1
|
Liang T, Lyu Z, Wang Y, Zhao W, Sang R, Cheng GJ, Ye F. Light-promoted aromatic denitrative chlorination. Nat Chem 2025; 17:598-605. [PMID: 39833512 DOI: 10.1038/s41557-024-01728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Nitroarenes are readily accessible bulk chemicals and can serve as versatile starting materials for a series of synthetic reactions. However, due to the inertness of the CAr-NO2 bond, the direct denitrative substitution reaction with unactivated nitroarenes remains challenging. Chemists rely on sequential reduction and diazotization followed by the Sandmeyer reaction or the nucleophilic aromatic substitution of activated nitroarenes to realize nitro group transformations. Here we develop a general denitrative chlorination reaction under visible-light irradiation, in which the chlorine radical replaces the nitro moiety through the cleavage of the CAr-NO2 bond. This practical method works with a wide range of unactivated nitro(hetero)arenes and nitroalkenes, is not sensitive to air or moisture and can proceed smoothly on a decagram scale. This transformation differs fundamentally from previous nucleophilic aromatic substitution reactions under thermal conditions in both synthesis and mechanism. Density functional theory calculations reveal the possible pathway for the substitution reaction.
Collapse
Affiliation(s)
- Tiantian Liang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Zhen Lyu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Ye Wang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Wenyan Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Ruocheng Sang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China.
| | - Fei Ye
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.
- Wuhan Institute of Photochemsitry and Technology, Wuhan, China.
| |
Collapse
|
2
|
Zhang Z, Li K, Huang M, Chen T, Zhou J. The Outstanding Ambiphilicity of Trialkylstibines among Trialkylpnictines: Power for Stepwise Deoxygenation and N-N Coupling of Nitroarenes. J Am Chem Soc 2025; 147:10066-10072. [PMID: 40073218 DOI: 10.1021/jacs.5c01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The ongoing discovery of highly reactive ambiphilic main-group species has significantly advanced the development of main-group chemistry, particularly in the realms of small molecule activation and catalysis. Theoretically, compounds featuring smaller HOMO-LUMO gaps gain stronger ambiphilicity and higher reactivity. In this work, we fundamentally demonstrate that Me3Sb holds the smallest HOMO-LUMO gap among trimethylpnictines, indicating its outstanding ambiphilicity. Correspondingly, the superior reactivity of Me3Sb toward deoxygenation of electron-deficient nitroarenes has been unambiguously revealed through control experiments. Furthermore, unprecedented SbIII/SbVO cycling between trialkylstibines and their oxides has been established for the catalytic transformation of nitroarenes into azoxyarenes/azoarenes. This study opens a new chapter for organoantimony derivatives in the fields of ambiphilic reactivity and redox catalysis.
Collapse
Affiliation(s)
- Zichen Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Kunlong Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Minghao Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Ting Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Jiliang Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Iizumi K, Yamaguchi J. Transformative reactions in nitroarene chemistry: C-N bond cleavage, skeletal editing, and N-O bond utilization. Org Biomol Chem 2025; 23:1746-1772. [PMID: 39831336 DOI: 10.1039/d4ob01928h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Nitroarenes are highly versatile building blocks in organic synthesis, playing a pivotal role in various reactions. Common transformations involving nitroarenes include nucleophilic aromatic substitution (SNAr) reactions, where the nitro group functions both as a potent electron-withdrawing group that activates the aromatic ring and as a leaving group facilitating the substitution. Additionally, the direct transformation of nitro groups, such as reduction-driven syntheses of amines and carboxylic acids, as well as ipso-substitution SNAr reactions, have been extensively explored. Interactions between ortho-nitro groups and neighboring substituents also provide unique opportunities for selective transformations. However, beyond these well-established processes, direct transformations of nitro groups have been relatively limited. In recent years, significant advancements have been made in alternative methodologies for nitro group transformations. This review focuses on the latest progress in novel transformations of nitroarenes, with emphasis on three major categories: (i) functional group transformations involving C-N bond cleavage in nitroarenes, (ii) skeletal editing via nitrene intermediates generated by N-O bond cleavage, and (iii) the utilization of nitroarenes as an oxygen source through N-O bond cleavage. These developments under-score the expanding utility of nitroarenes in modern organic synthesis.
