1
|
Deng Z, Luo Y, Huang G, He J, Phillips DL. Ultrafast Spectroscopic Investigation of the Aggregation Induced TADF from High-Level Reversed Intersystem Crossing. J Phys Chem Lett 2024; 15:11657-11663. [PMID: 39540870 DOI: 10.1021/acs.jpclett.4c02395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The thermally activated delayed fluorescence (TADF) originating from high-level intersystem crossing (hRISC) presents great potential in realizing a more full utilization of triplet excitons. In this study, DPA-FBP and TPA-FBP were doped in a PMMA film with different weight fractions to study the effect of aggregation on the luminescence properties. As a result, the TADF feature from hRISC was only found in the 50 wt % doped film, whereas the 1 wt % doped film only shows prompt fluorescence. The fs-TA spectroscopy results reveal that the 50 wt % film will generate charge transfer species to lower the energy gap, so that the high-lying triplet exciton can transition back to the singlet state, whereas that of the 1 wt % film will quickly transition to the lowest triplet state due to the unfavorable energy splitting. This study provides a new insight into aggregation effects on the excited-state properties of hot exciton materials and the solid-state photodynamic.
Collapse
Affiliation(s)
- Ziqi Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Yunfeng Luo
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Guanheng Huang
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Jiaxing He
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| |
Collapse
|
2
|
Guo Y, Ge L, Phillips DL, Ma J, Fang Y. Different Reaction Mechanisms Triggered by the Meta Effect: Photoinduced Generation of Quinone Methides from Hydroxybiphenyl Derivatives. J Phys Chem Lett 2024; 15:8569-8576. [PMID: 39140706 DOI: 10.1021/acs.jpclett.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A series of sterically congested quinone methides (QMs) exhibit photoinduced antiproliferative activity against some human cancer cell lines. To elucidate the structure-reactivity relationship and details of mechanisms of the photogeneration of sterically congested QMs, we chose phenylphenol derivatives 1-3 as QM precursors and investigated their photodehydration processes in aqueous solutions using ultrafast spectroscopy and theoretical computations. We found that meta derivatives 1 and 2 undergo water-mediated excited-state proton transfer (ESPT) from the phenol OH, followed by expulsion of the OH- to form QMs. By comparison, para derivative 3 proceeds via water-mediated ESPT from H2O to benzyl alcohol coupled with dehydration as the first step, delivering a cation intermediate, which further deprotonates to yield QM. Such results would help chemists understand more about the meta effects in photochemistry and about ESPT and would help synthetic chemists design sterically congested QM precursors with extraordinary reactivities and expand applications of QMs in biological and medical systems.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Lingfeng Ge
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R. 999077, P. R. China
| | - Jiani Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
3
|
Deng Z, Huang G, Li J, Pang J, He J, Phillips DL, Li MD. High-level reverse intersystem crossing of charge transfer compounds: to fluoresce or not to fluoresce? Phys Chem Chem Phys 2024; 26:17809-17816. [PMID: 38884121 DOI: 10.1039/d4cp01596g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Thermally activated delayed fluorescence (TADF) has been widely applied to electroluminescent materials to take the best advantage of triplet excitons. For some materials, the TADF originates from high-level reverse intersystem crossing (hRISC), and has attracted much attention due to its high efficiency for utilizing the triplet excitons. However, reports concerning the mechanistic studies on the hRISC-TADF process and structure-property correlation are sparse. In this study, we prepared three compounds containing triphenylamine and benzophenone with different substitution positions, o-TPA-BP, m-TPA-BP, and p-TPA-BP, in which only p-TPA-BP displays strong luminescence and hRISC-TADF features. To investigate the mechanism of the substituent-position-dependent hRISC-TADF, ultrafast time-resolved spectroscopy was utilized to observe the deactivation pathways with the assistance of theoretical calculations. The results show that o-TPA-BP will not generate triplet species, and the triplet species for m-TPA-BP will rapidly deactivate. Only p-TPA-BP can transition back to the singlet state from the T2 state effectively and exhibit a large gap between T1 and T2 to favor the hRISC route. These results illustrate how the substitution position affects the ISC and further influences the luminescence properties, which can provide new insights for developing new high-efficiency luminescent materials.
Collapse
Affiliation(s)
- Ziqi Deng
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China.
