1
|
Lin H, Huang J, Li T, Li W, Wu Y, Yang T, Nian Y, Lin X, Wang J, Wang R, Zhao X, Su N, Zhang J, Wu X, Fan M. Structure and mechanism of the plastid/parasite ATP/ADP translocator. Nature 2025; 641:797-804. [PMID: 40074904 DOI: 10.1038/s41586-025-08743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Adenosine triphosphate (ATP) is the principal energy currency of all living cells1,2. Metabolically impaired obligate intracellular parasites, such as the human pathogens Chlamydia trachomatis and Rickettsia prowazekii, can acquire ATP from their host cells through a unique ATP/adenosine diphosphate (ADP) translocator, which mediates the import of ATP into and the export of ADP and phosphate out of the parasite cells, thus allowing the exploitation of the energy reserves of host cells (also known as energy parasitism). This type of ATP/ADP translocator also exists in the obligate intracellular endosymbionts of protists and the plastids of plants and algae and has been implicated to play an important role in endosymbiosis3-31. The plastid/parasite type of ATP/ADP translocator is phylogenetically and functionally distinct from the mitochondrial ATP/ADP translocator, and its structure and transport mechanism are still unknown. Here we report the cryo-electron microscopy structures of two plastid/parasite types of ATP/ADP translocators in the apo and substrate-bound states. The ATP/ADP-binding pocket is located at the interface between the N and C domains of the translocator, and a conserved asparagine residue within the pocket is critical for substrate specificity. The translocator operates through a rocker-switch alternating access mechanism involving the relative rotation of the two domains as rigid bodies. Our results provide critical insights for understanding ATP translocation across membranes in energy parasitism and endosymbiosis and offer a structural basis for developing drugs against obligate intracellular parasites.
Collapse
Affiliation(s)
- Huajian Lin
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Jian Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tianming Li
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Li
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Yutong Wu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianjiao Yang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuwei Nian
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiangqin Wang
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Ruiying Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohui Zhao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Nannan Su
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Jinru Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China.
| | - Xudong Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Minrui Fan
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Zhou H, Hu Y, Qin G, Kong J, Hong X, Guo C, Zou J, Feng L. The Signature of Serum Modified Nucleosides in Uveitis. Invest Ophthalmol Vis Sci 2025; 66:68. [PMID: 40014362 PMCID: PMC11875031 DOI: 10.1167/iovs.66.2.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/06/2024] [Indexed: 02/28/2025] Open
Abstract
Purpose This study aims to evaluate the metabolism of serum-modified nucleosides in uveitis by using liquid chromatography-tandem mass spectrometry (LC-MS) and to develop potential diagnostic biomarkers for uveitis. Methods Forty-two patients with different subtypes of uveitis (idiopathic uveitis, Vogt-Koyanagi-Harada [VKH] disease, and ankylosing spondylitis [AS]) and 32 healthy controls were recruited in this retrospective case-control study. The concentrations of 23 modified nucleosides in patient serum were quantified by LC-MS. The data was statistically analyzed with SPSS and GraphPad Prism. Results The data revealed that 13 out of 23 modified nucleosides (m6A, m1A, m6Am, Cm, ac4C, Gm, m1G, m2G, m2,2G, Um, m3U, m5U, and m5Um) effectively showed quantifiable chromatographic peaks. The statistical results indicated that there were extremely significant differences for m2G, Gm, Cm, and m1G between healthy controls and uveitis patients. The differences for Gm, m6A,and m5U were able to further assort idiopathic uveitis and uveitis with systemic inflammation including VKH and AS. Interestingly, each specific subtype of uveitis is characterized by its signature combination of serum-modified nucleotides comparing with healthy controls. Conclusions This study revealed that the metabolism of serum-modified nucleosides in uveitis patients display significant differences from healthy controls. The signature combination of serum modified nucleotides for each subtype of uveitis may be applied for the potential diagnosis of uveitis.
Collapse
Affiliation(s)
- Haoze Zhou
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guangming Qin
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinfeng Kong
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujuan Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Zou
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, China
| | - Lei Feng
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Mueller D, Baettig R, Kuenzl T, Rodríguez-Robles E, Roberts TM, Marlière P, Panke S. Characterizing and Tailoring the Substrate Profile of a γ-Glutamyltransferase Variant. ACS Synth Biol 2024; 13:2969-2981. [PMID: 39134057 PMCID: PMC11421214 DOI: 10.1021/acssynbio.4c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
Xenobiology is an emerging field that focuses on the extension and redesign of biological systems through the use of laboratory-derived xenomolecules, which are molecules that are new to the metabolism of the cell. Despite the enormous potential of using xenomolecules in living organisms, most noncanonical building blocks still need to be supplied externally, and often poor uptake into cells limits wider applicability. To improve the cytosolic availability of noncanonical molecules, a synthetic transport system based on portage transport was developed, in which molecules of interest "cargo" are linked to a synthetic transport vector that enables piggyback transport through the alkylsulfonate transporter (SsuABC) of Escherichia coli. Upon cytosolic delivery, the vector-cargo conjugate is enzymatically cleaved by GGTxe, leading to the release of the cargo molecule. To deepen our understanding of the synthetic transport system, we focused on the characterization and further development of the enzymatic cargo release step. Hence, the substrate scope of GGTxe was characterized using a library of structurally diverse vector-cargo conjugates and MS/MS-based quantification of hydrolysis products in a kinetic manner. The resulting substrate tolerance characterization revealed that vector-amino acid conjugates were significantly unfavored. To overcome this shortcoming, a selection system based on metabolic auxotrophy complementation and directed evolution of GGTxe was established. In a directed evolution campaign, we improved the enzymatic activity of GGTxe for vector-amino acid conjugates and revealed the importance of residue D386 in the cargo unloading step.
