1
|
Manuda KJ, Tillekaratne A, Jayasundara DR. In situ real-time assessment of wavelength dependent degradation of methyl orange on rGO-TiO 2 photocatalyst. iScience 2025; 28:112304. [PMID: 40276754 PMCID: PMC12018108 DOI: 10.1016/j.isci.2025.112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/16/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Titanium dioxide (TiO2) has been extensively incorporated with reduced graphene oxide (rGO) to synthesize visible light (Vis) active photocatalysts. Here, we synthesized such rGO-TiO2 nanocomposite with 10% rGO by mass. The photocatalytic activity of rGO-TiO2 was quantitatively evaluated using quartz crystal microbalance (QCM). The in situ real-time QCM data resulted in different photocatalytic degradation percentages of methyl orange (MO) at the solid-air interface under ultraviolet (UV) and Vis irradiations. Conventional UV-Vis studies at the solid-liquid interface revealed that a unique hypsochromic effect occurs selectively under Vis irradiation. Radical scavenger studies confirmed that photogenerated holes are the primary active species contributing to this wavelength dependence. The degradation mechanisms under both irradiations are proposed based on the co-catalyzing and photosensitizing dual nature of rGO. The results of this study enhance the empirical knowledge of modified TiO2 photocatalysts while signifying the impact of irradiation wavelength on the extent and mechanism of photocatalytic degradation.
Collapse
|
2
|
Zhu W, Zhao B, Fang S, Zhu H, Huang F. An anthracene-containing crown ether: synthesis, host-guest properties and modulation of solid state luminescence. Chem Sci 2024:d4sc05077k. [PMID: 39309098 PMCID: PMC11409855 DOI: 10.1039/d4sc05077k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Organic solid state vapochromic materials are of great significance for the development of supramolecular chemistry and materials science. Herein, we synthesize a crown ether derivative (An34C10) containing two anthracene units and construct new crown ether-based vapochromic host-guest co-crystals. Due to the presence of anthracene, An34C10 not only shows good fluorescence properties but also displays mechanochromism. Single crystal structural analysis, powder X-ray diffraction and differential scanning calorimetry experiments demonstrate that the transformation between different stacking modes of An34C10 is responsible for mechanochromism. In addition, An34C10 can complex with 1,2,4,5-tetracyanobenzene (TCNB) to form host-guest complex (An34C10@TCNB) co-crystals. Because organic solvent fuming alters charge-transfer interactions in An34C10@TCNB, the fluorescence of the co-crystals can be turned on and off by 4-methylpyridine and chloroform vapors, respectively, realizing selective detection with opposite emission outputs. Meanwhile, the stimuli-responsive properties of An34C10 and An34C10@TCNB possess good cycling performance. This work provides a new strategy for the construction of organic solid state luminescent materials.
Collapse
Affiliation(s)
- Weijie Zhu
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
- School of Chemical and Environmental Engineering, Hunan Institute of Technology Hengyang 421002 P. R. China
| | - Bohan Zhao
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
| | - Shuai Fang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
| | - Huangtianzhi Zhu
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
| | - Feihe Huang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|
3
|
Steiner MR, Schmallegger M, Donner L, Hlina JA, Marschner C, Baumgartner J, Slugovc C. Using the phospha-Michael reaction for making phosphonium phenolate zwitterions. Beilstein J Org Chem 2024; 20:41-51. [PMID: 38230356 PMCID: PMC10790659 DOI: 10.3762/bjoc.20.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
The reactions of 2,4-di-tert-butyl-6-(diphenylphosphino)phenol and various Michael acceptors (acrylonitrile, acrylamide, methyl vinyl ketone, several acrylates, methyl vinyl sulfone) yield the respective phosphonium phenolate zwitterions at room temperature. Nine different zwitterions were synthesized and fully characterized. Zwitterions with the poor Michael acceptors methyl methacrylate and methyl crotonate formed, but could not be isolated in pure form. The solid-state structures of two phosphonium phenolate molecules were determined by single-crystal X-ray crystallography. The bonding situation in the solid state together with NMR data suggests an important contribution of an ylidic resonance structure in these molecules. The phosphonium phenolates are characterized by UV-vis absorptions peaking around 360 nm and exhibit a negative solvatochromism. An analysis of the kinetics of the zwitterion formation was performed for three Michael acceptors (acrylonitrile, methyl acrylate, and acrylamide) in two different solvents (chloroform and methanol). The results revealed the proton transfer step necessary to stabilize the initially formed carbanion as the rate-determining step. A preorganization of the carbonyl bearing Michael acceptors allowed for reasonable fast direct proton transfer from the phenol in aprotic solvents. In contrast, acrylonitrile, not capable of forming a similar preorganization, is hardly reactive in chloroform solution, while in methanol the corresponding phosphonium phenolate is formed.