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Guanheng Huang
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jiayu Li
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China.
| | - Junhong Pang
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China.
| | - Jiaxing He
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China.
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China.
| |
Collapse
|
4
|
Draženović J, Laconsay CJ, Došlić N, I-Chia Wu J, Basarić N. Excited-state antiaromaticity relief drives facile photoprotonation of carbons in aminobiphenyls. Chem Sci 2024; 15:5225-5237. [PMID: 38577382 PMCID: PMC10988595 DOI: 10.1039/d4sc00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
A combined computational and experimental study reveals that ortho-, meta- and para-aminobiphenyl isomers undergo distinctly different photochemical reactions involving proton transfer. Deuterium exchange experiments show that the ortho-isomer undergoes a facile photoprotonation at a carbon atom via excited-state intramolecular proton transfer (ESIPT). The meta-isomer undergoes water-assisted excited-state proton transfer (ESPT) and a photoredox reaction via proton-coupled electron transfer (PCET). The para-isomer undergoes a water-assisted ESPT reaction. All three reactions take place in the singlet excited-state, except for the photoredox process of the meta-isomer, which involves a triplet excited-state. Computations illustrate the important role of excited-state antiaromaticity relief in these photoreactions.
Collapse
Affiliation(s)
- Josip Draženović
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička Cesta 54 10000 Zagreb Croatia
| | - Croix J Laconsay
- Department of Chemistry, University of Houston Houston TX 77204 USA
| | - Nađa Došlić
- Department of Physical Chemistry, Ruđer Bošković Institute Bijenička Cesta 54 10000 Zagreb Croatia
| | - Judy I-Chia Wu
- Department of Chemistry, University of Houston Houston TX 77204 USA
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička Cesta 54 10000 Zagreb Croatia
| |
Collapse
|
5
|
Dai M, Duan M, Li X, Guo Y, Ma J. Intramolecular Photoredox Reaction Mechanism of Naphthoquinone Compounds: Combined Time-Resolved Spectroscopies and DFT Calculations. J Phys Chem B 2023; 127:710-716. [PMID: 36630686 DOI: 10.1021/acs.jpcb.2c05845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Time-resolved spectroscopies and DFT calculations were utilized to investigate the photoredox mechanisms of naphthoquinone compounds. 5-Methoxy-8-tetrahydropyrane-1,4-naphthoquinone (NQ) and 2-methyl-3-(3-methylbut-2-en-1-yl) 1,4-naphthoquinone (MNQ) were excited to singlet excited species (labeled NQ(S1) and MNQ(S1), respectively). NQ(S1) underwent intersystem crossing to produce a triplet NQ, which further underwent hydrogen atom transfer to form a biradical intermediate. The biradical underwent electron transfer to form a zwitterion, followed by cyclization and proton transfer to generate a photoproduct. MNQ(S1) underwent a 1,4-proton transfer process to produce a quinone methide intermediate (1,3-QM) with zwitterionic character, which tautomerized to 1,2-QM. Then, 1,2-QM underwent electrocyclization. The substituent on the parent naphthoquinone is the key factor leading to the different reaction processes for NQ and MNQ.