Collapse
Affiliation(s)
- David Mueller
- Department
of Biosystems Science and Engineering, ETH
Zürich, 4056 Basel, Switzerland
| | - Remo Baettig
- Department
of Biosystems Science and Engineering, ETH
Zürich, 4056 Basel, Switzerland
| | - Tilmann Kuenzl
- Department
of Biosystems Science and Engineering, ETH
Zürich, 4056 Basel, Switzerland
| | | | | | - Philippe Marlière
- TESSSI,
The European Syndicate of Synthetic Scientists and Industrialists, 75002 Paris, France
| | - Sven Panke
- Department
of Biosystems Science and Engineering, ETH
Zürich, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Ma J, Wehrle J, Frank D, Lorenzen L, Popp C, Driever W, Grosse R, Jessen HJ. Intracellular delivery and deep tissue penetration of nucleoside triphosphates using photocleavable covalently bound dendritic polycations. Chem Sci 2024; 15:6478-6487. [PMID: 38699261 PMCID: PMC11062083 DOI: 10.1039/d3sc05669d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Nucleoside triphosphates (NTPs) are essential in various biological processes. Cellular or even organismal controlled delivery of NTPs would be highly desirable, yet in cellulo and in vivo applications are hampered owing to their negative charge leading to cell impermeability. NTP transporters or NTP prodrugs have been developed, but a spatial and temporal control of the release of the investigated molecules remains challenging with these strategies. Herein, we describe a general approach to enable intracellular delivery of NTPs using covalently bound dendritic polycations, which are derived from PAMAM dendrons and their guanidinium derivatives. By design, these modifications are fully removable through attachment on a photocage, ready to deliver the native NTP upon irradiation enabling spatiotemporal control over nucleotide release. We study the intracellular distribution of the compounds depending on the linker and dendron generation as well as side chain modifications. Importantly, as the polycation is bound covalently, these molecules can also penetrate deeply into the tissue of living organisms, such as zebrafish.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg Albertstr. 21 79104 Freiburg Germany
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
| | - Johanna Wehrle
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
- Faculty of Biology, University of Freiburg Hauptstr. 1 79104 Freiburg Germany
| | - Dennis Frank
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Lina Lorenzen
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Christoph Popp
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Wolfgang Driever
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
- Faculty of Biology, University of Freiburg Hauptstr. 1 79104 Freiburg Germany
| | - Robert Grosse
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg Albertstr. 21 79104 Freiburg Germany
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
| |
Collapse
|
5
|
Zheng J, Yang J, Liang X, Fang M, Wang Y. Dual strategy for 13C-Metabolic flux analysis of central carbon and energy metabolism in Mammalian cells based on LC-isoMRM-MS. Talanta 2024; 266:125074. [PMID: 37651912 DOI: 10.1016/j.talanta.2023.125074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]
Abstract
Central carbon and energy metabolism are the most concerned metabolic pathways in 13C-Metabolic flux analysis (13C-MFA). However, some α-keto acids, ribonucleoside triphosphate (NTPs) and deoxyribonucleoside triphosphate (dNTPs) involved in central carbon and energy metabolism pathways were unstable or reactive, leading to inaccurate metabolic flux analysis. To achieve accurate 13C-MFA of central carbon and energy metabolism, we proposed a dual strategy for the detection of 101 metabolites in glucose metabolism pathways. N-Methylphenylethylamine (MPEA) was utilized for derivatization of 4 carboxyl (α-keto acids) and 8 phosphate metabolites (NTPs and dNTPs). After derivatization, the MPEA derivatives were investigated to be stable for 4 weeks under 4 °C and detected with high intensity in ∼104 cells. On the other hand, we analyzed an additional 89 metabolites in central carbon and energy metabolic pathways were directly analyzed by liquid chromatography tandem mass spectrometry (LC-MRM-MS). The limit of detection (LODs) of our method were as low as 0.05 ng/mL and the linear range was at least two orders of magnitude with determination coefficient (R2) > 0.9701. The relative standard divisions (RSDs) of intra- and inter-day of 95% metabolites were below 20%. In addition, the isotope list of 82 detected metabolites in central carbon and energy metabolism were generated according to isotopologues and isotopomers for each metabolite resulting from 13C incorporation. Accurate assessment of mass isotopomer distributions (MIDs) of intracellular 13C-labeled metabolites was achieved in [U-13C]-glucose cultured HepG2 cells by our dual strategy. Finally, we performed MID analysis of 101 metabolites in central carbon and energy metabolism. Overall, this dual method is reproducible and robust for application on 13C-MFA and has a great potential for studying clinical isotope labeled samples.
Collapse
Affiliation(s)
- Jie Zheng
- Singapore Phenome Center, Nanyang Technological University, 639798, Singapore
| | - Junjie Yang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Xu Liang
- Singapore Phenome Center, Nanyang Technological University, 639798, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Yulan Wang
- Singapore Phenome Center, Nanyang Technological University, 639798, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
6
|
Huo B, Wang C, Hu X, Wang H, Zhu G, Zhu A, Li L. Peripheral substitution effects on unnatural base pairs: A case of brominated TPT3 to enhance replication fidelity. Bioorg Chem 2023; 140:106827. [PMID: 37683537 DOI: 10.1016/j.bioorg.2023.106827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The high fidelity poses a central role in developing unnatural base pairs (UBPs), which means the high pairing capacity of unnatural bases with their partners, and low mispairing with all the natural bases. Different strategies have been used to develop higher-fidelity UBPs, including optimizing hydrophobic interaction forces between UBPs. Variant substituent groups are allowed to fine tune the hydrophobic forces of different UBPs' candidates. However, the modifications on the skeleton of TPT3 base are rare and the replication fidelity of TPT3-NaM remains hardly to improve so far. In this paper, we reasoned that modifying and/or expanding the aromatic surface by Bromo-substituents to slightly increase hydrophobicity of TPT3 might offer a way to increase the fidelity of this pair. Based on the hypothesis, we synthesized the bromine substituted TPT3, 2-bromo-TPT3 and 2, 4-dibromo-TPT3 as the new TPT3 analogs. While the enzyme reaction kinetic experiments showed that d2-bromo-TPT3-dNaM pair and d2, 4-dibromo-TPT3TP-dNaM pair had slightly less efficient incorporation and extension rates than that of dTPT3-dNaM pair, the assays did reveal that the mispairing of 2-bromo-TPT3 and 2, 4-dibromo-TPT3 with all the natural bases could dramatically decrease in contrast to TPT3. Their lower mispairing capacity promoted us to run polymerase chain amplification reactions, and a higher fidelity of d2-bromo-TPT3-dNaM pair could be obtained with 99.72 ± 0.01% of the in vitro replication fidelity than that of dTPT3-dNaM pair, 99.52 ± 0.09%. In addition, d2-bromo-TPT3-dNaM can also be effectively copied in E. coli cells, which showed the same replication fidelity as that of dTPT3-dNaM in the specific sequence, but a higher fidelity in the random sequence context.
Collapse
Affiliation(s)
- Bianbian Huo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoqi Hu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Honglei Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gongming Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Anlian Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lingjun Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China; Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
7
|
Blanchard A, Abramov M, Hassan C, Marlière P, Herdewijn P, Pezo V. A microbiological system for screening the interference of XNA monomers with DNA and RNA metabolism. RSC Adv 2023; 13:29862-29865. [PMID: 37842681 PMCID: PMC10568403 DOI: 10.1039/d3ra06172h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
We explored the toxicity and mutagenicity of a wide range of xenobiotic nucleoside triphosphates to an Escherichia coli strain equipped with a nucleoside triphosphate transporter. This bacterial test provides a tool to evaluate and guide the synthesis of nucleotides for applications such as the propagation of non-natural genetic information or the selection of potential drugs.
