1
|
Völker J, Gindikin V, Breslauer KJ. Higher-Order DNA Secondary Structures and Their Transformations: The Hidden Complexities of Tetrad and Quadruplex DNA Structures, Complexes, and Modulatory Interactions Induced by Strand Invasion Events. Biomolecules 2024; 14:1532. [PMID: 39766239 PMCID: PMC11673204 DOI: 10.3390/biom14121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
We demonstrate that a short oligonucleotide complementary to a G-quadruplex domain can invade this iconic, noncanonical DNA secondary structure in ways that profoundly influence the properties and differential occupancies of the resulting DNA polymorphic products. Our spectroscopic mapping of the conformational space of the associated reactants and products, both before and after strand invasion, yield unanticipated outcomes which reveal several overarching features. First, strand invasion induces the disruption of DNA secondary structural elements in both the invading strand (which can assume an iDNA tetrad structure) and the invaded species (a G-quadruplex). The resultant cascade of coupled alterations represents a potential pathway for the controlled unfolding of kinetically trapped DNA states, a feature that may be characteristic of biological regulatory mechanisms. Furthermore, the addition of selectively designed, exogenous invading oligonucleotides can enable the manipulation of noncanonical DNA conformations for biomedical applications. Secondly, our results highlight the importance of metastability, including the interplay between slower and faster kinetic processes in determining preferentially populated DNA states. Collectively, our data reveal the importance of sample history in defining state populations, which, in turn, determine preferred pathways for further folding steps, irrespective of the position of the thermodynamic equilibrium. Finally, our spectroscopic data reveal the impact of topological constraints on the differential stabilities of base-paired domains. We discuss how our collective observations yield insights into the coupled and uncoupled cascade of strand-invasion-induced transformations between noncanonical DNA forms, potentially as components of molecular wiring diagrams that regulate biological processes.
Collapse
Affiliation(s)
- Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
| | - Vera Gindikin
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
| | - Kenneth J. Breslauer
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
- The Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Víšková P, Ištvánková E, Ryneš J, Džatko Š, Loja T, Živković ML, Rigo R, El-Khoury R, Serrano-Chacón I, Damha MJ, González C, Mergny JL, Foldynová-Trantírková S, Trantírek L. In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells. Nat Commun 2024; 15:1992. [PMID: 38443388 PMCID: PMC10914786 DOI: 10.1038/s41467-024-46221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
I-Motifs (iM) are non-canonical DNA structures potentially forming in the accessible, single-stranded, cytosine-rich genomic regions with regulatory roles. Chromatin, protein interactions, and intracellular properties seem to govern iM formation at sites with i-motif formation propensity (iMFPS) in human cells, yet their specific contributions remain unclear. Using in-cell NMR with oligonucleotide iMFPS models, we monitor iM-associated structural equilibria in asynchronous and cell cycle-synchronized HeLa cells at 37 °C. Our findings show that iMFPS displaying pHT < 7 under reference in vitro conditions occur predominantly in unfolded states in cells, while those with pHT > 7 appear as a mix of folded and unfolded states depending on the cell cycle phase. Comparing these results with previous data obtained using an iM-specific antibody (iMab) reveals that cell cycle-dependent iM formation has a dual origin, and iM formation concerns only a tiny fraction (possibly 1%) of genomic sites with iM formation propensity. We propose a comprehensive model aligning observations from iMab and in-cell NMR and enabling the identification of iMFPS capable of adopting iM structures under physiological conditions in living human cells. Our results suggest that many iMFPS may have biological roles linked to their unfolded states.
Collapse
Affiliation(s)
- Pavlína Víšková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Jan Ryneš
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Šimon Džatko
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Centre for Advanced Materials Application, Slovak Academy of Sciences, 845 11, Bratislava, Slovakia
| | - Tomáš Loja
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Martina Lenarčič Živković
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Riccardo Rigo
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35131, Padova, Italy
| | - Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, QC, H3A0B8, Canada
| | - Israel Serrano-Chacón
- Instituto de Química Física 'Blas Cabrera', CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC, H3A0B8, Canada
| | - Carlos González
- Instituto de Química Física 'Blas Cabrera', CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Jean-Louis Mergny
- Institute of Biophysics, Czech Academy of Sciences, Brno, 612 00, Czech Republic
- Laboratoire d'Optique & Biosciences, Institut Polytechnique de Paris, Inserm, CNRS, Ecole Polytechnique, Palaiseau, 91120, France
| | - Silvie Foldynová-Trantírková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
- Institute of Biophysics, Czech Academy of Sciences, Brno, 612 00, Czech Republic.
