peripheries. The incorporation of this macrocycle in polymer dielectrics results in an up to sevenfold increase in dielectric constants and up to 89% reduction in dielectric loss at low frequencies. Moreover, the leakage-current densities decrease, and the breakdown strengths are improved by 63%. Relying on the above merits, FETs bearing cluster-doped polymer dielectrics give near three-orders source-drain current increments while maintaining low-level leakage/off currents, resulting in much higher charge-carrier mobilities (up to 2.45 cm2 V-1 s-1 ) and on/off ratios. This cluster-doping strategy is generalizable and shows great promise for ultralow-power photoelectric synapses and neuromorphic retinas. This work successfully breaks the trade-off between dielectric constant and loss and offers a unique design for polymer composite dielectrics.
Collapse
Affiliation(s)
- Xiaowei Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yi-Fan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shuhui Shi
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Yamada S. Bioderived Ionic Liquids with Alkaline Metal Ions for Transient Ionics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302385. [PMID: 37119462 DOI: 10.1002/smll.202302385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 12/12/2012] [Indexed: 06/19/2023]
Abstract
Choline lactate, an ionic liquid composed of bioderived materials, offers an opportunity to develop biodegradable electrochemical devices. Although ionic liquids possess large potential windows, high conductivity, and are nonvolatile, they do not exhibit electrochemical characteristics such as intercalation pseudocapacitance, redox pseudocapacitance, and electrochromism. Herein, bioderived ionic liquids are developed, including metal ions, Li, Na, and Ca, to yield ionic liquid with electrochemical behavior. Differential scanning calorimetry results reveal that the ionic liquids remained in liquid state from 230.42 to 373.15 K. The conductivities of the ionic liquids with metal are lower than those of the pristine ionic liquid, whereas the capacitance change negligibly. A protocol of the Organization for Economic Co-operation and Development 301C modified MITI test (I) confirms that the pristine ionic liquid and ionic liquids with metal are readily biodegradable. Additionally, an ionic gel comprising the ionic liquid and poly(vinyl alcohol) is biodegradable. An electrochromic device is developed using an ionic liquid containing Li ions. The device successfully changes color at -2.5 V, demonstrating the intercalation of Li ions into the WO3 crystal. The results suggest that the electrochemically active ionic liquids have potential for the development of environmentally benign devices, sustainable electronics, and bioresorbable/implantable devices.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Robotics, Division of Mechanical Engineering, Tohoku University, 6-6-01 Aoba, Aramakiaza, Aobaku, Sendaishi, Miyagi, 980-8579, Japan
| |
Collapse
|
8
|
Wang SL, Yuan WL, Zhao Y, Cheng KL, Tao GH, He L. Low-melting multicharge ionic liquids with [Ln(NO 3) 5] 2- (Ln = Ho-Lu): structural, electrostatic, thermochemical, and fluorescence properties. Dalton Trans 2023. [PMID: 37327005 DOI: 10.1039/d3dt00937h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A series of green and safe heavy-rare-earth ionic liquids were obtained using a straightforward method. The stable structures of these ionic liquids, characterized by high-coordinating anions, were confirmed by nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, and single crystal X-ray diffraction (XRD). These ionic liquids exhibited wide liquid phase intervals and excellent thermal stability. The bidentate nitrato ligands occupied a sufficient number of coordination sites on the lanthanide ions, resulting in the formation of water-free 10-coordination structures. To explain the anomalous melting points observed in these multi-charged ionic liquids, a combination of experimental data and theoretical studies was employed to investigate the relationship between the electrostatic properties and the melting point. The electrostatic potential density per unit ion surface and volume were proposed and utilized for melting point prediction, demonstrating good linearity. Furthermore, the coordinating spheres of the lanthanide ions in these ionic liquids were devoid of luminescence quenchers such as O-H and N-H groups. Notably, the ionic liquids containing Ho3+, Er3+, and Tm3+ exhibited long lifetime near-infrared (NIR) and blue emissions, respectively. The UV-vis-NIR spectra revealed numerous electronic transitions of the lanthanide ions, which were attributed to their unique optical properties.