Collapse
Affiliation(s)
- Keiichiro Iizumi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| |
Collapse
|
4
|
Zhou Y, He Y, Huang H, Deng GJ. Visible-light-induced aerobic oxidative cyclization of nitroarenes with triethylamine using an organophotocatalyst. Org Biomol Chem 2025; 23:1338-1341. [PMID: 39751402 DOI: 10.1039/d4ob01714e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Isoxazolidines are structurally important scaffolds in many natural products and bioactive compounds. Herein, we report a novel synthetic method for isoxazolidine derivatives through visible-light-induced photoredox cascade cyclization of nitroarenes with triethylamine under aerobic conditions. The resultant 5-hydroxyl isoxazolidine compounds were generally obtained in moderate yields with a broad range of compatible functionalities.
Collapse
Affiliation(s)
- Yazheng Zhou
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Yutong He
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
5
|
Qin H, Liu R, Wang Z, Xu F, Li X, Shi C, Chen J, Shan W, Liu C, Xing P, Zhu J, Li X, Shi D. Photoinduced Bartoli Indole Synthesis by the Oxidative Cleavage of Alkenes with Nitro(hetero)arenes. Angew Chem Int Ed Engl 2025; 64:e202416923. [PMID: 39497520 DOI: 10.1002/anie.202416923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
Given the unique charm of dipole chemistry, intercepting N-O=C dipoles precisely generated by designed processes to develop novel reactivity has become a seminal challenge. The polar fragmentation of 1,3,2-dioxazolidine species generated through the radical addition of excited nitro(hetero)arenes to alkenes represents a significantly underappreciated mechanism for generating N-O=C dipoles. Herein, we present a photoinduced Bartoli indole synthesis by the oxidative cleavage of alkenes with nitro(hetero)arenes. Various indoles and azaindoles are constructed through the multi-step spontaneous rearrangement of carbonyl imine intermediates generated by the polar fragmentation of 1,3,2-dioxazolidine species. Mechanism studies and DFT calculations support that the reaction involves radical cycloaddition, ozonolysis-type cycloreversion, intramolecular H-shift of carbonyl imines, and 3,3-sigmatropic shift of O-Alkenyl hydroxylamines, etc. The implementation of continuous- flow photochemistry, in particular, significantly enhances efficiency, thereby overcoming obstacles to the commercialization process.
Collapse
Affiliation(s)
- Hongyun Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Feng Xu
- The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, P. R. China
| | - Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Cong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Jiashu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Wenlong Shan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Chao Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Pan Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Jiqiang Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, P. R. China
| |
Collapse
|
6
|
Zhu H, Powell JN, Geldchen VA, Drumheller AS, Driver TG. Harnessing the Reactivity of Nitroarene Radical Anions to Create Quinoline N-Oxides by Electrochemical Reductive Cyclization. Angew Chem Int Ed Engl 2025; 64:e202416126. [PMID: 39428355 PMCID: PMC11753951 DOI: 10.1002/anie.202416126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Electrochemical reduction of 2-allyl-substituted nitroarenes using a simple, undivided electrochemical cell with non-precious electrodes to generate nitroarene radical anions was developed. The nitroarene radical anion intermediates participate in 1,5-hydrogen atom transfer reactions to construct quinoline N-oxides bearing aryl-, heteroaryl-, alkenyl-, benzyl-, sulfonyl-, or carboxyl groups.