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
3
|
Serrano-Chacón I, Mir B, Cupellini L, Colizzi F, Orozco M, Escaja N, González C. pH-Dependent Capping Interactions Induce Large-Scale Structural Transitions in i-Motifs. J Am Chem Soc 2023; 145:3696-3705. [PMID: 36745195 PMCID: PMC9936585 DOI: 10.1021/jacs.2c13043] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 02/07/2023]
Abstract
We study here a DNA oligonucleotide having the ability to form two different i-motif structures whose relative stability depends on pH and temperature. The major species at neutral pH is stabilized by two C:C+ base pairs capped by two minor groove G:C:G:C tetrads. The high pH and thermal stability of this structure are mainly due to the favorable effect of the minor groove tetrads on their adjacent positively charged C:C+ base pairs. At pH 5, we observe a more elongated i-motif structure consisting of four C:C+ base pairs capped by two G:T:G:T tetrads. Molecular dynamics calculations show that the conformational transition between the two structures is driven by the protonation state of key cytosines. In spite of large conformational differences, the transition between the acidic and neutral structures can occur without unfolding of the i-motif. These results represent the first case of a conformational switch between two different i-motif structures and illustrate the dramatic pH-dependent plasticity of this fascinating DNA motif.
Collapse
Affiliation(s)
- Israel Serrano-Chacón
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Bartomeu Mir
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- Inorganic
and Organic Chemistry Department, Organic Chemistry Section, and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028Barcelona, Spain
| | - Lorenzo Cupellini
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Francesco Colizzi
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Modesto Orozco
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
- Departament
de Bioquímica i Biomedicina. Facultat de Biologia, Universitat de Barcelona, 08028Barcelona, Spain
| | - Núria Escaja
- Inorganic
and Organic Chemistry Department, Organic Chemistry Section, and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028Barcelona, Spain
- BIOESTRAN
Associated Unit UB-CSIC, 08028Barcelona, Spain
| | - Carlos González
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- BIOESTRAN
Associated Unit UB-CSIC, 08028Barcelona, Spain
| |
Collapse
|
4
|
Smeller L. Pressure Tuning Studies of Four-Stranded Nucleic Acid Structures. Int J Mol Sci 2023; 24:ijms24021803. [PMID: 36675317 PMCID: PMC9866529 DOI: 10.3390/ijms24021803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Four-stranded folded structures, such as G-quadruplexes and i-motifs in the genome, have attracted a growing interest nowadays since they have been discovered in the telomere and in several oncogene promoter regions. Their biological relevance is undeniable since their existence in living cells has been observed. In vivo they take part in the regulation of gene expression, in vitro they are used in the analytical biochemistry. They are attractive and promising targets for cancer therapy. Pressure studies can reveal specific aspects of the molecular processes. Pressure tuning experiments allow the determination of the volumetric parameters of the folded structures and of the folding-unfolding processes. Here, we review the thermodynamic parameters with a special focus on the volumetric ones, which were determined using pressure tuning spectroscopic experiments on the G-quadruplex and i-motif nucleic acid forms.
Collapse
Affiliation(s)
- László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| |
Collapse
|
5
|
Liu L, Zhu L, Tong H, Su C, Wells JW, Chalikian TV. Distribution of Conformational States Adopted by DNA from the Promoter Regions of the VEGF and Bcl-2 Oncogenes. J Phys Chem B 2022; 126:6654-6670. [PMID: 36001297 DOI: 10.1021/acs.jpcb.2c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employed a previously described procedure, based on circular dichroism (CD) spectroscopy, to quantify the distribution of conformational states adopted by equimolar mixtures of complementary G-rich and C-rich DNA strands from the promoter regions of the VEGF and Bcl-2 oncogenes. Spectra were recorded at different pHs, concentrations of KCl, and temperatures. The temperature dependences of the fractional populations of the duplex, G-quadruplex, i-motif, and coiled conformations of each promoter were then analyzed within the framework of a thermodynamic model to obtain the enthalpy and melting temperature