Collapse
Affiliation(s)
- Shuang-Long Wang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Wen-Li Yuan
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Ying Zhao
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Kun-Lun Cheng
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Guo-Hong Tao
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
9
|
Kondrat S, Feng G, Bresme F, Urbakh M, Kornyshev AA. Theory and Simulations of Ionic Liquids in Nanoconfinement. Chem Rev 2023; 123:6668-6715. [PMID: 37163447 PMCID: PMC10214387 DOI: 10.1021/acs.chemrev.2c00728] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 05/12/2023]
Abstract
Room-temperature ionic liquids (RTILs) have exciting properties such as nonvolatility, large electrochemical windows, and remarkable variety, drawing much interest in energy storage, gating, electrocatalysis, tunable lubrication, and other applications. Confined RTILs appear in various situations, for instance, in pores of nanostructured electrodes of supercapacitors and batteries, as such electrodes increase the contact area with RTILs and enhance the total capacitance and stored energy, between crossed cylinders in surface force balance experiments, between a tip and a sample in atomic force microscopy, and between sliding surfaces in tribology experiments, where RTILs act as lubricants. The properties and functioning of RTILs in confinement, especially nanoconfinement, result in fascinating structural and dynamic phenomena, including layering, overscreening and crowding, nanoscale capillary freezing, quantized and electrotunable friction, and superionic state. This review offers a comprehensive analysis of the fundamental physical phenomena controlling the properties of such systems and the current state-of-the-art theoretical and simulation approaches developed for their description. We discuss these approaches sequentially by increasing atomistic complexity, paying particular attention to new physical phenomena emerging in nanoscale confinement. This review covers theoretical models, most of which are based on mapping the problems on pertinent statistical mechanics models with exact analytical solutions, allowing systematic analysis and new physical insights to develop more easily. We also describe a classical density functional theory, which offers a reliable and computationally inexpensive tool to account for some microscopic details and correlations that simplified models often fail to consider. Molecular simulations play a vital role in studying confined ionic liquids, enabling deep microscopic insights otherwise unavailable to researchers. We describe the basics of various simulation approaches and discuss their challenges and applicability to specific problems, focusing on RTIL structure in cylindrical and slit confinement and how it relates to friction and capacitive and dynamic properties of confined ions.
Collapse
Affiliation(s)
- Svyatoslav Kondrat
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Institute
for Computational Physics, University of
Stuttgart, Stuttgart 70569, Germany
| | - Guang Feng
- State
Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Nano
Interface Centre for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fernando Bresme
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, London W12 0BZ,United Kingdom
- Thomas Young
Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- London
Centre for Nanotechnology, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Michael Urbakh
- School
of Chemistry and the Sackler Center for Computational Molecular and
Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexei A. Kornyshev
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, London W12 0BZ,United Kingdom
- Thomas Young
Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
10
|
Yamada S. A Transient Pseudo-Capacitor Using a Bioderived Ionic Liquid with Na Ions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205598. [PMID: 36651124 DOI: 10.1002/smll.202205598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
A pseudo-capacitor with transient behavior is applied in implantable, disposable, and bioresorbable devices, incorporating an Na ion-doped bioderived ionic liquid, molybdenum trioxide (MoO3 )-covered molybdenum foil, and silk sheet as the electrolyte, electrode, and separator, respectively. Sodium lactate is dissolved in choline lactate as a source of Na ions. The Experimental results reveal that the Na ions are intercalated into the van der Waals gaps in MoO3 , and the pseudo-capacitor shows an areal capacitance (1.5 mF cm-2 ) that is three times larger than that without the Na ion. The fast ion diffusion of the electrolyte and the low resistance of the MoO3 and Mo interface result in an equivalent series resistance of 96 Ω. A cycle test indicates that the pseudo-capacitor exhibited a high capacitance retention of 82.8% after 10 000 cycles. The transient behavior is confirmed by the dissolution of the pseudo-capacitor into phosphate-buffered saline solution after 101 days. Potential applications of transient pseudo-capacitors include electronics without the need for device retrieval after use, including smart agriculture, implantable, and wearable devices.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Robotics, Division of Mechanical Engineering, Tohoku University, 6-6-01 Aoba, Aramakiaza, Aobaku, Sendaishi, Miyagi, 980-8579, Japan
| |
Collapse
|
11
|
Kondou S, Sakashita Y, Morinaga A, Katayama Y, Dokko K, Watanabe M, Ueno K. Concentrated Nonaqueous Polyelectrolyte Solutions: High Na-Ion Transference Number and Surface-Tethered Polyanion Layer for Sodium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11741-11755. [PMID: 36808934 DOI: 10.1021/acsami.2c21557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Na metal is a promising anode material for the preparation of next-generation high-energy-density sodium-ion batteries; however, the high reactivity of Na metal severely limits the choice of electrolyte. In addition, rapid charge-discharge battery systems require electrolytes with high Na-ion transport properties. Herein, we demonstrate a stable and high-rate sodium-metal battery enabled by a nonaqueous polyelectrolyte solution composed of a weakly coordinating polyanion-type Na salt, poly[(4-styrenesulfonyl)-(trifluoromethanesulfonyl)imide] (poly(NaSTFSI)) copolymerized with butyl acrylate, in a propylene carbonate solution. It was found that this concentrated polyelectrolyte solution exhibited a remarkably high Na-ion transference number (tNaPP = 0.9) and a high ionic conductivity (σ = 1.1 mS cm-1) at 60 °C. Furthermore, the surface of the Na electrode was modified with polyanion chains anchored via the partial decomposition of the electrolyte. The surface-tethered polyanion layer effectively suppressed the subsequent decomposition of the electrolyte, thereby enabling stable Na deposition/dissolution cycling. Finally, an assembled sodium-metal battery with a Na0.44MnO2 cathode demonstrated an outstanding charge/discharge reversibility (Coulombic efficiency >99.8%) over 200 cycles while also exhibiting a high discharge rate (i.e., 45% capacity retention at 10 mA cm-2).