Collapse
Affiliation(s)
- Aude Blanchard
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay 2 Rue Gaston Crémieux 91057 Evry France
| | - Mikhail Abramov
- Laboratory for Medicinal Chemistry, Rega Institute Herestraat 49, KU Leuven Leuven Belgium
| | - Camille Hassan
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay 2 Rue Gaston Crémieux 91057 Evry France
| | - Philippe Marlière
- Theraxen SA 296 route de Longwy L-1940 Luxembourg
- TESSSI 81 Rue Réaumur Paris 75002 France
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry, Rega Institute Herestraat 49, KU Leuven Leuven Belgium
| | - Valérie Pezo
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay 2 Rue Gaston Crémieux 91057 Evry France
| |
Collapse
|
8
|
Zhu C, Xu L, Chen L, Zhang Z, Zhang Y, Wu W, Li C, Liu S, Xiang S, Dai S, Zhang J, Guo H, Zhou Y, Wang F. Epitope-Directed Antibody Elicitation by Genetically Encoded Chemical Cross-Linking Reactivity in the Antigen. ACS CENTRAL SCIENCE 2023; 9:1229-1240. [PMID: 37396855 PMCID: PMC10311653 DOI: 10.1021/acscentsci.3c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/04/2023]
Abstract
No current methods can selectively elicit an antibody response to a specific conformational epitope in a whole antigen in vivo. Here, we incorporated Nε-acryloyl-l-lysine (AcrK) or Nε-crotonyl-l-lysine (Kcr) with cross-linking activities into the specific epitopes of antigens and immunized mice to generate antibodies that can covalently cross-link with the antigens. By taking advantage of antibody clonal selection and evolution in vivo, an orthogonal antibody-antigen cross-linking reaction can be generated. With this mechanism, we developed a new approach for facile elicitation of antibodies binding to specific epitopes of the antigen in vivo. Antibody responses were directed and enriched to the target epitopes on protein antigens or peptide-KLH conjugates after mouse immunization with the AcrK or Kcr-incorporated immunogens. The effect is so prominent that the majority of selected hits bind to the target epitope. Furthermore, the epitope-specific antibodies effectively block IL-1β from activating its receptor, indicating its potential for the development of protein subunit vaccines.
Collapse
Affiliation(s)
- Chaoyang Zhu
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Liang Xu
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Longxin Chen
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Molecular
Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Zihan Zhang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhan Zhang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiping Wu
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
| | - Chengxiang Li
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Shuang Liu
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Shuqin Xiang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Shengwang Dai
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Jay Zhang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
| | - Hui Guo
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
- Beijing
Translational Center for Biopharmaceuticals, Beijing 100101, China
| | - Yinjian Zhou
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Beijing
Translational Center for Biopharmaceuticals, Beijing 100101, China
| | - Feng Wang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
- Beijing
Translational Center for Biopharmaceuticals, Beijing 100101, China
| |
Collapse
|
9
|
Li Y, Abraham C, Suslov O, Yaren O, Shaw RW, Kim MJ, Wan S, Marliere P, Benner SA. Synthetic Biology Pathway to Nucleoside Triphosphates for Expanded Genetic Alphabets. ACS Synth Biol 2023; 12:1772-1781. [PMID: 37227319 PMCID: PMC10911313 DOI: 10.1021/acssynbio.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
One horizon in synthetic biology seeks alternative forms of DNA that store, transcribe, and support the evolution of biological information. Here, hydrogen bond donor and acceptor groups are rearranged within a Watson-Crick geometry to get 12 nucleotides that form 6 independently replicating pairs. Such artificially expanded genetic information systems (AEGIS) support Darwinian evolution in vitro. To move AEGIS into living cells, metabolic pathways are next required to make AEGIS triphosphates economically from their nucleosides, eliminating the need to feed these expensive compounds in growth media. We report that "polyphosphate kinases" can be recruited for such pathways, working with natural diphosphate kinases and engineered nucleoside kinases. This pathway in vitro makes AEGIS triphosphates, including third-generation triphosphates having improved ability to survive in living bacterial cells. In α-32P-labeled forms, produced here for the first time, they were used to study DNA polymerases, finding cases where third-generation AEGIS triphosphates perform better with natural enzymes than second-generation AEGIS triphosphates.
Collapse
Affiliation(s)
- Yubing Li
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd., Alachua, Florida 32615 United States
| | - Clay Abraham
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd., Alachua, Florida 32615 United States
| | - Oleg Suslov
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd., Alachua, Florida 32615 United States
| | - Ozlem Yaren
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd., Alachua, Florida 32615 United States
| | - Ryan W. Shaw
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd., Alachua, Florida 32615 United States
| | - Myong-Jung Kim
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd., Alachua, Florida 32615 United States
| | - Shuo Wan
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd., Alachua, Florida 32615 United States
| | - Philippe Marliere
- Institute of Systems & Synthetic Biology, Génopole, 5 rue Desbruères, 91030 Evry Cedex France
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd., Alachua, Florida 32615 United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd., Alachua, Florida 32615 United States
| |
Collapse
|
10
|
Romesberg FE. Discovery, implications and initial use of semi-synthetic organisms with an expanded genetic alphabet/code. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220030. [PMID: 36633274 PMCID: PMC9835597 DOI: 10.1098/rstb.2022.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Much recent interest has focused on developing proteins for human use, such as in medicine. However, natural proteins are made up of only a limited number of canonical amino acids with limited functionalities, and this makes the discovery of variants with some functions difficult. The ability to recombinantly express proteins containing non-canonical amino acids (ncAAs) with properties selected to impart the protein with desired properties is expected to dramatically improve the discovery of proteins with different functions. Perhaps the most straightforward approach to such an expansion of the genetic code is through expansion of the genetic alphabet, so that new codon/anticodon pairs can be created to assign to ncAAs. In this review, I briefly summarize more than 20 years of effort leading ultimately to the discovery of synthetic nucleotides that pair to form an unnatural base pair, which when incorporated into DNA, is stably maintained, transcribed and used to translate proteins in Escherichia coli. In addition to discussing wide ranging conceptual implications, I also describe ongoing efforts at the pharmaceutical company Sanofi to employ the resulting 'semi-synthetic organisms' or SSOs, for the production of next-generation protein therapeutics. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Floyd E. Romesberg
- Platform Innovation, Synthorx, a Sanofi Company, 11099 N. Torrey Pines Road, Suite 190, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Schreier VN, Loehr MO, Lattmann E, Luedtke NW. Active Uptake and Trafficking of Nucleoside Triphosphates In Vivo. ACS Chem Biol 2022; 17:1799-1810. [PMID: 35700414 DOI: 10.1021/acschembio.2c00153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Modified nucleoside triphosphates (NTPs) are powerful probes and medicines, but their anionic character impedes membrane permeability. As such, invasive delivery techniques, transport carriers, or prodrug strategies are required for their in vivo use. Here, we present a fluorescent 2'-deoxyribonucleoside triphosphate "TAMRA-dATP" that exhibits surprisingly high bioavailability in vivo. TAMRA-dATP spontaneously forms nanoparticles in Mg+2-containing buffers that are taken into the vesicles of living cells and animals by energy-dependent processes. In cell cultures, photochemical activation with yellow laser light (561 nm) facilitated endosomal escape of TAMRA-dATP, resulting in its metabolic incorporation into DNA in vitro. In contrast, in vivo studies revealed that TAMRA-dATP is extensively trafficked by active pathways into cellular DNA of zebrafish (Danio rerio) and Caenorhabditis elegans where DNA labeling was observed in live animals, even without photochemical release. Metabolic labeling of DNA in whole, living animals can therefore be achieved by simply soaking animals in a buffer containing TAMRA-dATP or a structurally related compound, Cy3-dATP.
