1
|
Kuznetsova VE, Shershov VE, Shtylev GF, Shishkin IY, Butvilovskaya VI, Stomakhin AA, Grechishnikova IV, Zasedateleva OA, Chudinov AV. Optimized Method for the Synthesis of Alkyne-Modified 2'-Deoxynucleoside Triphosphates. Molecules 2024; 29:4747. [PMID: 39407673 PMCID: PMC11477703 DOI: 10.3390/molecules29194747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
A general approach is presented for synthesizing alkyne-modified nucleoside triphosphates via the Sonogashira cross-coupling reaction of unprotected halogenated 2'-deoxynucleoside, followed by monophosphorylation and the reaction of the corresponding phosphoromorpholidate with tributylammonium pyrophosphate. A highly efficient approach for the milligram-scale synthesis of base-modified nucleoside triphosphates with an amino acid-like side chain was developed. The present chemical method outweighs the other reported methods of a base-modified nucleoside triphosphates synthesis in terms of it being a protection-free strategy, the shortening of reaction steps, and increased yields (about 70%). The resulting 8-alkynylated dATP was tested as a substrate for DNA polymerases in a primer extension reaction.
Collapse
Affiliation(s)
- Viktoriya E. Kuznetsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.E.S.); (G.F.S.); (I.Y.S.); (V.I.B.); (O.A.Z.); (A.V.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Okita H, Kondo S, Murayama K, Asanuma H. Rapid Chemical Ligation of DNA and Acyclic Threoninol Nucleic Acid ( aTNA) for Effective Nonenzymatic Primer Extension. J Am Chem Soc 2023; 145:17872-17880. [PMID: 37466125 PMCID: PMC10436273 DOI: 10.1021/jacs.3c04979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 07/20/2023]
Abstract
Previously, nonenzymatic primer extension reaction of acyclic l-threoninol nucleic acid (L-aTNA) was achieved in the presence of N-cyanoimidazole (CNIm) and Mn2+; however, the reaction conditions were not optimized and a mechanistic insight was not sufficient. Herein, we report investigation of the kinetics and reaction mechanism of the chemical ligation of L-aTNA to L-aTNA and of DNA to DNA. We found that Cd2+, Ni2+, and Co2+ accelerated ligation of both L-aTNA and DNA and that the rate-determining step was activation of the phosphate group. The activation was enhanced by duplex formation between a phosphorylated L-aTNA fragment and template, resulting in unexpectedly more effective L-aTNA ligation than DNA ligation. Under optimized conditions, an 8-mer L-aTNA primer could be elongated by ligation to L-aTNA trimers to produce a 29-mer full-length oligomer with 60% yield within 2 h at 4 °C. This highly effective chemical ligation system will allow construction of artificial genomes, robust DNA nanostructures, and xeno nucleic acids for use in selection methods. Our findings also shed light on the possible pre-RNA world.
Collapse
Affiliation(s)
- Hikari Okita
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Shuto Kondo
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Keiji Murayama
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
3
|
Fonseca A, Bugaev AL, Pnevskaya AY, Janssens K, Marquez C, De Vos D. Copper-cobalt double metal cyanides as green catalysts for phosphoramidate synthesis. Commun Chem 2023; 6:141. [PMID: 37407755 DOI: 10.1038/s42004-023-00927-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Phosphoramidates are common and widespread backbones of a great variety of fine chemicals, pharmaceuticals, additives and natural products. Conventional approaches to their synthesis make use of toxic chlorinated reagents and intermediates, which are sought to be avoided at an industrial scale. Here we report the coupling of phosphites and amines promoted by a Cu3[Co(CN)6]2-based double metal cyanide heterogeneous catalyst using I2 as additive for the synthesis of phosphoramidates. This strategy successfully provides an efficient, environmentally friendly alternative to the synthesis of these valuable compounds in high yields and it is, to the best of our knowledge, the first heterogeneous approach to this protocol. While the detailed study of the catalyst structure and of the metal centers by PXRD, FTIR, EXAFS and XANES revealed changes in their coordination environment, the catalyst maintained its high activity for at least 5 consecutive iterations of the reaction. Preliminary mechanism studies suggest that the reaction proceeds by a continuous change in the oxidation state of the Cu metal, induced by a O2/I- redox cycle.