Collapse
Affiliation(s)
- Matthias R Steiner
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, 8010 Graz, Austria
| | - Max Schmallegger
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Larissa Donner
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, 8010 Graz, Austria
| | - Johann A Hlina
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstraße 1, 8010 Graz, Austria
| | - Christoph Marschner
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Judith Baumgartner
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christian Slugovc
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
4
|
Bismillah AN, Johnson TG, Hussein BA, Turley AT, Saha PK, Wong HC, Aguilar JA, Yufit DS, McGonigal PR. Control of dynamic sp 3-C stereochemistry. Nat Chem 2023; 15:615-624. [PMID: 36914791 PMCID: PMC10159849 DOI: 10.1038/s41557-023-01156-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 02/09/2023] [Indexed: 03/16/2023]
Abstract
Stereogenic sp3-hybridized carbon centres are fundamental building blocks of chiral molecules. Unlike dynamic stereogenic motifs, such as sp3-nitrogen centres or atropisomeric biaryls, sp3-carbon centres are usually fixed, requiring intermolecular reactions to undergo configurational changes. Here we report the internal enantiomerization of fluxional carbon cages and the consequences of their adaptive configurations for the transmission of stereochemical information. The sp3-carbon stereochemistry of the rigid tricyclic cages is inverted through strain-assisted Cope rearrangements, emulating the low-barrier configurational dynamics typical for sp3-nitrogen inversion or conformational isomerism. This dynamic enantiomerization can be stopped, restarted or slowed by external reagents, while the configuration of the cage is controlled by neighbouring, fixed stereogenic centres. As part of a phosphoramidite-olefin ligand, the fluxional cage acts as a conduit to transmit stereochemical information from the ligand while also transferring its dynamic properties to chiral-at-metal coordination environments, influencing catalysis, ion pairing and ligand exchange energetics.
Collapse
Affiliation(s)
| | | | | | | | | | - Ho Chi Wong
- Department of Chemistry, Durham University, Durham, UK
| | | | | | - Paul R McGonigal
- Department of Chemistry, Durham University, Durham, UK. .,Department of Chemistry, University of York, York, UK.
| |
Collapse
|
5
|
Kampouri S, Zhang M, Chen T, Oppenheim JJ, Brown AC, Payne MT, Andrews JL, Sun J, Dincă M. Pyrogallate-Based Metal-Organic Framework with a Two-Dimensional Secondary Building Unit. Angew Chem Int Ed Engl 2022; 61:e202213960. [PMID: 36178633 PMCID: PMC10100382 DOI: 10.1002/anie.202213960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/05/2022]
Abstract
We report a metal-organic framework (MOF) with a rare two-dimensional (2D) secondary building unit (SBU). The SBU comprises mixed-valent Fe2+ and Fe3+ metal ions bridged by oxygen atoms pertaining to the polytopic ligand 3,3',4,4',5,5'-hexahydroxybiphenyl, which also define the iron-oxide 2D layers. Overall, the anionic framework exhibits rare topology and evidences strong electronic communication between the mixed-valence iron sites. These results highlight the importance of dimensionality control of MOF SBUs for discovering new topologies in reticular chemistry, and especially for improving electronic communication within the MOF skeleton.