Collapse
Affiliation(s)
- Verena N Schreier
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Morten O Loehr
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland.,Department of Chemistry, McGill University, Montréal, Quebec H3A 0B8, Canada
| | - Evelyn Lattmann
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland.,Department of Chemistry, McGill University, Montréal, Quebec H3A 0B8, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3G 1Y6, Canada
| |
Collapse
|
12
|
Kleiner RE. Interrogating the transcriptome with metabolically incorporated ribonucleosides. Mol Omics 2021; 17:833-841. [PMID: 34635895 DOI: 10.1039/d1mo00334h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RNA is a central player in biological processes, but there remain major gaps in our understanding of transcriptomic processes and the underlying biochemical mechanisms regulating RNA in cells. A powerful strategy to facilitate molecular analysis of cellular RNA is the metabolic incorporation of chemical probes. In this review, we discuss current approaches for RNA metabolic labeling with modified ribonucleosides and their integration with Next-Generation Sequencing, mass spectrometry-based proteomics, and fluorescence microscopy in order to interrogate RNA behavior in its native context.
Collapse
Affiliation(s)
- Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
13
|
Hashimoto K, Fischer EC, Romesberg FE. Efforts toward Further Integration of an Unnatural Base Pair into the Biology of a Semisynthetic Organism. J Am Chem Soc 2021; 143:8603-8607. [PMID: 34096294 DOI: 10.1021/jacs.1c03860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have developed semisynthetic organisms (SSOs) that by virtue of a family of synthetic, unnatural base pairs (UBPs), store and retrieve increased information. To date, transcription in the SSOs has relied on heterologous expression of the RNA polymerase from T7 bacteriophage; here, we explore placing transcription under the control of the endogenous host multisubunit RNA polymerase. The results demonstrate that the E. coli RNA polymerase is able to transcribe DNA containing a UBP and that with the most optimal UBP identified to date it should be possible to select for increased uptake of unnatural triphosphates. These advances should facilitate the creation of next generation SSOs.
Collapse
Affiliation(s)
- Koji Hashimoto
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Emil C Fischer
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Floyd E Romesberg
- Synthorx, a Sanofi Company, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Costello A, Badran AH. Synthetic Biological Circuits within an Orthogonal Central Dogma. Trends Biotechnol 2021; 39:59-71. [PMID: 32586633 PMCID: PMC7746572 DOI: 10.1016/j.tibtech.2020.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Synthetic biology strives to reliably control cellular behavior, typically in the form of user-designed interactions of biological components to produce a predetermined output. Engineered circuit components are frequently derived from natural sources and are therefore often hampered by inadvertent interactions with host machinery, most notably within the host central dogma. Reliable and predictable gene circuits require the targeted reduction or elimination of these undesirable interactions to mitigate negative consequences on host fitness and develop context-independent bioactivities. Here, we review recent advances in biological orthogonalization, namely the insulation of researcher-dictated bioactivities from host processes, with a focus on systematic developments that may culminate in the creation of an orthogonal central dogma and novel cellular functions.
Collapse
Affiliation(s)
- Alan Costello
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ahmed H Badran
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
15
|
Abstract
Labeling of nucleic acids is required for many studies aiming to elucidate their functions and dynamics in vitro and in cells. Out of the numerous labeling concepts that have been devised, covalent labeling provides the most stable linkage, an unrivaled choice of small and highly fluorescent labels and - thanks to recent advances in click chemistry - an incredible versatility. Depending on the approach, site-, sequence- and cell-specificity can be achieved. DNA and RNA labeling are rapidly developing fields that bring together multiple areas of research: on the one hand, synthetic and biophysical chemists develop new fluorescent labels and isomorphic nucleobases as well as faster and more selective bioorthogonal reactions. On the other hand, the number of enzymes that can be harnessed for post-synthetic and site-specific labeling of nucleic acids has increased significantly. Together with protein engineering and genetic manipulation of cells, intracellular and cell-specific labeling has become possible. In this review, we provide a structured overview of covalent labeling approaches for nucleic acids and highlight notable developments, in particular recent examples. The majority of this review will focus on fluorescent labeling; however, the principles can often be readily applied to other labels. We will start with entirely chemical approaches, followed by chemo-enzymatic strategies and ribozymes, and finish with metabolic labeling of nucleic acids. Each section is subdivided into direct (or one-step) and two-step labeling approaches and will start with DNA before treating RNA.
Collapse
Affiliation(s)
- Nils Klöcker
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, D-48149 Münster, Germany.
| | | | | |
Collapse
|
16
|
Espinasse A, Lembke HK, Cao AA, Carlson EE. Modified nucleoside triphosphates in bacterial research for in vitro and live-cell applications. RSC Chem Biol 2020; 1:333-351. [PMID: 33928252 PMCID: PMC8081287 DOI: 10.1039/d0cb00078g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Modified nucleoside triphosphates (NTPs) are invaluable tools to probe bacterial enzymatic mechanisms, develop novel genetic material, and engineer drugs and proteins with new functionalities. Although the impact of nucleobase alterations has predominantly been studied due to their importance for protein recognition, sugar and phosphate modifications have also been investigated. However, NTPs are cell impermeable due to their negatively charged phosphate tail, a major hurdle to achieving live bacterial studies. Herein, we review the recent advances made to investigate and evolve bacteria and their processes with the use of modified NTPs by exploring alterations in one of the three moieties: the nucleobase, the sugar and the phosphate tail. We also present the innovative methods that have been devised to internalize NTPs into bacteria for in vivo applications.