Collapse
Affiliation(s)
- Alejandro Fonseca
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
- Department of Polymer Engineering and Science, Polymer Processing, Montanuniversitaet Leoben, Otto Gloeckel-Strasse 2, 8700, Leoben, Austria
| | - Aram L Bugaev
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Anna Yu Pnevskaya
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia
| | - Kwinten Janssens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Carlos Marquez
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.
| |
Collapse
|
4
|
Pavlinova P, Lambert CN, Malaterre C, Nghe P. Abiogenesis through gradual evolution of autocatalysis into template-based replication. FEBS Lett 2023; 597:344-379. [PMID: 36203246 DOI: 10.1002/1873-3468.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
How life emerged from inanimate matter is one of the most intriguing questions posed to modern science. Central to this research are experimental attempts to build systems capable of Darwinian evolution. RNA catalysts (ribozymes) are a promising avenue, in line with the RNA world hypothesis whereby RNA pre-dated DNA and proteins. Since evolution in living organisms relies on template-based replication, the identification of a ribozyme capable of replicating itself (an RNA self-replicase) has been a major objective. However, no self-replicase has been identified to date. Alternatively, autocatalytic systems involving multiple RNA species capable of ligation and recombination may enable self-reproduction. However, it remains unclear how evolution could emerge in autocatalytic systems. In this review, we examine how experimentally feasible RNA reactions catalysed by ribozymes could implement the evolutionary properties of variation, heredity and reproduction, and ultimately allow for Darwinian evolution. We propose a gradual path for the emergence of evolution, initially supported by autocatalytic systems leading to the later appearance of RNA replicases.
Collapse
Affiliation(s)
- Polina Pavlinova
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| | - Camille N Lambert
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| | - Christophe Malaterre
- Laboratory of Philosophy of Science (LAPS) and Centre Interuniversitaire de Recherche sur la Science et la Technologie (CIRST), Université du Québec à Montréal (UQAM), Canada
| | - Philippe Nghe
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| |
Collapse
|
5
|
Walton T, Zhang W, Li L, Tam CP, Szostak JW. The Mechanism of Nonenzymatic Template Copying with Imidazole-Activated Nucleotides. Angew Chem Int Ed Engl 2019; 58:10812-10819. [PMID: 30908802 DOI: 10.1002/anie.201902050] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Indexed: 11/10/2022]
Abstract
The emergence of the replication of RNA oligonucleotides was a critical step in the origin of life. An important model for the study of nonenzymatic template copying, which would be a key part of any such pathway, involves the reaction of ribonucleoside-5'-phosphorimidazolides with an RNA primer/template complex. The mechanism by which the primer becomes extended by one nucleotide was assumed to be a classical in-line nucleophilic-substitution reaction in which the 3'-hydroxyl of the primer attacks the phosphate of the incoming activated monomer with displacement of the imidazole leaving group. Surprisingly, this simple model has turned out to be incorrect, and the dominant pathway has now been shown to involve the reaction of two activated nucleotides with each other to form a 5'-5'-imidazolium bridged dinucleotide intermediate. Here we review the discovery of this unexpected intermediate, and the chemical, kinetic, and structural evidence for its role in template copying chemistry.
Collapse
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Wen Zhang
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Li Li
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Chun Pong Tam
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.,Present address: Moderna Inc., Cambridge, MA, 02139, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
6
|
Walton T, Zhang W, Li L, Tam CP, Szostak JW. The Mechanism of Nonenzymatic Template Copying with Imidazole‐Activated Nucleotides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Wen Zhang
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Li Li
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Chun Pong Tam
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
- Dept. of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA
- Present address: Moderna Inc. Cambridge MA 02139 USA
| | - Jack W. Szostak
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
- Dept. of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA
| |
Collapse
|
7
|
Abstract
Polymerization of nucleotides and amino acids to form large, complex, and potentially functional products was an early and essential event on the paths leading to life's origin. The standard Gibbs energies of the condensation reactions are uphill, however, and at equilibrium will yield only declining sequences of small, nonfunctional oligomers. Geochemically produced condensing agents such as carbonyl sulfide, cyanamide, and polyphosphates have been proposed to invert the unfavorable condensation Gibbs energies and thereby activate exergonic condensation. We argue, however, that although activators may provide modest yields of oligomers, the inherently episodic nature of their sources throttles their effectiveness, and the fundamental hydrolytic instabilities of oligonucleotides and peptides ultimately prevail to yield decreasing product sequences. Notably, the Gibbs energy governing oligomer formation is antientropic. Accordingly, we propose that declining progression can be surmounted in evaporating pools in which a favorable entropy change is produced when high surface/volume ratios concentrate reactants at the air/water interface in continuous cycles of wetting and drying. The severely reduced configurational freedom of the solutes then inverts the antientropic nature of the condensation reactions, pivoting them to exergonic states and thus to the production of ascending sequences of complex polymeric products.