Collapse
Affiliation(s)
- Haoran Zhu
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Jair N Powell
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Victoria A Geldchen
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Adam S Drumheller
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Tom G Driver
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| |
Collapse
|
7
|
Zhang J, Mück-Lichtenfeld C, Wiethoff MA, Studer A. Photocatalytic PPh 3-Mediated Synthesis of C3-Functionalized Indoles via Radical Annulation of Nitroarenes and Alkenes. Angew Chem Int Ed Engl 2024:e202416726. [PMID: 39292962 DOI: 10.1002/anie.202416726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Oxidatively generated phosphine radical cations are reactive intermediates that can be used for the generation of carbon and heteroatom centered radicals via deoxygenation processes. Such P-radical cations can readily be generated via single electron transfer oxidation using a redox catalyst. Cheap and commercially available nitroarenes are ideal nitrogen sources for the construction of organic amines and N-containing heterocycles. Activation of nitroarenes with phosphines has been achieved in the ionic mode, which requires specially designed P-nucleophiles and high temperatures. Herein, we report an alternative mode of nitro activation that proceeds via a radical process. The radical strategy leads to open shell intermediates that show interesting unexplored reactivity. This is documented by the development of an economic and highly efficient synthesis of valuable indole derivatives through photocatalytic PPh3-mediated annulation of nitroarenes with alkenes showing large functional group tolerance. The method allows room-temperature activation of nitroarenes and a double C-H bond functionalization of alkenes is achieved to provide rapid access to C3-functionalized indoles, which are key structural components of diverse natural and drug molecules. Experimental mechanistic studies that are further supported by DFT calculations indicate that a nitrosoarene radical cation plays a key role in the annulation process.
Collapse
Affiliation(s)
- Jingjing Zhang
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
- Center for Multiscale Theory and Computation, Universität Münster, 48149, Münster, Germany
| | | | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| |
Collapse
|
8
|
Lei B, Cao F, Chen M, Wang X, Mo Z. Bisgermylene-Stabilized Stannylone: Catalytic Reduction of Nitrous Oxide and Nitro Compounds via Element-Ligand Cooperativity. J Am Chem Soc 2024; 146:17817-17826. [PMID: 38780163 DOI: 10.1021/jacs.4c03227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
This study describes the synthesis, structural characterization, and catalytic application of a bis(germylene)-stabilized stannylone (2). The reduction of digermylated stannylene (1) with 2.2 equiv of potassium graphite (KC8) leads to the formation of stannylone 2 as a green solid in 78% yield. Computational studies showed that stannylone 2 possesses a formal Sn(0) center and a delocalized 3-c-2-e π-bond in the Ge2Sn core, which arises from back-donation of the p-type lone pair electrons on the Sn atom to the vacant orbitals of the Ge atoms. Stannylone 2 can serve as an efficient precatalyst for the selective reduction of nitrous oxide (N2O) and nitroarenes (ArNO2) with the formation of dinitrogen (N2) and hydrazines (ArNH-NHAr), respectively. Exposure of 2 with N2O (1 atm) resulted in the insertion of two oxygen atoms into the Ge-Ge and Ge-Sn bonds, yielding the germyl(oxyl)stannylene (3). Moreover, the stoichiometric reaction of 2 with 1-chloro-4-nitrobenzene afforded an amido(oxyl)stannylene (4) through the complete scission of the N-O bonds of the nitroarene. Stannylenes 3 and 4 serve as catalytically active species for the catalytic reduction of nitrous oxide and nitroarenes, respectively. Mechanistic studies reveal that the cooperation of the low-valent Ge and Sn centers allows for multiple electron transfers to cleave the N-O bonds of N2O and ArNO2. This approach presents a new strategy for catalyzing the deoxygenation of N2O and ArNO2 using a zerovalent tin compound.