Collapse
Affiliation(s)
- Stavroula Kampouri
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA 02139USA
| | - Mingxuan Zhang
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityChengfu Rd, Haidian DistrictBeijing100871China
| | - Tianyang Chen
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA 02139USA
| | - Julius J. Oppenheim
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA 02139USA
| | - Alexandra C. Brown
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA 02139USA
| | - Michael T. Payne
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA 02139USA
| | - Justin L. Andrews
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA 02139USA
| | - Junliang Sun
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityChengfu Rd, Haidian DistrictBeijing100871China
| | - Mircea Dincă
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA 02139USA
| |
Collapse
|
6
|
Wu J, Li D, Wu G, Li M, Yang Y. Modulating Supramolecular Charge‐Transfer Interactions in the Solid State using Compressible Macrocyclic Hosts. Angew Chem Int Ed Engl 2022; 61:e202210579. [DOI: 10.1002/anie.202210579] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jia‐Rui Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
- Key Laboratory of Automobile Materials of Ministry of Education and School of Materials Science and Engineering Jilin University 5988 Renmin Street Changchun 130025 P. R. China
| | - Dongxia Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Gengxin Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Meng‐Hao Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
7
|
Wu JR, Li D, Wu G, Li MH, Yang YW. Modulating Supramolecular Charge‐Transfer Interactions in the Solid State using Compressible Macrocyclic Hosts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia-Rui Wu
- Jilin University College of Chemistry CHINA
| | - Dongxia Li
- Jilin University College of Chemistry CHINA
| | - Gengxin Wu
- Jilin University College of Chemistry CHINA
| | | | - Ying-Wei Yang
- Jilin University College of Chemistry 2699 Qianjin Street 130012 Changchun CHINA
| |
Collapse
|
8
|
Rios-Miguel AB, Smith GJ, Cremers G, van Alen T, Jetten MS, Op den Camp HJ, Welte CU. Microbial paracetamol degradation involves a high diversity of novel amidase enzyme candidates. WATER RESEARCH X 2022; 16:100152. [PMID: 36042984 PMCID: PMC9420511 DOI: 10.1016/j.wroa.2022.100152] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticals are relatively new to nature and often not completely removed in wastewater treatment plants (WWTPs). Consequently, these micropollutants end up in water bodies all around the world posing a great environmental risk. One exception to this recalcitrant conversion is paracetamol, whose full degradation has been linked to several microorganisms. However, the genes and corresponding proteins involved in microbial paracetamol degradation are still elusive. In order to improve our knowledge of the microbial paracetamol degradation pathway, we inoculated a bioreactor with sludge of a hospital WWTP (Pharmafilter, Delft, NL) and fed it with paracetamol as the sole carbon source. Paracetamol was fully degraded without any lag phase and the enriched microbial community was investigated by metagenomic and metatranscriptomic analyses, which demonstrated that the microbial community was very diverse. Dilution and plating on paracetamol-amended agar plates yielded two Pseudomonas sp. isolates: a fast-growing Pseudomonas sp. that degraded 200 mg/L of paracetamol in approximately 10 h while excreting 4-aminophenol, and a slow-growing Pseudomonas sp. that degraded paracetamol without obvious intermediates in more than 90 days. Each Pseudomonas sp. contained a different highly-expressed amidase (31% identity to each other). These amidase genes were not detected in the bioreactor metagenome suggesting that other as-yet uncharacterized amidases may be responsible for the first biodegradation step of paracetamol. Uncharacterized deaminase genes and genes encoding dioxygenase enzymes involved in the catabolism of aromatic compounds and amino acids were the most likely candidates responsible for the degradation of paracetamol intermediates based on their high expression levels in the bioreactor metagenome and the Pseudomonas spp. genomes. Furthermore, cross-feeding between different community members might have occurred to efficiently degrade paracetamol and its intermediates in the bioreactor. This study increases our knowledge about the ongoing microbial evolution towards biodegradation of pharmaceuticals and points to a large diversity of (amidase) enzymes that are likely involved in paracetamol metabolism in WWTPs.