Collapse
Affiliation(s)
- Adeline Espinasse
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Hannah K. Lembke
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Angela A. Cao
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
- Department of Medicinal Chemistry, University of Minnesota208 Harvard Street SEMinneapolisMinnesota 55454USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota321 Church St SEMinneapolisMinnesota 55454USA
| |
Collapse
|
17
|
Haratipour P, Minard C, Nakhjiri M, Negahbani A, Chamberlain BT, Osuna J, Upton TG, Zhao M, Kashemirov BA, McKenna CE. Completing the β,γ-CXY-dNTP Stereochemical Probe Toolkit: Synthetic Access to the dCTP Diastereomers and 31P and 19F NMR Correlations with Absolute Configurations. J Org Chem 2020; 85:14592-14609. [PMID: 33125847 DOI: 10.1021/acs.joc.0c01204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleoside 5'-triphosphate (dNTP) analogues in which the β,γ-oxygen is mimicked by a CXY group (β,γ-CXY-dNTPs) have provided information about DNA polymerase catalysis and fidelity. Definition of CXY stereochemistry is important to elucidate precise binding modes. We previously reported the (R)- and (S)-β,γ-CHX-dGTP diastereomers (X = F, Cl), prepared via P,C-dimorpholinamide CHCl (6a, 6b) and CHF (7a, 7b) bisphosphonates (BPs) equipped with an (R)-mandelic acid as a chiral auxiliary, with final deprotection using H2/Pd. This method also affords the β,γ-CHCl-dTTP (11a, 11b), β,γ-CHF (12a, 12b), and β,γ-CHCl (13a, 13b) dATP diastereomers as documented here, but the reductive deprotection step is not compatible with dCTP or the bromo substituent in β,γ-CHBr-dNTP analogues. To complete assembly of the toolkit, we describe an alternative synthetic strategy featuring ethylbenzylamine or phenylglycine-derived chiral BP synthons incorporating a photolabile protecting group. After acid-catalyzed removal of the (R)-(+)-α-ethylbenzylamine auxiliary, coupling with activated dCMP and photochemical deprotection, the individual diastereomers of β,γ-CHBr- (33a, 33b), β,γ-CHCl- (34a, 34b), β,γ-CHF-dCTP (35a, 35b) were obtained. The β,γ-CH(CH3)-dATPs (44a, 44b) were obtained using a methyl (R)-(-)-phenylglycinate auxiliary. 31P and 19F NMR Δδ values are correlated with CXY stereochemistry and pKa2-4 values for 13 CXY-bisphosphonic acids and imidodiphosphonic acid are tabulated.
Collapse
Affiliation(s)
- Pouya Haratipour
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Corinne Minard
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Amirsoheil Negahbani
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Brian T Chamberlain
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Jorge Osuna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Thomas G Upton
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Michelle Zhao
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Boris A Kashemirov
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| |
Collapse
|
18
|
Kimoto M, Hirao I. Genetic alphabet expansion technology by creating unnatural base pairs. Chem Soc Rev 2020; 49:7602-7626. [PMID: 33015699 DOI: 10.1039/d0cs00457j] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advancements in the creation of artificial extra base pairs (unnatural base pairs, UBPs) are opening the door to a new research area, xenobiology, and genetic alphabet expansion technologies. UBPs that function as third base pairs in replication, transcription, and/or translation enable the site-specific incorporation of novel components into DNA, RNA, and proteins. Here, we describe the UBPs developed by three research teams and their application in PCR-based diagnostics, high-affinity DNA aptamer generation, site-specific labeling of RNAs, semi-synthetic organism creation, and unnatural-amino-acid-containing protein synthesis.
Collapse
Affiliation(s)
- Michiko Kimoto
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore.
| | | |
Collapse
|
19
|
Duffy K, Arangundy-Franklin S, Holliger P. Modified nucleic acids: replication, evolution, and next-generation therapeutics. BMC Biol 2020; 18:112. [PMID: 32878624 PMCID: PMC7469316 DOI: 10.1186/s12915-020-00803-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Modified nucleic acids, also called xeno nucleic acids (XNAs), offer a variety of advantages for biotechnological applications and address some of the limitations of first-generation nucleic acid therapeutics. Indeed, several therapeutics based on modified nucleic acids have recently been approved and many more are under clinical evaluation. XNAs can provide increased biostability and furthermore are now increasingly amenable to in vitro evolution, accelerating lead discovery. Here, we review the most recent discoveries in this dynamic field with a focus on progress in the enzymatic replication and functional exploration of XNAs.
Collapse
Affiliation(s)
- Karen Duffy
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
20
|
Wang D, Zhang Y, Kleiner RE. Cell- and Polymerase-Selective Metabolic Labeling of Cellular RNA with 2'-Azidocytidine. J Am Chem Soc 2020; 142:14417-14421. [PMID: 32786764 DOI: 10.1021/jacs.0c04566] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metabolic labeling of cellular RNA is a powerful approach to investigate RNA biology. In addition to revealing whole transcriptome dynamics, targeted labeling strategies can be used to study individual RNA subpopulations within complex systems. Here, we describe a strategy for cell- and polymerase-selective RNA labeling with 2'-azidocytidine (2'-AzCyd), a modified nucleoside amenable to bioorthogonal labeling with SPAAC chemistry. In contrast to 2'-OH-containing pyrimidine ribonucleosides, which rely upon uridine-cytidine kinase 2 (UCK2) for activation, 2'-AzCyd is phosphorylated by deoxycytidine kinase (dCK), and we find that expression of dCK mediates cell-selective 2'-AzCyd labeling. Further, 2'-AzCyd is primarily incorporated into rRNA and displays low cytotoxicity and high labeling efficiency. We apply our system to analyze the turnover of rRNA during ribophagy induced by oxidative stress or mTOR inhibition to show that 28S and 18S rRNAs undergo accelerated degradation. Taken together, our work provides a general approach for studying dynamic RNA behavior with cell and polymerase specificity and reveals fundamental insights into nucleotide and nucleic acid metabolism.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yu Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
21
|
Kong D, Movahedi M, Mahdavi-Amiri Y, Yeung W, Tiburcio T, Chen D, Hili R. Evolutionary Outcomes of Diversely Functionalized Aptamers Isolated from in Vitro Evolution. ACS Synth Biol 2020; 9:43-52. [PMID: 31774997 DOI: 10.1021/acssynbio.9b00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Expanding the chemical diversity of aptamers remains an important thrust in the field in order to increase their functional potential. Previously, our group developed LOOPER, which enables the incorporation of up to 16 unique modifications throughout a ssDNA sequence, and applied it to the in vitro evolution of thrombin binders. As LOOPER-derived highly modified nucleic acids polymers are governed by two interrelated evolutionary variables, namely, functional modifications and sequence, the evolution of this polymer contrasts with that of canonical DNA. Herein we provide in-depth analysis of the evolution, including structure-activity relationships, mapping of evolutionary pressures on the library, and analysis of plausible evolutionary pathways that resulted in the first LOOPER-derived aptamer, TBL1. A detailed picture of how TBL1 interacts with thrombin and how it may mimic known peptide binders of thrombin is also proposed. Structural modeling and folding studies afford insights into how the aptamer displays critical modifications and also how modifications enhance the structural stability of the aptamer. A discussion of benefits and potential limitations of LOOPER during in vitro evolution is provided, which will serve to guide future evolutions of this highly modified class of aptamers.