Collapse
Affiliation(s)
- Shinji Kondou
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yusuke Sakashita
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Asuka Morinaga
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Osaka 567-0047, Ibaraki, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube 755-8611, Yamaguchi, Japan
| | - Yu Katayama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Osaka 567-0047, Ibaraki, Japan
| | - Kaoru Dokko
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Advanced Chemical Energy Research Centre (ACERC), Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Masayoshi Watanabe
- Advanced Chemical Energy Research Centre (ACERC), Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazuhide Ueno
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Advanced Chemical Energy Research Centre (ACERC), Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
12
|
Dicationic ionic liquids based on bis(4-oligoethyleneoxyphenyl) viologen bistriflimide salts exhibiting high ionic conductivities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Wang R, Fang C, Yang L, Li K, Zhu K, Liu G, Chen J. The Novel Ionic Liquid and Its Related Self‐Assembly in the Areas of Energy Storage and Conversion. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Runtong Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChem) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Chengdong Fang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChem) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Le Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChem) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Ke Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChem) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Kailing Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChem) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Guofeng Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChem) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Jiajia Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChem) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
14
|
Qiu J, Gu Q, Sha Y, Huang Y, Zhang M, Luo Z. Preparation and application of dielectric polymers with high permittivity and low energy loss: A mini review. J Appl Polym Sci 2022. [DOI: 10.1002/app.52367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Qiu
- Nanjing Forestry University College of Science Nanjing Jiangsu Province China
| | - Qun Gu
- Chemistry Department Edinboro University of Pennsylvania Edinboro Pennsylvania USA
| | - Ye Sha
- Nanjing Forestry University College of Science Nanjing Jiangsu Province China
- Nanjing Forestry University Inst Polymer Mat Nanjing Jiangsu Province China
| | - Yang Huang
- Nanjing Forestry University College of Science Nanjing Jiangsu Province China
| | - Meng Zhang
- Institute of Chemical Industry of Forest Products, CAF Nanjing Jiangsu Province China
| | - Zhenyang Luo
- Nanjing Forestry University College of Science Nanjing Jiangsu Province China
- Nanjing Forestry University Inst Polymer Mat Nanjing Jiangsu Province China
| |
Collapse
|
15
|
Ikeda T. Facile Synthesis of Tetra-Branched Tetraimidazolium and Tetrapyrrolidinium Ionic Liquids. ACS OMEGA 2021; 6:19623-19628. [PMID: 34368549 PMCID: PMC8340402 DOI: 10.1021/acsomega.1c02187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 05/04/2023]
Abstract
A facile synthetic route for tetra-branched tetraimidazolium and tetrapyrrolidinium ionic liquids was developed. In contrast to the previous synthetic scheme, the new synthetic route requires only three reaction steps instead of seven. The total yield of tetracation was also improved from 17-21 to 39-41%. Using the new synthetic scheme, four kinds of tetracations were synthesized from the combination of two cationic units (imidazolium and pyrrolidinium) and two counteranions [bis(fluorosulfonyl)imide (FSI) and bis(trifluoromethanesulfonyl)imide (TFSI)]. Basic physical properties including glass transition temperature, thermal decomposition temperature, density, viscosity, and ionic conductivity were determined. The counterion exchange from TFSI to FSI resulted in lower glass transition temperature and higher ionic conductivity. Tetrapyrrolidinium exhibited higher viscosity and lower ionic conductivity than tetraimidazolium. The counterion exchange from TFSI to FSI resulted in lower viscosity in the case of tetraimidazolium, while the opposite result was obtained in the case of tetrapyrrolidinium. Tetracations composed of ethyl imidazolium units, diethylene glycol spacers, and FSI counterions exhibited the highest ionic conductivity of 3.5 × 10-4 S cm-1 at 25 °C under anhydrous conditions. This is the best ionic conductivity in the tetracations ever reported.