Collapse
Key Words
- 4-AP, 4-aminophenol
- APAP, N-acetyl-p-aminophenol or paracetamol
- Amidase evolution
- Deaminase
- Dioxygenase
- GAC, granular activated carbon
- HGT, horizontal gene transfer
- HQ, hydroquinone
- HRT, hydraulic retention time
- MAG, metagenome-assembled genome
- MBR, membrane bioreactor
- Metagenomics
- Mobile genetic elements
- Pfast, Pseudomonas sp. isolate growing fast on APAP as sole carbon source
- Pseudomonas
- Pslow, Pseudomonas sp. isolate growing slow on APAP as sole carbon source
- SRT, solid retention time
- TPM, transcripts per million
- WWTP, wastewater treatment plant
Collapse
Affiliation(s)
- Ana B. Rios-Miguel
- Department of Microbiology, Radboud University, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands
| | - Garrett J. Smith
- Department of Microbiology, Radboud University, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands
| | - Geert Cremers
- Department of Microbiology, Radboud University, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands
| | - Theo van Alen
- Department of Microbiology, Radboud University, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands
| | - Mike S.M. Jetten
- Department of Microbiology, Radboud University, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands
| | - Huub J.M. Op den Camp
- Department of Microbiology, Radboud University, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Radboud University, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands
| |
Collapse
|
9
|
Adsorption of Benzene-1,4-diol, 3-Methyl-1,2-cyclopentanedione and 2,6-Dimethoxyphenol on Aluminium (111) plane using Density Functional Theory calculations. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Dobrov A, Darvasiová D, Zalibera M, Bučinský L, Jelemenská I, Rapta P, Shova S, Dumitrescu DG, Andrade MA, Martins LMDRS, Pombeiro AJL, Arion VB. Diastereomeric dinickel(II) complexes with non-innocent bis(octaazamacrocyclic) ligands: isomerization, spectroelectrochemistry, DFT calculations and use in catalytic oxidation of cyclohexane. Dalton Trans 2022; 51:5151-5167. [PMID: 35266945 PMCID: PMC8962992 DOI: 10.1039/d2dt00154c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
Abstract
Diastereomeric dinickel(II) complexes with bis-octaazamacrocyclic 15-membered ligands [Ni(L1-3-L1-3)Ni] (4-6) have been prepared by oxidative dehydrogenation of nickel(II) complexes NiL1-3 (1-3) derived from 1,2- and 1,3-diketones and S-methylisothiocarbohydrazide. The compounds were characterized by elemental analysis, ESI mass spectrometry, and IR, UV-vis, 1H NMR, and 13C NMR spectroscopy. Single crystal X-ray diffraction (SC-XRD) confirmed the isolation of the anti and syn isomers of bis-octaazamacrocyclic dinickel(II) complexes 4a and 4s, the syn-configuration of 5s and the anti-configuration of the dinickel(II) complex 6a. Dimerization of prochiral nickel(II) complexes 1-3 generates two chiral centers at the bridging carbon atoms. The anti-complexes were isolated as meso-isomers (4a and 6a) and the syn-compounds as racemic mixtures of R,R/S,S-enantiomers (4s and 5s). The syn-anti isomerization (epimerization) of the isolated complexes in chloroform was disclosed. The isomerization kinetics of 5a was monitored at five different temperatures ranging from 20 °C to 50 °C by 1H NMR spectroscopy indicating the clean conversion of 5a into 5s. The activation barrier determined from the temperature dependence of the rate constants via the Eyring equation was found to be ΔH‡ = 114 ± 1 kJ mol-1 with activation entropy ΔS‡ = 13 ± 3 J K-1 mol-1. The complexes contain two low-spin nickel(II) ions in a square-planar coordination environment. The electrochemical behavior of 4a, 4s, 5s and 6a and the electronic structure of the oxidized species were studied by UV-vis-NIR-spectroelectrochemistry (SEC) and DFT calculations indicating the redox non-innocent behavior of the complexes. The dinickel(II) complexes 4a, 4s, 5s and 6a/6s were investigated as catalysts for microwave-assisted solvent-free oxidation of cyclohexane by tert-butyl hydroperoxide to produce a mixture of cyclohexanone and cyclohexanol (KA oil). The best value for KA oil yield (16%) was obtained with a mixture of 6a/6s after 2 h of microwave irradiation at 100 °C.
Collapse
Affiliation(s)
- Anatolie Dobrov
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria.