Collapse
Affiliation(s)
- Dehui Kong
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Matina Movahedi
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Yasaman Mahdavi-Amiri
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Wayland Yeung
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Tristan Tiburcio
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Dickson Chen
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Ryan Hili
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
22
|
Gruber A, Haferkamp I. Nucleotide Transport and Metabolism in Diatoms. Biomolecules 2019; 9:E761. [PMID: 31766535 PMCID: PMC6995639 DOI: 10.3390/biom9120761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
Plastids, organelles that evolved from cyanobacteria via endosymbiosis in eukaryotes, provide carbohydrates for the formation of biomass and for mitochondrial energy production to the cell. They generate their own energy in the form of the nucleotide adenosine triphosphate (ATP). However, plastids of non-photosynthetic tissues, or during the dark, depend on external supply of ATP. A dedicated antiporter that exchanges ATP against adenosine diphosphate (ADP) plus inorganic phosphate (Pi) takes over this function in most photosynthetic eukaryotes. Additional forms of such nucleotide transporters (NTTs), with deviating activities, are found in intracellular bacteria, and, surprisingly, also in diatoms, a group of algae that acquired their plastids from other eukaryotes via one (or even several) additional endosymbioses compared to algae with primary plastids and higher plants. In this review, we summarize what is known about the nucleotide synthesis and transport pathways in diatom cells, and discuss the evolutionary implications of the presence of the additional NTTs in diatoms, as well as their applications in biotechnology.
Collapse
Affiliation(s)
- Ansgar Gruber
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Ilka Haferkamp
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany;
| |
Collapse
|
23
|
Abstract
To increase the scope of natural biosystem, nucleic acids have been intensively modified. One direction includes the development of a synthetic alternative to the native DNA and RNA, denoted Xenobiotic nucleic acids (XNAs) that are able to store and transfer genetic information either by base-modification or backbone-modification. Another line of research aims to develop alternative third base pair additional to natural A:T and G:C. These unnatural base pairs (UBPs) can store increased information content encoded in three base pairs. This review outlines the recent progress made towards XNA and UBP applications as new components of the genomic DNA as well as biostable aptamers. New achievements in the replacement of a bacterial genome by unnatural non-canonical nucleotides are also described.
Collapse
Affiliation(s)
- Elena Eremeeva
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, 3000 Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
24
|
Zou Z, Xu W, Mi C, Xu Y, Du K, Li B, Ye Y, Ling Y, Zhang H. Ribonucleoside triphosphates promote T7 DNA replication and the lysis of T7-Infected Escherichia coli. Biochimie 2019; 167:25-33. [PMID: 31493471 DOI: 10.1016/j.biochi.2019.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/01/2019] [Indexed: 11/19/2022]
Abstract
rNTPs are structurally similar to dNTPs, but their concentrations are much higher than those of dNTPs in cells. rNTPs in solutions or rNMP at the primer terminus or embedded in template always inhibit or block DNA replication, due to the reduced Mg2+ apparent concentration, competition of rNTPs with dNTPs, and the extra repulsive interaction of rNTP or rNMP with polymerase active site. In this work, unexpectedly, we found rNTPs can promote T7 DNA replication with the maximal promotion at rNTPs/dNTPs concentration ratio of 20. This promotion was not due to the optimized Mg2+ apparent concentration or the direct incorporation of extra rNMPs into DNA. This promotion was dependent on the concentrations and types of rNTPs. Kinetic analysis showed that this promotion was originated from the increased fraction of polymerase-DNA productive complex and the accelerated DNA polymerization. Further evidence showed that more polymerase-DNA complex was formed and their binding affinity was also enhanced in the presence of extra rNTPs. Moreover, this promotion in T7 DNA replication also accelerated the lysis of T7-infected host Escherichia coli. This work discovered that rNTPs could promote DNA replication, completely different from the traditional concept that rNTPs always inhibit DNA replication.
Collapse
Affiliation(s)
- Zhenyu Zou
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Wendi Xu
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, Ningxia, 750021, China
| | - Chenyang Mi
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Xu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Du
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Bianbian Li
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Ye
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Yanjiang West Road 107, Guangzhou, Guangdong, 510120, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 510000, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Levi-Acobas F, Katolik A, Röthlisberger P, Cokelaer T, Sarac I, Damha MJ, Leumann CJ, Hollenstein M. Compatibility of 5-ethynyl-2'F-ANA UTP with in vitro selection for the generation of base-modified, nuclease resistant aptamers. Org Biomol Chem 2019; 17:8083-8087. [PMID: 31460550 DOI: 10.1039/c9ob01515a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A modified nucleoside triphosphate bearing two modifications based on a 2'-deoxy-2'-fluoro-arabinofuranose sugar and a uracil nucleobase equipped with a C5-ethynyl moiety (5-ethynyl-2'F-ANA UTP) was synthesized. This nucleotide analog could enzymatically be incorporated into DNA oligonucleotides by primer extension and reverse transcribed to unmodified DNA. This nucleotide could be used in SELEX for the identification of high binding affinity and nuclease resistant aptamers.
Collapse
Affiliation(s)
- Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Adam Katolik
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland and Department of Chemistry, McGill University, 801 Rue Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France and Institut Pasteur, Biomics Platform, C2RT, Paris, France
| | - Ivo Sarac
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Masad J Damha
- Department of Chemistry, McGill University, 801 Rue Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| |
Collapse
|
26
|
Muthmann N, Hartstock K, Rentmeister A. Chemo-enzymatic treatment of RNA to facilitate analyses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1561. [PMID: 31392842 DOI: 10.1002/wrna.1561] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/17/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Labeling RNA is a recurring problem to make RNA compatible with state-of-the-art methodology and comes in many flavors. Considering only cellular applications, the spectrum still ranges from site-specific labeling of individual transcripts, for example, for live-cell imaging of mRNA trafficking, to metabolic labeling in combination with next generation sequencing to capture dynamic aspects of RNA metabolism on a transcriptome-wide scale. Combining the specificity of RNA-modifying enzymes with non-natural substrates has emerged as a valuable strategy to modify RNA site- or sequence-specifically with functional groups suitable for subsequent bioorthogonal reactions and thus label RNA with reporter moieties such as affinity or fluorescent tags. In this review article, we will cover chemo-enzymatic approaches (a) for in vitro labeling of RNA for application in cells, (b) for treatment of total RNA, and (c) for metabolic labeling of RNA. This article is categorized under: RNA Processing < RNA Editing and Modification RNA Methods < RNA Analyses in vitro and In Silico RNA Methods < RNA Analyses in Cells.