Collapse
Affiliation(s)
- Mingdong Dai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Mei Duan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Xuyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yan Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiani Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
6
|
Guo Y, Li X, Ma J, Phillips DL. Reaction Mechanisms of Photoinduced Quinone Methide Intermediates Formed via Excited-State Intramolecular Proton Transfer or Water-Assisted Excited-State Proton Transfer of 4-(2-Hydroxyphenyl)pyridine. J Phys Chem Lett 2021; 12:11666-11672. [PMID: 34825824 DOI: 10.1021/acs.jpclett.1c03600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Femtosecond and nanosecond transient absorption spectroscopies combined with theoretical calculations were performed to investigate the formation mechanisms of quinone methides (QMs) from 4-(2-hydroxyphenyl)pyridine (1). In acetonitrile (ACN), the singlet excited state of 1 (1(S1)) with the cis-form underwent a thermodynamically favorable and ultrafast ESIPT to produce the singlet excited state QM, which could either relax first into highly vibrational states of its ground state followed by hydrogen transfer to return to the starting compound or alternatively may undergo a dehydrogenation to produce a radical species (1-R). In ACN-H2O, 1(S1) interacted with water molecules to form a solvated species, which induced water-assisted ESPT to the pyridine nitrogen to generate the singlet excited state QM in a concerted asynchronous manner that was initiated by deprotonation of the phenolic OH. These results provide deeper insights into the formation mechanisms of QMs in different solvent environments, which is important in the application of QMs in biological and chemical systems as well as in the design of molecules for efficient QM formation.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xuyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jiani Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| |
Collapse
|
7
|
Cink RB, Zhou Y, Du L, Rahman MS, Phillips DL, Simpson MC, Seed AJ, Sampson P, Brasch NE. Mechanistic Insights into Rapid Generation of Nitroxyl from a Photocaged N-Hydroxysulfonamide Incorporating the (6-Hydroxynaphthalen-2-yl)methyl Chromophore. J Org Chem 2021; 86:8056-8068. [PMID: 34107217 DOI: 10.1021/acs.joc.1c00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
HNO is a highly reactive molecule that shows promise in treating heart failure. Molecules that rapidly release HNO with precise spatial and temporal control are needed to investigate the biology of this signaling molecule. (Hydroxynaphthalen-2-yl)methyl-photocaged N-hydroxysulfonamides are a new class of photoactive HNO generators. Recently, it was shown that a (6-hydroxynaphthalen-2-yl)methyl (6,2-HNM)-photocaged derivative of N-hydroxysulfonamide incorporating the trifluoromethanesulfonamidoxy group (1) quantitatively generates HNO. Mechanistic studies have now been carried out on this system and reveal that the ground state protonation state plays a key role in whether concerted heterolytic C-O/N-S bond cleavage to release HNO occurs versus undesired O-N bond cleavage. N-Deprotonation of 1 can be achieved by adding an aqueous buffer or a carboxylate salt to an aprotic solvent. Evidence is presented for C-O/N-S bond heterolysis occurring directly from the singlet excited state of the N-deprotonated parent molecule on the picosecond time scale, using femtosecond time-resolved transient absorption spectroscopy, to give a carbocation and 1NO-. This is consistent with the observation of significant fluorescence quenching when HNO is generated. The carbocation intermediate reacts rapidly with nucleophiles including water, MeOH, or even (H)NO in the absence of a molecule that reacts rapidly with (H)NO to give an oxime.
Collapse
Affiliation(s)
- Ruth B Cink
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.,The Photon Factory, School of Chemical Sciences and Department of Physics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand.,The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand
| | - Yang Zhou
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 99077, P. R. China
| | - Mohammad S Rahman
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 99077, P. R. China
| | - M Cather Simpson
- The Photon Factory, School of Chemical Sciences and Department of Physics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand.,The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand
| | - Alexander J Seed
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Paul Sampson
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Nicola E Brasch
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.,The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
8
|
Ahlburg NL, Velarde AR, Kieber-Emmons MT, Jones PG, Werz DB. Substituted Benzothietes: Synthesis and a Quantum Chemical Investigation of Their Cycloreversion Properties. Org Lett 2020; 22:4255-4260. [PMID: 32401521 DOI: 10.1021/acs.orglett.0c01261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A flexible synthesis for highly substituted benzothietes that does not require flash-vacuum pyrolysis was developed. This allows for the use of a number of functional groups and nonvaporizable molecules. Highly stabilized derivatives were isolated. The molecular orbital properties of various benzothietes were evaluated by density functional methods. The mechanism of the cycloreversion of the four-membered ring was compared to that of the oxygen-containing analogues.
Collapse
Affiliation(s)
| | - Andres R Velarde
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | | | | | | |
Collapse
|
9
|
Deng Z, Sun S, Zhou M, Huang G, Pang J, Dang L, Li MD. Revealing Ultrafast Energy Dissipation Pathway of Nanocrystalline Sunscreens Oxybenzone and Dioxybenzone. J Phys Chem Lett 2019; 10:6499-6503. [PMID: 31589456 DOI: 10.1021/acs.jpclett.9b02592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two widely used ultraviolet filters, oxybenzone and dioxybenzone, are applied in a variety of areas, particularly in sunscreen cosmetics. Ultrafast femtosecond transient absorption is utilized to trace the excited states and transient states of the nanocrystalline suspension and solution phase of these two molecules. The analysis reveals the intriguing discovery that the transient species of the oxybenzone nanocrystalline suspension have shorter lifetimes than that in solution. The energy dissipation mechanism of these molecules is simulated by density functional theory calculations, and the potential energy surface calculations and the single-crystal structure can well explain the fast decay dynamics of the nanocrystalline transient states of these two molecules.