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria
| | - Denisa Darvasiová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
| | - Lukáš Bučinský
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
| | - Ingrid Jelemenská
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
| | - Sergiu Shova
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Dan G Dumitrescu
- Elettra - Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163, 5 in AREA Science Park 34149 Basovizza, Trieste, Italy
| | - Marta A Andrade
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Luísa M D R S Martins
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- Peoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Vladimir B Arion
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria.
| |
Collapse
|
11
|
Pananusorn P, Ruengsuk A, Docker A, Khamphaijun K, Sirivibulkovit K, Sukwattanasinitt M, Tantirungrotechai J, Saetear P, Limpanuparb T, Bunchuay T. Selective Extraction, Recovery, and Sensing of Hydroquinone Mediated by a Supramolecular Pillar[5]quinone Quinhydrone Charge-Transfer Complex. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6810-6817. [PMID: 35094511 DOI: 10.1021/acsami.1c22583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intermolecular interactions between an electron-rich aromatic hydroquinone (HQ) with its electron deficient counterpart, benzoquinone (BQ), result in the formation of a quinhydrone charge-transfer complex. Herein, we report a novel quinhydrone-type complex between pillar[5]quinone (P[5]Q) and HQ. Characterized by a suite of spectroscopic techniques including 1H NMR, UV-visible, and FTIR together with PXRD, SEM, BET, CV, and DFT modeling studies, the stability of the complex is determined to be due to an electron-proton transfer reaction coupled with a complementary donor-acceptor interaction. The selectivity of P[5]Q toward HQ over other dihydroxybenzene isomers allows for not only the naked-eye detection of HQ but also its selective liquid-liquid extraction and recovery from aqueous media.
Collapse
Affiliation(s)
- Puttipong Pananusorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Araya Ruengsuk
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Andrew Docker
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Korawit Khamphaijun
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kitima Sirivibulkovit
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Jonggol Tantirungrotechai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phoonthawee Saetear
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Taweetham Limpanuparb
- Science Division, Mahidol University International College, Mahidol University, Salaya 73170, Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
12
|
Payne DT, Labuta J, Futera Z, Březina V, Hanyková L, Chahal MK, Hill JP. Molecular rotor based on an oxidized resorcinarene. Org Chem Front 2022. [DOI: 10.1039/d1qo01479j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rate of rotation of substituents in a molecular single stator-double rotor based on an oxidized resorcinarene with unsaturated hemiquinonoid groups at its meso positions (i.e., a fuchsonarene) has been controlled according to solvent polarity and acidity.
Collapse
Affiliation(s)
- Daniel T. Payne
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
- International Center for Young Scientists, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Jan Labuta
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Zdeněk Futera
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 370 05, Czech Republic
| | - Václav Březina
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Lenka Hanyková
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Mandeep K. Chahal
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
13
|
Modification of N-terminal α-amine of proteins via biomimetic ortho-quinone-mediated oxidation. Nat Commun 2021; 12:2257. [PMID: 33859198 PMCID: PMC8050078 DOI: 10.1038/s41467-021-22654-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/09/2021] [Indexed: 11/22/2022] Open
Abstract
Naturally abundant quinones are important molecules, which play essential roles in various biological processes due to their reduction potential. In contrast to their universality, the investigation of reactions between quinones and proteins remains sparse. Herein, we report the development of a convenient strategy to protein modification via a biomimetic quinone-mediated oxidation at the N-terminus. By exploiting unique reactivity of an ortho-quinone reagent, the α-amine of protein N-terminus is oxidized to generate aldo or keto handle for orthogonal conjugation. The applications have been demonstrated using a range of proteins, including myoglobin, ubiquitin and small ubiquitin-related modifier 2 (SUMO2). The effect of this method is further highlighted via the preparation of a series of 17 macrophage inflammatory protein 1β (MIP-1β) analogs, followed by preliminary anti-HIV activity and cell viability assays, respectively. This method offers an efficient and complementary approach to existing strategies for N-terminal modification of proteins. Methods for selective modification of the N-terminus of proteins are of high interest, but mostly require specific amino acid residues. Here, the authors report a selective and fast method for N-terminal modification of proteins based on quinone-mediated oxidation of the alpha-amine to aldehyde or ketone, and apply it to diverse proteins.