of each folded-to-unfolded transition involved in the equilibrium. A comparison of the conformational data on the VEGF and Bcl-2 DNA with similar results on the c-MYC DNA, which we reported previously, reveals that the distribution of conformational states depends on the specific DNA sequence and is modulated by environmental factors. Under the physiological conditions of room temperature, neutral pH, and elevated concentrations of potassium ions, the duplex conformation coexists with the G-quadruplex conformation in proportions that depend on the sequence. This observed conformational diversity has biological implications, and it further supports our previously proposed thermodynamic hypothesis of gene regulation. In that hypothesis, a specific distribution of duplex and tetraplex conformations in a promoter region is fine-tuned to maintain the healthy level of gene expression. Any deviation from a healthy distribution of conformational states may result in pathology stemming from up- or downregulation of the gene.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Legeng Zhu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Haoyuan Tong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chongyu Su
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
6
|
Mondal M, Gao YQ. Microscopic Insight into pH-Dependent Conformational Dynamics and Noncanonical Base Pairing in Telomeric i-Motif DNA. J Phys Chem Lett 2022; 13:5109-5115. [PMID: 35657602 DOI: 10.1021/acs.jpclett.2c00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gene regulatory functions of noncanonical i-motif DNA are associated with dynamic i-motif formation in the cellular environment and pH variation. With atomistic simulations, we show the dramatic influence of solvent pH on the conformational dynamics of biologically relevant telomeric i-motif DNA coupled with protonation of cytosine bases in different conformations. We rationalized the pH-dependent dynamics and conformational variability of the i-motif in terms of base pairing and specific loop motions. The human telomeric i-motif is found to acquire various metastable folded conformations at pH values near the pKa of cytosine with the formation of a noncanonical C:C W:W trans base pair along with the hemiprotonated C:C+ pairs in the i-motif core. pH-dependent dynamics and the local solvent structure of i-motif DNA imply that the presence of a cosolvent or molecular crowding can promote i-motif formation in vivo by changing the conformational fluctuations and hydration state of the structure.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107 Shenzhen, China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107 Shenzhen, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, 100871 Beijing, China
- Beijing Advanced Innovation Center for Genomics, Peking University, 100871 Beijing, China
| |
Collapse
|
7
|
Chalikian TV, Macgregor RB. Volumetric Properties of Four-Stranded DNA Structures. BIOLOGY 2021; 10:813. [PMID: 34440045 PMCID: PMC8389613 DOI: 10.3390/biology10080813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/27/2022]
Abstract
Four-stranded non-canonical DNA structures including G-quadruplexes and i-motifs have been found in the genome and are thought to be involved in regulation of biological function. These structures have been implicated in telomere biology, genomic instability, and regulation of transcription and translation events. To gain an understanding of the molecular determinants underlying the biological role of four-stranded DNA structures, their biophysical properties have been extensively studied. The limited libraries on volume, expansibility, and compressibility accumulated to date have begun to provide insights into the molecular origins of helix-to-coil and helix-to-helix conformational transitions involving four-stranded DNA structures. In this article, we review the recent progress in volumetric investigations of G-quadruplexes and i-motifs, emphasizing how such data can be used to characterize intra-and intermolecular interactions, including solvation. We describe how volumetric data can be interpreted at the molecular level to yield a better understanding of the role that solute-solvent interactions play in modulating the stability and recognition events of nucleic acids. Taken together, volumetric studies facilitate unveiling the molecular determinants of biological events involving biopolymers, including G-quadruplexes and i-motifs, by providing one more piece to the thermodynamic puzzle describing the energetics of cellular processes in vitro and, by extension, in vivo.
