1
|
Yadav S, Haas R, Boydas EB, Roemelt M, Happe T, Apfel UP, Stripp ST. Oxygen sensitivity of [FeFe]-hydrogenase: a comparative study of active site mimics inside vs. outside the enzyme. Phys Chem Chem Phys 2024; 26:19105-19116. [PMID: 38957092 DOI: 10.1039/d3cp06048a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
[FeFe]-hydrogenase is nature's most efficient proton reducing and H2-oxidizing enzyme. However, biotechnological applications are hampered by the O2 sensitivity of this metalloenzyme, and the mechanism of aerobic deactivation is not well understood. Here, we explore the oxygen sensitivity of four mimics of the organometallic active site cofactor of [FeFe]-hydrogenase, [Fe2(adt)(CO)6-x(CN)x]x- and [Fe2(pdt)(CO)6-x(CN)x]x- (x = 1, 2) as well as the corresponding cofactor variants of the enzyme by means of infrared, Mössbauer, and NMR spectroscopy. Additionally, we describe a straightforward synthetic recipe for the active site precursor complex Fe2(adt)(CO)6. Our data indicate that the aminodithiolate (adt) complex, which is the synthetic precursor of the natural active site cofactor, is most oxygen sensitive. This observation highlights the significance of proton transfer in aerobic deactivation, and supported by DFT calculations facilitates an identification of the responsible reactive oxygen species (ROS). Moreover, we show that the ligand environment of the iron ions critically influences the reactivity with O2 and ROS like superoxide and H2O2 as the oxygen sensitivity increases with the exchange of ligands from CO to CN-. The trends in aerobic deactivation observed for the model complexes are in line with the respective enzyme variants. Based on experimental and computational data, a model for the initial reaction of [FeFe]-hydrogenase with O2 is developed. Our study underscores the relevance of model systems in understanding biocatalysis and validates their potential as important tools for elucidating the chemistry of oxygen-induced deactivation of [FeFe]-hydrogenase.
Collapse
Affiliation(s)
- Shanika Yadav
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Rieke Haas
- Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Esma Birsen Boydas
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str.2, 12489, Berlin, Germany
| | - Michael Roemelt
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str.2, 12489, Berlin, Germany
| | - Thomas Happe
- Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
- Department of Electrosynthesi, Fraunhofer UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Sven T Stripp
- Biophysical Chemistry, Technical University Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
2
|
Pauleta SR, Grazina R, Carepo MS, Moura JJ, Moura I. Iron-sulfur clusters – functions of an ancient metal site. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:105-173. [DOI: 10.1016/b978-0-12-823144-9.00116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Unusual structures and unknown roles of FeS clusters in metalloenzymes seen from a resonance Raman spectroscopic perspective. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Birrell JA, Rodríguez-Maciá P, Reijerse EJ, Martini MA, Lubitz W. The catalytic cycle of [FeFe] hydrogenase: A tale of two sites. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214191] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Reijerse E, Birrell JA, Lubitz W. Spin Polarization Reveals the Coordination Geometry of the [FeFe] Hydrogenase Active Site in Its CO-Inhibited State. J Phys Chem Lett 2020; 11:4597-4602. [PMID: 32420744 PMCID: PMC7309315 DOI: 10.1021/acs.jpclett.0c01352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The active site of [FeFe] hydrogenase features a binuclear iron cofactor Fe2ADT(CO)3(CN)2, where ADT represents the bridging ligand aza-propane-dithiolate. The terminal diatomic ligands all coordinate in a basal configuration, and one CO bridges the two irons leaving an open coordination site at which the hydrogen species and the competitive inhibitor CO bind. Externally supplied CO is expected to coordinate in an apical configuration. However, an alternative configuration has been proposed in which, due to ligand rotation, the CN- bound to the distal Fe becomes apical. Using selective 13C isotope labeling of the CN- and COext ligands in combination with pulsed 13C electron-nuclear-nuclear triple resonance spectroscopy, spin polarization effects are revealed that, according to density functional theory calculations, are consistent with only the "unrotated" apical COext configuration.
Collapse
|
6
|
Reijerse EJ, Pelmenschikov V, Birrell JA, Richers CP, Kaupp M, Rauchfuss TB, Cramer SP, Lubitz W. Asymmetry in the Ligand Coordination Sphere of the [FeFe] Hydrogenase Active Site Is Reflected in the Magnetic Spin Interactions of the Aza-propanedithiolate Ligand. J Phys Chem Lett 2019; 10:6794-6799. [PMID: 31580680 PMCID: PMC6844125 DOI: 10.1021/acs.jpclett.9b02354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
[FeFe] hydrogenases are very active enzymes that catalyze the reversible conversion of molecular hydrogen into protons and electrons. Their active site, the H-cluster, contains a unique binuclear iron complex, [2Fe]H, with CN- and CO ligands as well as an aza-propane-dithiolate (ADT) moiety featuring a central amine functionality that mediates proton transfer during catalysis. We present a pulsed 13C-ENDOR investigation of the H-cluster in which the two methylene carbons of ADT are isotope labeled with 13C. We observed that the corresponding two 13C hyperfine interactions are of opposite sign and corroborated this finding using density functional theory calculations. The spin polarization in the ADT ligand is shown to be linked to the asymmetric coordination of the distal iron site with its terminal CN- and CO ligands. We propose that this asymmetry is relevant for the enzyme reactivity and is related to the (optimal) stabilization of the iron-hydride intermediate in the catalytic cycle.