Collapse
|
14
|
Intaraboonrod K, Lerdwiriyanupap T, Hoquante M, Coquerel G, Flood AE. Temperature cycle induced deracemization. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Payne DT, Webre WA, Gobeze HB, Seetharaman S, Matsushita Y, Karr PA, Chahal MK, Labuta J, Jevasuwan W, Fukata N, Fossey JS, Ariga K, D'Souza F, Hill JP. Nanomolecular singlet oxygen photosensitizers based on hemiquinonoid-resorcinarenes, the fuchsonarenes. Chem Sci 2020; 11:2614-2620. [PMID: 32206265 PMCID: PMC7069522 DOI: 10.1039/d0sc00651c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 11/21/2022] Open
Abstract
Singlet oxygen sensitization involving a class of hemiquinonoid-substituted resorcinarenes prepared from the corresponding 3,5-di-t-butyl-4-hydroxyphenyl-substituted resorcinarenes is reported. Based on variation in the molecular structures, quantum yields comparable with that of the well-known photosensitizing compound meso-tetraphenylporphyrin were obtained for the octabenzyloxy-substituted double hemiquinonoid resorcinarene reported herein. The following classes of compounds were studied: benzyloxy-substituted resorcinarenes, acetyloxy-substituted resorcinarenes and acetyloxy-substituted pyrogallarenes. Single crystal X-ray crystallographic analyses revealed structural variations in the compounds with conformation (i.e., rctt, rccc, rcct) having some influence on the identity of hemiquinonoid product available. Multiplicity of hemiquinonoid group affects singlet oxygen quantum yield with those doubly substituted being more active than those containing a single hemiquinone. Compounds reported here lacking hemiquinonoid groups are inactive as photosensitizers. The term 'fuchsonarene' (fuchson + arene of resorcinarene) is proposed for use to classify the compounds.
Collapse
Affiliation(s)
- Daniel T Payne
- International Center for Materials Nanoarchitectonics , National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan .
| | - Whitney A Webre
- Department of Chemistry , University of North Texas , 1155 Union Circle , 305070 Denton , Texas 76203 , USA .
| | - Habtom B Gobeze
- Department of Chemistry , University of North Texas , 1155 Union Circle , 305070 Denton , Texas 76203 , USA .
| | - Sairaman Seetharaman
- Department of Chemistry , University of North Texas , 1155 Union Circle , 305070 Denton , Texas 76203 , USA .
| | - Yoshitaka Matsushita
- Research Network and Facility Services Division , National Institute for Materials Science (NIMS) , 1-2-1 Sengen , Tsukuba , Ibaraki 305-0047 , Japan
| | - Paul A Karr
- Department of Physical Sciences and Mathematics , Wayne State College , 111 Main Street , Wayne , Nebraska 68787 , USA
| | - Mandeep K Chahal
- International Center for Materials Nanoarchitectonics , National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan .
| | - Jan Labuta
- International Center for Materials Nanoarchitectonics , National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan .
| | - Wipakorn Jevasuwan
- International Center for Materials Nanoarchitectonics , National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan .
| | - Naoki Fukata
- International Center for Materials Nanoarchitectonics , National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan .
| | - John S Fossey
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham , West Midlands B15 2TT , UK
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics , National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan .
- Department of Advanced Materials Science , Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa , Chiba 277-8561 , Japan
| | - Francis D'Souza
- Department of Chemistry , University of North Texas , 1155 Union Circle , 305070 Denton , Texas 76203 , USA .
| | - Jonathan P Hill
- International Center for Materials Nanoarchitectonics , National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan .
| |
Collapse
|
16
|
Ando Y, Tanaka D, Sasaki R, Ohmori K, Suzuki K. Stereochemical Dichotomy in Two Competing Cascade Processes: Total Syntheses of Both Enantiomers of Spiroxin A. Angew Chem Int Ed Engl 2019; 58:12507-12513. [DOI: 10.1002/anie.201906762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Yoshio Ando
- Department of ChemistryTokyo Institute of Technology 2-12-1 O-okayama Meguro Tokyo 152-8551 Japan
| | - Daisuke Tanaka
- Department of ChemistryTokyo Institute of Technology 2-12-1 O-okayama Meguro Tokyo 152-8551 Japan
| | - Ryota Sasaki
- Department of ChemistryTokyo Institute of Technology 2-12-1 O-okayama Meguro Tokyo 152-8551 Japan
| | - Ken Ohmori
- Department of ChemistryTokyo Institute of Technology 2-12-1 O-okayama Meguro Tokyo 152-8551 Japan
| | - Keisuke Suzuki
- Department of ChemistryTokyo Institute of Technology 2-12-1 O-okayama Meguro Tokyo 152-8551 Japan
| |
Collapse
|
17
|
Ando Y, Tanaka D, Sasaki R, Ohmori K, Suzuki K. Stereochemical Dichotomy in Two Competing Cascade Processes: Total Syntheses of Both Enantiomers of Spiroxin A. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yoshio Ando
- Department of ChemistryTokyo Institute of Technology 2-12-1 O-okayama Meguro Tokyo 152-8551 Japan
| | - Daisuke Tanaka
- Department of ChemistryTokyo Institute of Technology 2-12-1 O-okayama Meguro Tokyo 152-8551 Japan
| | - Ryota Sasaki
- Department of ChemistryTokyo Institute of Technology 2-12-1 O-okayama Meguro Tokyo 152-8551 Japan
| | - Ken Ohmori
- Department of ChemistryTokyo Institute of Technology 2-12-1 O-okayama Meguro Tokyo 152-8551 Japan
| | - Keisuke Suzuki
- Department of ChemistryTokyo Institute of Technology 2-12-1 O-okayama Meguro Tokyo 152-8551 Japan
| |
Collapse
|
18
|
Igawa K, Kawasaki Y, Ano Y, Kashiwagi T, Ogawa K, Hayashi JI, Morita R, Yoshioka Y, Uehara K, Tomooka K. Preparation of Enantioenriched Chiral Organic Molecules by Dynamic Asymmetric Induction from a Outer Chiral Source. CHEM LETT 2019. [DOI: 10.1246/cl.190170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, and IRCCS, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
- Department of Molecular and Material Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Yuuya Kawasaki
- Institute for Materials Chemistry and Engineering, and IRCCS, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Yusuke Ano
- Institute for Materials Chemistry and Engineering, and IRCCS, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Takeru Kashiwagi
- Institute for Materials Chemistry and Engineering, and IRCCS, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Kouhei Ogawa
- Department of Molecular and Material Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Jun-ichi Hayashi
- Department of Molecular and Material Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Ryota Morita
- Department of Molecular and Material Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Yukari Yoshioka
- Department of Molecular and Material Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Kazuhiro Uehara
- Institute for Materials Chemistry and Engineering, and IRCCS, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, and IRCCS, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
- Department of Molecular and Material Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
19
|
Engwerda AHJ, Meekes H, Bickelhaupt FM, Rutjes FPJT, Vlieg E. Racemization and Deracemization through Intermolecular Redox Behaviour. Chemistry 2019; 25:9639-9642. [DOI: 10.1002/chem.201902438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Anthonius H. J. Engwerda
- Institute for Molecules and MaterialsRadboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Hugo Meekes
- Institute for Molecules and MaterialsRadboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - F. Matthias Bickelhaupt
- Institute for Molecules and MaterialsRadboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
- Department of Theoretical Chemistry and Amsterdam Center, for Multiscale ModelingVU University De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Floris P. J. T. Rutjes
- Institute for Molecules and MaterialsRadboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Elias Vlieg
- Institute for Molecules and MaterialsRadboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
20
|
Payne DT, Webre WA, Matsushita Y, Zhu N, Futera Z, Labuta J, Jevasuwan W, Fukata N, Fossey JS, D'Souza F, Ariga K, Schmitt W, Hill JP. Multimodal switching of a redox-active macrocycle. Nat Commun 2019; 10:1007. [PMID: 30824697 PMCID: PMC6397175 DOI: 10.1038/s41467-019-08978-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 02/12/2019] [Indexed: 11/09/2022] Open
Abstract
Molecules that can exist in multiple states with the possibility of toggling between those states based on different stimuli have potential for use in molecular switching or sensing applications. Multimodal chemical or photochemical oxidative switching of an antioxidant-substituted resorcinarene macrocycle is reported. Intramolecular charge-transfer states, involving hemiquinhydrones are probed and these interactions are used to construct an oxidation-state-coupled molecular switching manifold that reports its switch-state conformation via striking variation in its electronic absorption spectra. The coupling of two different oxidation states with two different charge-transfer states within one macrocyclic scaffold delivers up to five different optical outputs. This molecular switching manifold exploits intramolecular coupling of multiple redox active substituents within a single molecule.