Collapse
Affiliation(s)
- Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada;
| | | |
Collapse
|
8
|
Tateishi-Karimata H, Sugimoto N. Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Res 2021; 49:7839-7855. [PMID: 34244785 PMCID: PMC8373145 DOI: 10.1093/nar/gkab580] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer and neurodegenerative diseases are caused by genetic and environmental factors. Expression of tumour suppressor genes is suppressed by mutations or epigenetic silencing, whereas for neurodegenerative disease-related genes, nucleic acid-based effects may be presented through loss of protein function due to erroneous protein sequences or gain of toxic function from extended repeat transcripts or toxic peptide production. These diseases are triggered by damaged genes and proteins due to lifestyle and exposure to radiation. Recent studies have indicated that transient, non-canonical structural changes in nucleic acids in response to the environment can regulate the expression of disease-related genes. Non-canonical structures are involved in many cellular functions, such as regulation of gene expression through transcription and translation, epigenetic regulation of chromatin, and DNA recombination. Transcripts generated from repeat sequences of neurodegenerative disease-related genes form non-canonical structures that are involved in protein transport and toxic aggregate formation. Intracellular phase separation promotes transcription and protein assembly, which are controlled by the nucleic acid structure and can influence cancer and neurodegenerative disease progression. These findings may aid in elucidating the underlying disease mechanisms. Here, we review the influence of non-canonical nucleic acid structures in disease-related genes on disease onset and progression.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
9
|
Liu L, Scott L, Tariq N, Kume T, Dubins DN, Macgregor RB, Chalikian TV. Volumetric Interplay between the Conformational States Adopted by Guanine-Rich DNA from the c-MYC Promoter. J Phys Chem B 2021; 125:7406-7416. [PMID: 34185535 DOI: 10.1021/acs.jpcb.1c04075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The kinetic and thermodynamic stabilities of G-quadruplex structures have been extensively studied. In contrast, systematic investigations of the volumetric properties of G-quadruplexes determining their pressure stability are still relatively scarce. The G-rich strand from the promoter region of the c-MYC oncogene (G-strand) is known to adopt a range of conformational states including the duplex, G-quadruplex, and coil states depending on the presence of the complementary C-rich strand (C-strand) and solution conditions. In this work, we report changes in volume, ΔV, and adiabatic compressibility, ΔKS, accompanying interconversions of G-strand between the G-quadruplex, duplex, and coil conformations in the presence and absence of C-strand. We rationalize these volumetric characteristics in terms of the hydration and intrinsic properties of the DNA in each of the sampled conformational states. We further use our volumetric results in conjunction with the reported data on changes in expansibility, ΔE, and heat capacity, ΔCP, associated with G-quadruplex-to-coil transitions to construct the pressure-temperature phase diagram describing the stability of the G-quadruplex. The phase diagram is elliptic in shape, resembling the classical elliptic phase diagram of a globular protein, and is distinct from the phase diagram for duplex DNA. The observed similarity of the pressure-temperature phase diagrams of G-quadruplexes and globular proteins stems from their shared structural and hydration features that, in turn, result in the similarity of their volumetric properties. To the best of our knowledge, this is the first pressure-temperature stability diagram reported for a G-quadruplex.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Lily Scott
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Nabeel Tariq
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Takuma Kume
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - David N Dubins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
10
|
Cheng M, Chen J, Ju H, Zhou J, Mergny JL. Drivers of i-DNA Formation in a Variety of Environments Revealed by Four-Dimensional UV Melting and Annealing. J Am Chem Soc 2021; 143:7792-7807. [PMID: 33988990 DOI: 10.1021/jacs.1c02209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
i-DNA is a four-stranded, pH-sensitive structure formed by cytosine-rich DNA sequences. Previous reports have addressed the conditions for formation of this motif in DNA in vitro and validated its existence in human cells. Unfortunately, these in vitro studies have often been performed under different experimental conditions, making comparisons difficult. To overcome this, we developed a four-dimensional UV melting and annealing (4DUVMA) approach to analyze i-DNA formation under a variety of conditions (e.g., pH, temperature, salt, crowding). Analysis of 25 sequences provided a global understanding of i-DNA formation under disparate conditions, which should ultimately allow the design of accurate prediction tools. For example, we found reliable linear correlations between the midpoint of pH transition and temperature (-0.04 ± 0.003 pH unit per 1.0 °C temperature increment) and between the melting temperature and pH (-23.8 ± 1.1 °C per pH unit increment). In addition, by analyzing the hysteresis between denaturing and renaturing profiles in both pH and thermal transitions, we found that loop length, nature of the C-tracts, pH, temperature, and crowding agents all play roles in i-DNA folding kinetics. Interestingly, our data indicate which conformer is more favorable for the sequences with an odd number of cytosine base pairs. Then the thermal and pH stabilities of "native" i-DNAs from human promoter genes were measured under near physiological conditions (pH 7.0, 37 °C). The 4DUVMA method can become a universal resource to analyze the properties of any i-DNA-prone sequence.