Collapse
Affiliation(s)
- Ziqi Deng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence , Shantou University , Shantou 515063 , China
| | - Shanshan Sun
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence , Shantou University , Shantou 515063 , China
| | - Miaomiao Zhou
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence , Shantou University , Shantou 515063 , China
| | - Guanheng Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence , Shantou University , Shantou 515063 , China
| | - Junhong Pang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence , Shantou University , Shantou 515063 , China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence , Shantou University , Shantou 515063 , China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence , Shantou University , Shantou 515063 , China
- Chemistry and Chemical Engineering Guangdong Laboratory , Shantou 515031 , China
| |
Collapse
|
10
|
Zhao J, Zhang X, Zhu R, Su T, Phillips DL. Photophysical Properties Controlled by Substituents with Lone-Pair Electrons at the Ortho- or Para-Positions of Fluoroquinolone Antibiotics. J Phys Chem B 2019; 123:3156-3162. [PMID: 30900898 DOI: 10.1021/acs.jpcb.8b10859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ortho- or para-substituents of NH2 or N-alkyl-containing lone-pair electrons were found to change the energy levels and transition configurations of the highest occupied molecular orbital for some fluoroquinolone-based antibiotics (FQs) and can significantly influence the electronic structure, intermolecular hydrogen bonding, internal conversion, and fluorescence and intersystem crossing efficiencies of FQs in acetonitrile or aqueous solution after photoexcitation. These findings provide new insights that can help in the molecular design strategies to regulate the photophysical properties of photosensitive medicines, photodynamic therapy reagents, and energy conversion materials that contain similar aromatic carbonyl structures.
Collapse
Affiliation(s)
- Jianfeng Zhao
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong 11111 , P. R. China
| | - Xiting Zhang
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong 11111 , P. R. China
| | - Ruixue Zhu
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong 11111 , P. R. China.,School of Physical Science and Technology , Shanghai Tech University , Shanghai 201210 , P. R. China
| | - Tao Su
- Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics , Chinese Academy of Sciences , 2019, Jia Luo Road , Jiading District, Shanghai 201800 , P. R. China
| | - David Lee Phillips
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong 11111 , P. R. China
| |
Collapse
|
11
|
Yan Z, Du L, Lan X, Li Y, Wang W, Phillips DL. Time-Resolved Spectroscopic and Density Functional Theory Investigation of the Photogeneration of a Bifunctional Quinone Methide in Neutral and Basic Aqueous Solutions. Molecules 2018; 23:E3102. [PMID: 30486443 PMCID: PMC6321171 DOI: 10.3390/molecules23123102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 01/01/2023] Open
Abstract
Binol quinone methides (BQMs) can be generated from 1,1'-(2,2'-dihydroxy-1,1'-binaphthyl-6,6'-diyl)bis(N,N,N-trimethylmethanamiuium) bromide (BQMP-b) in a 1:1 MeCN:H₂O mixed solution via a ground state intramolecular proton transfer (GSIPT), as mentioned in our previously reported studies. Here, the photoreaction of BQMP-b in neutral and basic aqueous solution (pH = 7, 10, 12) was investigated to explore the possible mechanisms and the key intermediates produced in the process of the photoreaction and to examine whether they are different from those in a neutral mild-mixed MeCN:H₂O solution. The studies were conducted using femtosecond transient absorption (fs-TA), nanosecond transient absorption (ns-TA), and nanosecond time-resolved resonance Raman spectroscopy (ns-TR³) in conjunction with results from density functional theory (DFT) computations. The results showed that BQMP-b was deprotonated initially and produced BQMs species more effectively through an E1bc elimination reaction in a strong basic aqueous condition (pH = 12), which differed from the reaction pathway that took place in the solution with pH = 7 or 10. A related single naphthol ring molecule 1-(6-hydroxynaphthalen-2-yl)-N,N,N-trimethylmethanaminium bromide (QMP-b) that did not contain a second naphthol ring was also investigated. The related reaction mechanisms are elucidated in this work, and it is briefly discussed how the mechanisms vary as a function of aqueous solution pH conditions.
Collapse
Affiliation(s)
- Zhiping Yan
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - Xin Lan
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - Yuanchun Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - Wenchao Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|