Collapse
Affiliation(s)
- Edward J. Reijerse
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Vladimir Pelmenschikov
- Institut
für Chemie, Technische Universität
Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - James A. Birrell
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casseday P. Richers
- School
of Chemical Sciences, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Martin Kaupp
- Institut
für Chemie, Technische Universität
Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Thomas B. Rauchfuss
- School
of Chemical Sciences, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | | - Wolfgang Lubitz
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Rao G, Britt RD. Electronic Structure of Two Catalytic States of the [FeFe] Hydrogenase H-Cluster As Probed by Pulse Electron Paramagnetic Resonance Spectroscopy. Inorg Chem 2018; 57:10935-10944. [PMID: 30106575 DOI: 10.1021/acs.inorgchem.8b01557] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The active site of the [FeFe] hydrogenase (HydA1), the H-cluster, is a 6-Fe cofactor that contains CO and CN- ligands. It undergoes several different oxidation and protonation state changes in its catalytic cycle to metabolize H2. Among them, the well-known Hox state and the recently identified Hhyd state are thought to be directly involved in H2 activation and evolution, and they are both EPR active with net spin S = 1/2. Herein, we report the pulse electronic paramagnetic spectroscopic investigation of these two catalytic states in Chlamydomonas reinhardtii HydA1 ( CrHydA1). Using an in vitro biosynthetic maturation approach, we site-specifically installed 13C into the CO or CN- ligands and 57Fe into the [2Fe]H subcluster of the H-cluster in order to measure the hyperfine couplings to these magnetic nuclei. For Hox, we measured 13C hyperfine couplings (13CO aiso of 25.5, 5.8, and 4.5 MHz) corresponding to all three CO ligands in the H-cluster. We also observed two 57Fe hyperfine couplings (57Fe aiso of ∼17 and 5.7 MHz) arising from the two Fe atoms in the [2Fe]H subcluster. For Hhyd, we only observed two distinct 13CO hyperfine interactions (13CO aiso of 0.16 and 0.08 MHz) and only one for 13CN- (13CN aiso of 0.16 MHz); the couplings to the 13CO/13CN- on the distal Fe of [2Fe]H may be too small to detect. We also observed a very small (<0.3 MHz) 57Fe HFI from the labeled [2Fe]H subcluster and four 57Fe HFI from the labeled [4Fe-4S]H subcluster (57Fe aiso of 7.2, 16.6, 28.2, and 35.3 MHz). These hyperfine coupling constants are consistent with the previously proposed electronic structure of the H-cluster at both Hox and Hhyd states and provide a basis for more detailed analysis.
Collapse
Affiliation(s)
- Guodong Rao
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - R David Britt
- Department of Chemistry , University of California , Davis , California 95616 , United States
| |
Collapse
|
8
|
Spectroscopic investigations of a semi-synthetic [FeFe] hydrogenase with propane di-selenol as bridging ligand in the binuclear subsite: comparison to the wild type and propane di-thiol variants. J Biol Inorg Chem 2018; 23:481-491. [PMID: 29627860 PMCID: PMC5940705 DOI: 10.1007/s00775-018-1558-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/30/2018] [Indexed: 11/25/2022]
Abstract
[FeFe] Hydrogenases catalyze the reversible conversion of H2 into electrons and protons. Their catalytic site, the H-cluster, contains a generic [4Fe–4S]H cluster coupled to a [2Fe]H subsite [Fe2(ADT)(CO)3(CN)2]2−, ADT = µ(SCH2)2NH. Heterologously expressed [FeFe] hydrogenases (apo-hydrogenase) lack the [2Fe]H unit, but this can be incorporated through artificial maturation with a synthetic precursor [Fe2(ADT)(CO)4(CN)2]2−. Maturation with a [2Fe] complex in which the essential ADT amine moiety has been replaced by CH2 (PDT = propane-dithiolate) results in a low activity enzyme with structural and spectroscopic properties similar to those of the native enzyme, but with simplified redox behavior. Here, we study the effect of sulfur-to-selenium (S-to-Se) substitution in the bridging PDT ligand incorporated in the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii using magnetic resonance (EPR, NMR), FTIR and spectroelectrochemistry. The resulting HydA1-PDSe enzyme shows the same redox behavior as the parent HydA1-PDT. In addition, a state is observed in which extraneous CO is bound to the open coordination site of the [2Fe]H unit. This state was previously observed only in the native enzyme HydA1-ADT and not in HydA1-PDT. The spectroscopic features and redox behavior of HydA1-PDSe, resulting from maturation with [Fe2(PDSe)(CO)4(CN)2]2−, are discussed in terms of spin and charge density shifts and provide interesting insight into the electronic structure of the H-cluster. We also studied the effect of S-to-Se substitution in the [4Fe–4S] subcluster. The reduced form of HydA1 containing only the [4Fe–4Se]H cluster shows a characteristic S = 7/2 spin state which converts back into the S = 1/2 spin state upon maturation with a [2Fe]–PDT/ADT complex.
Collapse
|
9
|
Rumpel S, Sommer C, Reijerse E, Farès C, Lubitz W. Direct Detection of the Terminal Hydride Intermediate in [FeFe] Hydrogenase by NMR Spectroscopy. J Am Chem Soc 2018. [PMID: 29521088 DOI: 10.1021/jacs.8b00459] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydride state intermediates are known to occur in various hydrogen conversion enzymes, including the highly efficient [FeFe] hydrogenases. The intermediate state involving a terminal iron-bound hydride has been recognized as crucial for the catalytic mechanism, but its occurrence has up to now eluded unequivocal proof under (near) physiological conditions. Here we show that the terminal hydride in the [FeFe] hydrogenase from Chlamydomonas reinhardtii can be directly detected using solution 1H NMR spectroscopy at room temperature, opening new avenues for detailed in situ investigations under catalytic conditions.
Collapse
Affiliation(s)
- Sigrun Rumpel
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Constanze Sommer
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Edward Reijerse
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|