Collapse
|
16
|
Zhang J, Chen Z, Zhang Y, Dong S, Chen Y, Zhang S. Poly(ionic liquid)s Containing Alkoxy Chains and Bis(trifluoromethanesulfonyl)imide Anions as Highly Adhesive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100962. [PMID: 34117661 DOI: 10.1002/adma.202100962] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Adhesive materials have wide applications in diverse fields, but the development of a novel and multipurpose adhesive is a great challenge. This study demonstrates that conventional poly(ionic liquid)s (PILs) can be designed as highly efficient adhesives by simply introducing alkoxy moieties into the cationic backbone of PILs containing bis(trifluoromethanesulfonimide) (TFSI- ) anions. The incorporated flexible alkoxy chain not only reduces the glass transition temperature of PILs but also endows these materials with strong hydrogen bonding interactions, which, together with the unique electrostatic interaction of the PILs, simultaneously contributes to a high cohesive energy and interfacial adhesive energy. Consequently, these alkoxy PILs are highly adhesive on various substrates such as glass, ceramic, stainless steel, aluminum, and polymers, in contrast to the nonadhesive behavior of conventional PILs. Photosensitive or electronically conductive composite adhesives are fabricated by virtue of the compatibility between ionic liquids and carbon nanotubes or silver nanofibers. Interestingly, the PIL-2-TFSI adhesive possesses a unique and reversible response to electric fields and achieves up to 35% improvement in adhesive strength.
Collapse
Affiliation(s)
- Jun Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Zhanying Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Yan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yufang Chen
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| |
Collapse
|
17
|
Zhang S, Zhang Z, Chen S, Zhu R. Measurement of Electric Double Layer Capacitance Using Dielectrophoresis-Based Particle Manipulation. Anal Chem 2021; 93:5882-5889. [PMID: 33797871 DOI: 10.1021/acs.analchem.1c00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electric double layer (EDL) generally exists at the interface between a conductive electrode and its adjacent liquid electrolyte. Accurate measurement of the capacitance of EDL is requisite but a great challenge due to the complexity of its variation mechanism correlated with the magnitude and frequency of applied signals and the difficulty in measuring the inner layer potentials across the EDL. Herein, a novel dielectrophoresis (DEP)-based approach is proposed to measure the capacitance of an EDL at a microelectrode/electrolyte interface. The measurement is achieved by employing DEP manipulation to micro polystyrene (PS) spheres suspended in a liquid electrolyte and determining the capacitance of EDL on the microelectrodes from the moving velocities of spheres. This method allows measurement of the capacitances of EDL under alternating current (AC) signals with different magnitudes and frequencies, so that the capacitance change with the magnitude and frequency of the applied signal can be characterized. The method avoids the impedance interference from the liquid electrolyte, external measuring systems, and other crosstalks, enabling an accurate measurement of double layer capacitance. In addition, the inner layer potentials across EDL under different magnitudes and frequencies of applied signals are comprehensively investigated, which facilitates an understanding of the ion behavior at the interfacial boundary that governs external observations of electrochemical reactions. The accurate measurement of the capacitance of EDL is of significance to explore the mechanism of interfacial functioning of electrochemical and bioelectrical devices and systems.