Collapse
Affiliation(s)
- Nils Muthmann
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Katja Hartstock
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
27
|
Wang L, Liu B, Liu Y, Sun Y, Liu W, Yu D, Zhao ZK. Escherichia coli Strain Designed for Characterizing in Vivo Functions of Nicotinamide Adenine Dinucleotide Analogues. Org Lett 2019; 21:3218-3222. [PMID: 30995052 DOI: 10.1021/acs.orglett.9b00935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An Escherichia coli strain was constructed for the efficient import of nicotinamide adenine dinucleotide (NAD) analogues into cells by limiting extracellular degradation while expressing an efficient NAD importer. In vivo functions of three NAD analogues were characterized. Nicotinamide hypoxanthine dinucleotide was identified as an inhibitor of NAD synthesis. Nicotinamide cytosine dinucleotide had excellent biocompatibility and was used for characterizing a growth-dependent degradation of in vivo nicotinamide cofactors.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemical Engineering , Northeast Electric Power University , Jilin 132012 , China
| | - Bin Liu
- School of Chemical Engineering , Northeast Electric Power University , Jilin 132012 , China
| | - Yuxue Liu
- Division of Biotechnology , Dalian Institute of Chemical Physics , CAS, Dalian 116023 , China
| | - Yue Sun
- School of Chemical Engineering , Northeast Electric Power University , Jilin 132012 , China
| | - Wujun Liu
- Institute of Cancer Stem Cell , Dalian Medical University , Dalian 116044 , China
| | - Dayu Yu
- School of Chemical Engineering , Northeast Electric Power University , Jilin 132012 , China
| | - Zongbao K Zhao
- Division of Biotechnology , Dalian Institute of Chemical Physics , CAS, Dalian 116023 , China
| |
Collapse
|
28
|
Flamme M, McKenzie LK, Sarac I, Hollenstein M. Chemical methods for the modification of RNA. Methods 2019; 161:64-82. [PMID: 30905751 DOI: 10.1016/j.ymeth.2019.03.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
RNA is often considered as being the vector for the transmission of genetic information from DNA to the protein synthesis machinery. However, besides translation RNA participates in a broad variety of fundamental biological roles such as gene expression and regulation, protein synthesis, and even catalysis of chemical reactions. This variety of function combined with intricate three-dimensional structures and the discovery of over 100 chemical modifications in natural RNAs require chemical methods for the modification of RNAs in order to investigate their mechanism, location, and exact biological roles. In addition, numerous RNA-based tools such as ribozymes, aptamers, or therapeutic oligonucleotides require the presence of additional chemical functionalities to strengthen the nucleosidic backbone against degradation or enhance the desired catalytic or binding properties. Herein, the two main methods for the chemical modification of RNA are presented: solid-phase synthesis using phosphoramidite precursors and the enzymatic polymerization of nucleoside triphosphates. The different synthetic and biochemical steps required for each method are carefully described and recent examples of practical applications based on these two methods are discussed.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France; Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Luke K McKenzie
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Ivo Sarac
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
29
|
Zhang Y, Kleiner RE. A Metabolic Engineering Approach to Incorporate Modified Pyrimidine Nucleosides into Cellular RNA. J Am Chem Soc 2019; 141:3347-3351. [PMID: 30735369 DOI: 10.1021/jacs.8b11449] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The incorporation of modified nucleotides into RNA is a powerful strategy to probe RNA structure and function. While a wide variety of modified nucleotides can be incorporated into RNA in vitro using chemical or enzymatic synthesis, strategies for the metabolic incorporation of artificial nucleotides into cellular RNA are limited, largely due to the incompatibility of modified nucleobases and nucleosides with nucleotide salvage pathways. In this work, we develop a metabolic engineering strategy to facilitate the labeling of cellular RNA with noncanonical pyrimidine nucleosides. First, we use structure-based protein engineering to alter the substrate specificity of uridine-cytidine kinase 2 (UCK2), a key enzyme in the pyrimidine nucleotide salvage pathway. Next, we show that expression of mutant UCK2 in HeLa and U2OS cells is sufficient to enable the incorporation of 5-azidomethyl uridine (5-AmU) into cellular RNA and promotes RNA labeling by other C5-modified pyrimidines. Finally, we apply UCK2-mediated RNA labeling with 5-AmU to study RNA trafficking and turnover during normal and stress conditions and find diminished RNA localization in the cytosol during arsenite stress. Taken together, our study provides a general strategy for the incorporation of modified pyrimidine nucleosides into cellular RNA and expands the chemical toolkit of modified bases for studying dynamic RNA behavior in living cells.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Ralph E Kleiner
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
30
|
Affiliation(s)
- Floyd E. Romesberg
- Department of ChemistryThe Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
31
|
Non canonical genetic material. Curr Opin Biotechnol 2018; 57:25-33. [PMID: 30554069 DOI: 10.1016/j.copbio.2018.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 01/20/2023]
Abstract
To increase the scope of natural biosystem, nucleic acids have been intensively modified. One direction includes the development of a synthetic alternative to the native DNA and RNA, denoted Xenobiotic nucleic acids (XNAs) that are able to store and transfer genetic information either by base-modification or backbone-modification. Another line of research aims to develop alternative third base pair additional to natural A:T and G:C. These unnatural base pairs (UBPs) can store increased information content encoded in three base pairs. This review outlines the recent progress made towards XNA and UBP applications as new components of the genomic DNA as well as biostable aptamers. New achievements in the replacement of a bacterial genome by unnatural non-canonical nucleotides are also described.
Collapse
|
32
|
Dien VT, Holcomb M, Feldman AW, Fischer EC, Dwyer TJ, Romesberg FE. Progress Toward a Semi-Synthetic Organism with an Unrestricted Expanded Genetic Alphabet. J Am Chem Soc 2018; 140:16115-16123. [PMID: 30418780 DOI: 10.1021/jacs.8b08416] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have developed a family of unnatural base pairs (UBPs), exemplified by the pair formed between dNaM and dTPT3, for which pairing is mediated not by complementary hydrogen bonding but by hydrophobic and packing forces. These UBPs enabled the creation of the first semisynthetic organisms (SSOs) that store increased genetic information and use it to produce proteins containing noncanonical amino acids. However, retention of the UBPs was poor in some sequence contexts. Here, to optimize the SSO, we synthesize two novel benzothiophene-based dNaM analogs, dPTMO and dMTMO, and characterize the corresponding UBPs, dPTMO-dTPT3 and dMTMO-dTPT3. We demonstrate that these UBPs perform similarly to, or slightly worse than, dNaM-dTPT3 in vitro. However, in the in vivo environment of an SSO, retention of dMTMO-dTPT3, and especially dPTMO-dTPT3, is significantly higher than that of dNaM-dTPT3. This more optimal in vivo retention results from better replication, as opposed to more efficient import of the requisite unnatural nucleoside triphosphates. Modeling studies suggest that the more optimal replication results from specific internucleobase interactions mediated by the thiophene sulfur atoms. Finally, we show that dMTMO and dPTMO efficiently template the transcription of RNA containing TPT3 and that their improved retention in DNA results in more efficient production of proteins with noncanonical amino acids. This is the first instance of using performance within the SSO as part of the UBP evaluation and optimization process. From a general perspective, the results demonstrate the importance of evaluating synthetic biology "parts" in their in vivo context and further demonstrate the ability of hydrophobic and packing interactions to replace the complementary hydrogen bonding that underlies the replication of natural base pairs. From a more practical perspective, the identification of dMTMO-dTPT3 and especially dPTMO-dTPT3 represents significant progress toward the development of SSOs with an unrestricted ability to store and retrieve increased information.