Collapse
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR5320, IECB, Pessac 33607, France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR5320, IECB, Pessac 33607, France.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau Cedex 91128, France
| |
Collapse
|
11
|
Chalikian TV, Liu L, Macgregor RB. Duplex-tetraplex equilibria in guanine- and cytosine-rich DNA. Biophys Chem 2020; 267:106473. [PMID: 33031980 DOI: 10.1016/j.bpc.2020.106473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Noncanonical four-stranded DNA structures, including G-quadruplexes and i-motifs, have been discovered in the cell and are implicated in a variety of genomic regulatory functions. The tendency of a specific guanine- and cytosine-rich region of genomic DNA to adopt a four-stranded conformation depends on its ability to overcome the constraints of duplex base-pairing by undergoing consecutive duplex-to-coil and coil-to-tetraplex transitions. The latter ability is determined by the balance between the free energies of participating ordered and disordered structures. In this review, we present an overview of the literature on the stability of G-quadruplex and i-motif structures and discuss the extent of duplex-tetraplex competition as a function of the sequence context of the DNA and environmental conditions including temperature, pH, salt, molecular crowding, and the presence of G-quadruplex-binding ligands. We outline how the results of in vitro studies can be expanded to understanding duplex-tetraplex equilibria in vivo.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
12
|
Kuang G, Zhang M, Kang S, Hu D, Li X, Wei Z, Gong X, An LK, Huang ZS, Shu B, Li D. Syntheses and Evaluation of New Bisacridine Derivatives for Dual Binding of G-Quadruplex and i-Motif in Regulating Oncogene c-myc Expression. J Med Chem 2020; 63:9136-9153. [PMID: 32787078 DOI: 10.1021/acs.jmedchem.9b01917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The c-myc oncogene is an important regulator for cell growth and differentiation, and its aberrant overexpression is closely related to the occurrence and development of various cancers. Thus, the suppression of c-myc transcription and expression has been investigated for cancer treatment. In this study, various new bisacridine derivatives were synthesized and evaluated for their binding with c-myc promoter G-quadruplex and i-motif. We found that a9 could bind to and stabilize both G-quadruplex and i-motif, resulting in the downregulation of c-myc gene transcription. a9 could inhibit cancer cell proliferation and induce SiHa cell apoptosis and cycle arrest. a9 exhibited tumor growth inhibition activity in a SiHa xenograft tumor model, which might be related to its binding with c-myc promoter G-quadruplex and i-motif. Our results suggested that a9 as a dual G-quadruplex/i-motif binder could be effective in both oncogene replication and transcription and become a promising lead compound for further development with improved potency and selectivity.
Collapse
Affiliation(s)
- Guotao Kuang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Shuangshuang Kang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Dexuan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Xiaoya Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Zuzhuang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Xue Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Bing Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| |
Collapse
|
13
|
Shi L, Cao F, Zhang L, Tian Y. I-motif Formed at Physiological pH Triggered by Spatial Confinement of Nanochannels: An Electrochemical Platform for pH Monitoring in Brain Microdialysates. Anal Chem 2020; 92:4535-4540. [PMID: 32052626 DOI: 10.1021/acs.analchem.9b05732] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The development of switches responding to specific pH changes was particularly useful in wide application fields. Owing to flexible switches simulated by pH, i-motif DNAs are widely used as a pH sensor. But its character of structure transition strongly dependent on acidic pH severely hampers the application of i-motif DNA in physiological media. Herein, we report the stable i-motif structure formed at a physiological pH triggered by spatial confinement of silica nanochannels. Three classic DNA chains containing 21-mer i-motif domain base-pairs and a single-stranded multiply (T)n spacer, 5'-COOH-(T)n-CCCTAACCCTAACCCTAACCC-3', were employed to evaluate the enhanced stability of i-motif structure. Compared to their free states in a dilute solution, the transition pH of all i-motif DNAs decorated in nanochannels remarkably shifts toward a neutral pH. Moreover, the transition midpoint can be tuned sensitively over the physiologically relevant pH range through slightly varying the length of T base spacer. Density functional theory (DFT) calculations validate that the increased proton density in a nanochannel triggers the formation of an i-motif structure under a neutral pH. Finally, this i-motif DNA based nanochannels electrode was successfully employed to monitor pH in brain microdialysates followed by cerebral ischemia. The present approach is not limited by fundamental investigation for DNA conformation but may extend toward the manipulation of i-motif based structures for artificial molecular machines and signaling systems.