Collapse
Affiliation(s)
- Shengsen Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Zhizhong Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Shengjie Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Rong Zhu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Wu X, Gao N, Jia H, Wang Y. Thermoelectric Converters Based on Ionic Conductors. Chem Asian J 2021; 16:129-141. [PMID: 33289291 DOI: 10.1002/asia.202001331] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/07/2020] [Indexed: 11/09/2022]
Abstract
Thermoelectric materials represent a new paradigm for harvesting low-grade heat, which would otherwise be dissipated to the environment uselessly. Relative to conventional thermoelectric materials generally composed of semiconductors or semi-metals, ionic thermoelectric materials are rising as an alternative choice which exhibit higher Seebeck coefficient and lower thermal conductivity. The ionic thermoelectric materials own a completely different thermoelectric conversion mechanism, in which the ions do not enter the electrode but rearrange on the electrode surface to generate a voltage difference between the hot and cold electrodes. This unique character has inspired worldwide interests on the design of ionic-type thermoelectric converters with attractive advantages of high flexibility, low cost, limited environmental pollution, and self-healing capability. Referring to the categories of ionic thermoelectric conversion, some representative ionic thermoelectric materials with their respective characteristics are summarized in this minireview. In addition, examples of applying ionic thermoelectric materials in supercapacitors, wearable devices, and fire warning system are also discussed. Insight into the challenges for the further development of ionic thermoelectric materials is finally provided.
Collapse
Affiliation(s)
- Xun Wu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Naiwei Gao
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Hanyu Jia
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| |
Collapse
|
19
|
Bakis E, van den Bruinhorst A, Pison L, Palazzo I, Chang T, Kjellberg M, Weber CC, Costa Gomes M, Welton T. Mixing divalent ionic liquids: effects of charge and side-chains. Phys Chem Chem Phys 2021; 23:4624-4635. [PMID: 33624679 DOI: 10.1039/d1cp00208b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have prepared novel divalent ionic liquids (ILs) based on the bis(trifluoromethylsulfonyl)imide anion where two charged imidazolium groups in the cations are either directly bound to each other or linked by a single atom. We assessed the influence of the side-chain functionality and divalency on their physical properties and on the thermodynamics of mixing. The results indicate that shortening the spacer of a divalent IL reduces its thermal stability and increases its viscosity. Mixtures of divalent and monovalent ILs show small but significant deviations from ideality upon mixing. These deviations appear to depend primarily on the (mis)match of the nature and length of the cation side-chain. The non-ideality imposed by mixing ILs with different side-chains appears to be enhanced by the increase in formal charge of the cations in the mixture.
Collapse
Affiliation(s)
- Eduards Bakis
- Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK.
| | - Adriaan van den Bruinhorst
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France.
| | - Laure Pison
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France.
| | - Ivan Palazzo
- Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK.
| | - Thomas Chang
- Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK.
| | - Marianne Kjellberg
- Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK.
| | - Cameron C Weber
- School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland, New Zealand
| | - Margarida Costa Gomes
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France.
| | - Tom Welton
- Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
20
|
Ikeda T. Tetra-Branched Tetra-Cationic Ionic Liquids: Effects of Spacer and Tail Structure on Physical Properties. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Taichi Ikeda
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
21
|
Guo J, Ye M, Zhao K, Cui J, Yang B, Meng J, Yan X. High voltage supercapacitor based on nonflammable high-concentration-ionic liquid electrolyte. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
23
|
Affiliation(s)
- Taichi Ikeda
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
| | - Yoshitaka Matsushita
- Research Network and Facility Division, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044
| |
Collapse
|
24
|
Zhu QH, Yuan WL, Zhang L, Zhang GH, He L, Tao GH. Biocompatible Ionic Liquid Based on Curcumin as Fluorescence Probe for Detecting Benzoyl Peroxide without the Interference of H 2O 2. Anal Chem 2019; 91:6593-6599. [PMID: 31026152 DOI: 10.1021/acs.analchem.9b00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accurate estimation of the level of benzoyl peroxide (BPO) is of considerable significance because of its threat to humanity and environment. Several research efforts have been devoted to the detection of BPO by fluorescent method with high sensitivity and selectivity. However, it remains challenging to eliminate the interference of H2O2 due to its similar properties to BPO. In this work, the first demonstration of fluorescent and colorimetric probe for specific detection of BPO without the disturbance of H2O2 was achieved by curcumin-based ionic liquid (CIL) that possesses simple fabrication, good biocompatibility, and low cost. The fluorescence quenches and emission peak blue-shifts once the probe selectively interacts with BPO, whereas the other possible interfering agents, including H2O2, do not have this phenomenon. The probe CIL exhibits prominent sensitivity for BPO sensing and enables the detection limit at levels as ultralow as 10 nM. The local detection of BPO in practical samples is realized by visualization using a portable device derived from CIL-based liquid atomizer.
Collapse
Affiliation(s)
- Qiu-Hong Zhu
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Wen-Li Yuan
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Lei Zhang
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Guo-Hao Zhang
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Ling He
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Guo-Hong Tao
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
25
|
Radiom M. Ionic liquid–solid interface and applications in lubrication and energy storage. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|