Collapse
Affiliation(s)
- Daniel T Payne
- WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, UK
| | - Whitney A Webre
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070 Denton, Denton, TX, 76203, USA
| | - Yoshitaka Matsushita
- Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Nianyong Zhu
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Zdenĕk Futera
- School of Chemical & Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jan Labuta
- WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
| | - Wipakorn Jevasuwan
- WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
| | - Naoki Fukata
- WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, UK
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070 Denton, Denton, TX, 76203, USA
| | - Katsuhiko Ariga
- WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Wolfgang Schmitt
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Jonathan P Hill
- WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan.
| |
Collapse
|
21
|
Storch G, Kim B, Mercado BQ, Miller SJ. A Stereodynamic Redox-Interconversion Network of Vicinal Tertiary and Quaternary Carbon Stereocenters in Hydroquinone-Quinone Hybrid Dihydrobenzofurans. Angew Chem Int Ed Engl 2018; 57:15107-15111. [PMID: 30230673 PMCID: PMC6219907 DOI: 10.1002/anie.201808305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 01/29/2023]
Abstract
Reversible redox processes involving hydroquinones and quinones are ubiquitous in biological reaction networks, materials science, and catalysis. While extensively studied in intermolecular settings, less is known about intramolecular scenarios. Herein, we report hydroquinone-quinone hybrid molecules that form two-stereocenter dihydrobenzofurans via intramolecular cyclization under thermodynamic control. A π-methylhistidine peptide-catalyzed kinetic resolution allowed us to study the stereodynamic behavior of enantio- and diastereo-enriched dihydrofurans. In the course of this study, it was revealed that a reversible intramolecular redox-interconversion network connects all four possible stereoisomers via inversion of a quaternary carbon stereocenter without achiral intermediates. As a result, these findings on hydroquinone-quinone hybrid molecules provide insights into potential natural origin and synthetic access of the common dihydrobenzofuran motif.
Collapse
Affiliation(s)
- Golo Storch
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Byoungmoo Kim
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| |
Collapse
|
22
|
Yan XC, Metrano AJ, Robertson MJ, Abascal NC, Tirado-Rives J, Miller SJ, Jorgensen WL. Molecular Dynamics Simulations of a Conformationally Mobile Peptide-Based Catalyst for Atroposelective Bromination. ACS Catal 2018; 8:9968-9979. [PMID: 30687577 DOI: 10.1021/acscatal.8b03563] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is widely accepted that structural rigidity is required to achieve high levels of asymmetric induction in catalytic, enantioselective reactions. This fundamental design principle often does not apply to highly selective catalytic peptides that often exhibit conformational heterogeneity. As a result, these complex systems are particularly challenging to study both experimentally and computationally. Herein, we utilize molecular dynamics simulations to investigate the role of conformational mobility on the reactivity and selectivity exhibited by a catalytic, β-turn-biased peptide in an atroposelective bromination reaction. By means of cluster analysis, multiple distinct conformers of the peptide and a catalyst-substrate complex were identified in the simulations, all of which were corroborated by experimental NMR measurements. The simulations also revealed that a shift in the conformational equilibrium of the peptidic catalyst occurs upon addition of substrate, and the degree of change varies among different substrates. On the basis of these data, we propose a correlation between the composition of the peptide conformational ensemble and its catalytic properties. Moreover, these findings highlight the importance of conformational dynamics in catalytic, asymmetric reactions mediated by oligopeptides, unveiled through high-level, state-of-the-art computational modeling.
Collapse
Affiliation(s)
- Xin Cindy Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Anthony J. Metrano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Michael J. Robertson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Nadia C. Abascal
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Julian Tirado-Rives
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - William L. Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
23
|
Storch G, Kim B, Mercado BQ, Miller SJ. A Stereodynamic Redox‐Interconversion Network of Vicinal Tertiary and Quaternary Carbon Stereocenters in Hydroquinone–Quinone Hybrid Dihydrobenzofurans. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Golo Storch
- Department of ChemistryYale University New Haven CT 06520-8107 USA
| | - Byoungmoo Kim
- Department of ChemistryYale University New Haven CT 06520-8107 USA
| | | | - Scott J. Miller
- Department of ChemistryYale University New Haven CT 06520-8107 USA
| |
Collapse
|