Collapse
Affiliation(s)
- Lu Shi
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Feifei Cao
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Limin Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
14
|
Liu L, Ma C, Wells JW, Chalikian TV. Conformational Preferences of DNA Strands from the Promoter Region of the c-MYC Oncogene. J Phys Chem B 2020; 124:751-762. [PMID: 31923361 DOI: 10.1021/acs.jpcb.9b10518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We characterized the conformational preferences of DNA in an equimolar mixture of complementary G-rich and C-rich strands from the promoter region of the c-MYC oncogene. Our CD-based approach presupposes that the CD spectrum of such a mixture is the spectral sum of the constituent duplex, G-quadruplex, i-motif, and coiled conformations. Spectra were acquired over a range of temperatures at different pHs and concentrations of KCl. Each spectrum was unmixed in terms of the predetermined spectra of the constituent conformational states to obtain the corresponding weighting factors for their fractional contributions to the total population of DNA. The temperature dependences of those contributions then were analyzed in concert according to a model based on a thermodynamic representation of the underlying equilibria. Fitted estimates of the melting enthalpy and temperature obtained for the duplex, G-quadruplex, and i-motif imply that the driving force behind dissociation of the duplex and the concomitant formation of tetrahelical structures is the folding of the G-strand into the G-quadruplex. The liberated C-strand adopts the i-motif conformation at acidic pH and exists in the coiled state at neutral pH. The i-motif alone cannot induce dissociation of the duplex even at pH 5.0, at which it is most stable. Under the physiological conditions of neutral pH, elevated potassium, and room temperature, the duplex and G-quadruplex conformations coexist with the C-strand in the coiled state. Taken together, our results suggest a novel, thermodynamically controlled mechanism for the regulation of gene expression.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Congshan Ma
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| |
Collapse
|
15
|
Somkuti J, Molnár OR, Smeller L. Revealing unfolding steps and volume changes of human telomeric i-motif DNA. Phys Chem Chem Phys 2020; 22:23816-23823. [DOI: 10.1039/d0cp03894f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The i-motif structure of the human telomeric DNA was destabilized by pressure and unfolded with a negative volume change.
Collapse
Affiliation(s)
- Judit Somkuti
- Department of Biophysics and Radiation Biology
- Semmelweis University
- Tuzolto utca 37-47 1094
- Hungary
| | - Orsolya Réka Molnár
- Department of Biophysics and Radiation Biology
- Semmelweis University
- Tuzolto utca 37-47 1094
- Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology
- Semmelweis University
- Tuzolto utca 37-47 1094
- Hungary
| |
Collapse
|
16
|
Gao T, Luo Y, Li W, Cao Y, Pei R. Progress in the isolation of aptamers to light-up the dyes and the applications. Analyst 2020; 145:701-718. [DOI: 10.1039/c9an01825e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The progress in the selection of aptamers to light-up the dyes and the related applications are reviewed.
Collapse
Affiliation(s)
- Tian Gao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yu Luo
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
17
|
Takahashi S, Sugimoto N. Stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells. Chem Soc Rev 2020; 49:8439-8468. [DOI: 10.1039/d0cs00594k] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review provides the biophysicochemical background and recent advances in stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe
- Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe
- Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST)
| |
Collapse
|
18
|
Mondal M, Bhattacharyya D, Gao YQ. Structural properties and influence of solvent on the stability of telomeric four-stranded i-motif DNA. Phys Chem Chem Phys 2019; 21:21549-21560. [PMID: 31536074 DOI: 10.1039/c9cp03253c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repetitive cytosine rich i-motif forming sequences are abundant in the telomere, centromere and promoters of several oncogenes and in some instances are known to regulate transcription and gene expression. The in vivo existence of i-motif structures demands further insight into the factors affecting their formation and stability and development of better understanding of their gene regulatory functions. Most prior studies characterizing the conformational dynamics of i-motifs are based on i-motif forming synthetic constructs. Here, we present a systematic study on the stability and structural properties of biologically relevant i-motifs of telomeric and centromeric repeat fragments. Our results based on molecular dynamics simulations and quantum chemical calculations indicate that along with base pairing interactions within the i-motif core the overall folded conformation is associated with the stable C-HO sugar "zippers" in the narrow grooves and structured water molecules along the wide grooves. The stacked geometry of the hemi-protonated cytosine pairs within the i-motif core is mainly governed by the repulsive base stacking interaction. The loop sequence can affect the structural dynamics of the i-motif by altering the loop motion and backbone conformation. Overall this study provides microscopic insight into the i-motif structure that will be helpful to understand the structural aspect of mechanisms of gene regulation by i-motif DNA.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
19
|
Lepper CP, Williams MAK, Edwards PJB, Filichev VV, Jameson GB. Effects of Pressure and pH on the Physical Stability of an I‐Motif DNA Structure. Chemphyschem 2019; 20:1567-1571. [DOI: 10.1002/cphc.201900145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/01/2019] [Indexed: 12/21/2022]
Affiliation(s)
| | - Martin A. K. Williams
- School of Fundamental Sciences The MacDiarmid Institute and the Riddet InstituteMassey University Palmerston North New Zealand
| | | | | | - Geoffrey B. Jameson
- School of Fundamental Sciences The MacDiarmid Institute and the Riddet InstituteMassey University Palmerston North New Zealand
| |
Collapse
|