Collapse
Affiliation(s)
- Vivian T Dien
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 United States
| | - Matthew Holcomb
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 United States
| | - Aaron W Feldman
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 United States
| | - Emil C Fischer
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 United States
| | - Tammy J Dwyer
- Department of Chemistry and Biochemistry , University of San Diego , San Diego , California 92110 , United States
| | - Floyd E Romesberg
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 United States
| |
Collapse
|
33
|
Dien VT, Morris SE, Karadeema RJ, Romesberg FE. Expansion of the genetic code via expansion of the genetic alphabet. Curr Opin Chem Biol 2018; 46:196-202. [PMID: 30205312 DOI: 10.1016/j.cbpa.2018.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
Current methods to expand the genetic code enable site-specific incorporation of non-canonical amino acids (ncAAs) into proteins in eukaryotic and prokaryotic cells. However, current methods are limited by the number of codons possible, their orthogonality, and possibly their effects on protein synthesis and folding. An alternative approach relies on unnatural base pairs to create a virtually unlimited number of genuinely new codons that are efficiently translated and highly orthogonal because they direct ncAA incorporation using forces other than the complementary hydrogen bonds employed by their natural counterparts. This review outlines progress and achievements made towards developing a functional unnatural base pair and its use to generate semi-synthetic organisms with an expanded genetic alphabet that serves as the basis of an expanded genetic code.
Collapse
Affiliation(s)
- Vivian T Dien
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sydney E Morris
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rebekah J Karadeema
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
34
|
Arranz-Gibert P, Vanderschuren K, Isaacs FJ. Next-generation genetic code expansion. Curr Opin Chem Biol 2018; 46:203-211. [PMID: 30072242 DOI: 10.1016/j.cbpa.2018.07.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/07/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
Engineering of the translation apparatus has permitted the site-specific incorporation of nonstandard amino acids (nsAAs) into proteins, thereby expanding the genetic code of organisms. Conventional approaches have focused on porting tRNAs and aminoacyl-tRNA synthetases (aaRS) from archaea into bacterial and eukaryotic systems where they have been engineered to site-specifically encode nsAAs. More recent work in genome engineering has opened up the possibilities of whole genome recoding, in which organisms with alternative genetic codes have been constructed whereby codons removed from the genetic code can be repurposed as new sense codons dedicated for incorporation of nsAAs. These advances, together with the advent of engineered ribosomes and new molecular evolution methods, enable multisite incorporation of nsAAs and nonstandard monomers (nsM) paving the way for the template-directed production of functionalized proteins, new classes of polymers, and genetically encoded materials.
Collapse
Affiliation(s)
- Pol Arranz-Gibert
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Equal contribution
| | - Koen Vanderschuren
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Equal contribution
| | - Farren J Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
35
|
Pezo V, Hassan C, Louis D, Sargueil B, Herdewijn P, Marlière P. Metabolic Recruitment and Directed Evolution of Nucleoside Triphosphate Uptake in Escherichia coli. ACS Synth Biol 2018; 7:1565-1572. [PMID: 29746092 DOI: 10.1021/acssynbio.8b00048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the design and elaboration of a selection protocol for importing a canonical substrate of DNA polymerase, thymidine triphosphate (dTTP) in Escherichia coli. Bacterial strains whose growth depend on dTTP uptake, through the action of an algal plastid transporter expressed from a synthetic gene inserted in the chromosome, were constructed and shown to withstand the simultaneous loss of thymidylate synthase and thymidine kinase. Such thyA tdk dual deletant strains provide an experimental model of tight nutritional containment for preventing dissemination of microbial GMOs. Our strains transported the four canonical dNTPs, in the following order of preference: dCTP > dATP ≥ dGTP > dTTP. Prolonged cultivation under limitation of exogenous dTTP led to the enhancement of dNTP transport by adaptive evolution. We investigated the uptake of dCTP analogues with altered sugar or nucleobase moieties, which were found to cause a loss of cell viability and an increase of mutant frequency, respectively. E. coli strains equipped with nucleoside triphosphate transporters should be instrumental for evolving organisms whose DNA genome is morphed chemically by fully substituting its canonical nucleotide components.
Collapse
Affiliation(s)
- Valérie Pezo
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
| | | | | | - Bruno Sargueil
- CNRS UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l’Observatoire, 75006 Paris, France
| | - Piet Herdewijn
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
| | - Philippe Marlière
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
- TESSSI, 81 rue Réaumur, 75002 Paris, France
| |
Collapse
|
36
|
Zawada Z, Tatar A, Mocilac P, Buděšínský M, Kraus T. Transport of Nucleoside Triphosphates into Cells by Artificial Molecular Transporters. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zbigniew Zawada
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Praha 6 Czech Republic
| | - Ameneh Tatar
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Praha 6 Czech Republic
| | - Pavle Mocilac
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Praha 6 Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Praha 6 Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Praha 6 Czech Republic
| |
Collapse
|
37
|
Zawada Z, Tatar A, Mocilac P, Buděšínský M, Kraus T. Transport of Nucleoside Triphosphates into Cells by Artificial Molecular Transporters. Angew Chem Int Ed Engl 2018; 57:9891-9895. [PMID: 29578619 DOI: 10.1002/anie.201801306] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/14/2018] [Indexed: 01/18/2023]
Abstract
Chemically modified nucleoside triphosphates (NTPs) are widely exploited as unnatural metabolites in chemical biology and medicinal chemistry. Because anionic NTPs do not permeate cell membranes, their corresponding neutral precursors are employed in cell-based assays. These precursors become active metabolites after enzymatic conversion, which often proceeds insufficiently. Here we show that metabolically-active NTPs can be directly transported into eukaryotic cells and bacteria by the action of designed synthetic nucleoside triphosphate transporters (SNTTs). The transporter is composed of a receptor, which forms a non-covalent complex with a triphosphate anion, and a cell-penetrating agent, which translocates the complex across the plasma membrane. NTP is then released from the complex in the intracellular milieu and accumulates in nuclei and nucleoli in high concentration. The transport of NTPs proceeds rapidly (seconds to minutes) and selectively even in the presence of other organic anions. We demonstrate that this operationally simple and efficient means of transport of fluorescently labelled NTPs into cells can be used for metabolic labeling of DNA in live cells.
Collapse
Affiliation(s)
- Zbigniew Zawada
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Praha 6, Czech Republic
| | - Ameneh Tatar
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Praha 6, Czech Republic
| | - Pavle Mocilac
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Praha 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Praha 6, Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Praha 6, Czech Republic
| |
Collapse
|