Collapse
Affiliation(s)
- David Ross
- 1 Retired, Formerly SRI International, Physical Sciences Division, Menlo Park, California
| | - David Deamer
- 2 Department of Biomolecular Engineering, University of California, Santa Cruz, California
| |
Collapse
|
8
|
Walton T, Pazienza L, Szostak JW. Template-Directed Catalysis of a Multistep Reaction Pathway for Nonenzymatic RNA Primer Extension. Biochemistry 2018; 58:755-762. [PMID: 30566332 PMCID: PMC7547881 DOI: 10.1021/acs.biochem.8b01156] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Before
the advent of polymerase enzymes, the copying of genetic
material during the origin of life may have involved the nonenzymatic
polymerization of RNA monomers that are more reactive than the biological
nucleoside triphosphates. Activated RNA monomers such as nucleotide
5′-phosphoro-2-aminoimidazolides spontaneously form an imidazolium-bridged
dinucleotide intermediate that undergoes rapid nonenzymatic template-directed
primer extension. However, it is unknown whether the intermediate
can form on the template or only in solution and whether the intermediate
is prone to hydrolysis when bound to the template or reacts preferentially
with the primer. Here we show that an activated monomer can first
bind the template and then form an imidazolium-bridged intermediate
by reacting with a 2-aminoimidazole-activated downstream oligonucleotide.
We have also characterized the partition of the template-bound intermediate
between hydrolysis and primer extension. In the presence of the catalytic
metal ion Mg2+, >90% of the template-bound intermediate
reacts with the adjacent primer to generate the primer extension product
while less than 10% reacts with competing water. Our results indicate
that an RNA template can catalyze a multistep phosphodiester bond
formation pathway while minimizing hydrolysis with a specificity reminiscent
of an enzyme-catalyzed reaction.
Collapse
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology , Massachusetts General Hospital , Boston , Massachusetts 02114 , United States
| | - Lydia Pazienza
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology , Massachusetts General Hospital , Boston , Massachusetts 02114 , United States.,Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
9
|
Zhang W, Tam CP, Zhou L, Oh SS, Wang J, Szostak JW. Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide. J Am Chem Soc 2018; 140:2829-2840. [PMID: 29411978 PMCID: PMC6326529 DOI: 10.1021/jacs.7b11750] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Indexed: 01/28/2023]
Abstract
Nonenzymatic RNA primer extension by activated mononucleotides has long served as a model for the study of prebiotic RNA copying. We have recently shown that the rate of primer extension is greatly enhanced by the formation of an imidazolium-bridged dinucleotide between the incoming monomer and a second, downstream activated monomer. However, the rate of primer extension is further enhanced if the downstream monomer is replaced by an activated oligonucleotide. Even an unactivated downstream oligonucleotide provides a modest enhancement in the rate of reaction of a primer with a single activated monomer. Here we study the mechanism of these effects through crystallographic studies of RNA complexes with the recently synthesized nonhydrolyzable substrate analog, guanosine 5'-(4-methylimidazolyl)-phosphonate (ICG). ICG mimics 2-methylimidazole activated guanosine-5'-phosphate (2-MeImpG), a commonly used substrate in nonenzymatic primer extension experiments. We present crystal structures of primer-template complexes with either one or two ICG residues bound downstream of a primer. In both cases, the aryl-phosphonate moiety of the ICG adjacent to the primer is disordered. To investigate the effect of a downstream oligonucleotide, we transcribed a short RNA oligonucleotide with either a 5'-ICG residue, a 5'-phosphate or a 5'-hydroxyl. We then determined crystal structures of primer-template complexes with a bound ICG monomer sandwiched between the primer and each of the three downstream oligonucleotides. Surprisingly, all three oligonucleotides rigidify the ICG monomer conformation and position it for attack by the primer 3'-hydroxyl. Furthermore, when GpppG, an analog of the imidazolium-bridged intermediate, is sandwiched between an upstream primer and a downstream helper oligonucleotide, or covalently linked to the 5'-end of the downstream oligonucleotide, the complex is better preorganized for primer extension than in the absence of a downstream oligonucleotide. Our results suggest that a downstream helper oligonucleotide contributes to the catalysis of primer extension by favoring a reactive conformation of the primer-template-intermediate complex.
Collapse
Affiliation(s)
- Wen Zhang
- Howard
Hughes Medical Institute and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Chun Pong Tam
- Howard
Hughes Medical Institute and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Lijun Zhou
- Howard
Hughes Medical Institute and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Seung Soo Oh
- Howard
Hughes Medical Institute and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jiawei Wang
- School
of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jack W. Szostak
- Howard
Hughes Medical Institute and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|