Collapse
Affiliation(s)
- Binglin Lei
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fanshu Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuyang Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenbo Mo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Zhang J, Kong WY, Guo W, Tantillo DJ, Tang Y. Combined Computational and Experimental Study Reveals Complex Mechanistic Landscape of Brønsted Acid-Catalyzed Silane-Dependent P═O Reduction. J Am Chem Soc 2024; 146:13983-13999. [PMID: 38736283 DOI: 10.1021/jacs.4c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The reaction mechanism of Brønsted acid-catalyzed silane-dependent P═O reduction has been elucidated through combined computational and experimental methods. Due to its remarkable chemo- and stereoselective nature, the Brønsted acid/silane reduction system has been widely employed in organophosphine-catalyzed transformations involving P(V)/P(III) redox cycle. However, the full mechanistic profile of this type of P═O reduction has yet to be clearly established to date. Supported by both DFT and experimental studies, our research reveals that the reaction likely proceeds through mechanisms other than the widely accepted "dual activation mode by silyl ester" or "acid-mediated direct P═O activation" mechanism. We propose that although the reduction mechanisms may vary with the substitution patterns of silane species, Brønsted acid generally activates the silane rather than the P═O group in transition structures. The proposed activation mode differs significantly from that associated with traditional Brønsted acid-catalyzed C═O reduction. The uniqueness of P═O reduction originates from the dominant Si/O═P orbital interactions in transition structures rather than the P/H-Si interactions. The comprehensive mechanistic landscape provided by us will serve as a guidance for the rational design and development of more efficient P═O reduction systems as well as novel organophosphine-catalyzed reactions involving P(V)/P(III) redox cycle.
Collapse
Affiliation(s)
- Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Wentao Guo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Xu S, Mi R, Zheng G, Li X. Cobalt- or rhodium-catalyzed synthesis of 1,2-dihydrophosphete oxides via C-H activation and formal phosphoryl migration. Chem Sci 2024; 15:6012-6021. [PMID: 38665527 PMCID: PMC11040647 DOI: 10.1039/d4sc00649f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
A highly stereo- and chemoselective intermolecular coupling of diverse heterocycles with dialkynylphosphine oxides has been realized via cobalt/rhodium-catalyzed C-H bond activation. This protocol provides an efficient synthetic entry to functionalized 1,2-dihydrophosphete oxides in excellent yields via the merger of C-H bond activation and formal 1,2-migration of the phosphoryl group. Compared with traditional methods of synthesis of 1,2-dihydrophosphetes that predominantly relied on stoichiometric metal reagents, this catalytic system features high efficiency, a relatively short reaction time, atom-economy, and operational simplicity. Photophysical properties of selected 1,2-dihydrophosphete oxides are also disclosed.
Collapse
Affiliation(s)
- Shengbo Xu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710062 P. R. China
| | - Ruijie Mi
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 P. R. China
| | - Guangfan Zheng
- Department of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710062 P. R. China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 P. R. China
| |
Collapse
|
11
|
Shah JA, Banerjee A, Mukherjee U, Ngai MY. Merging Excited-State Copper Catalysis and Triplet Nitro(hetero)arenes for Direct Synthesis of 2-Aminophenol Derivatives. Chem 2024; 10:686-697. [PMID: 38405332 PMCID: PMC10882994 DOI: 10.1016/j.chempr.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Nitro(hetero)arene derivatives are essential commodity chemicals used in various products, such as drugs, polymers, and agrochemicals. In this study, we leverage the excited-state reactivities of copper catalysts and nitro(hetero)arenes, and the Umpolung reactivity of acyl radicals to convert readily available nitro(hetero)arenes directly to valuable 2-aminophenol derivatives, which are important scaffolds in many top-selling pharmaceuticals. This reaction is applicable to a variety of nitro(hetero)arenes, acyl chlorides, and late-stage modifications of complex molecules, making it a useful tool for the discovery of new functional molecules. Mechanistic studies, including radical trapping experiments, Stern Volmer quenching studies, light ON/OFF experiments, and 18O-labeling studies, suggest a reaction mechanism involving photoexcitation of a copper complex, diradical couplings, and an in-cage contact ion pair (CIP) migration. Our findings offer a streamlined protocol for synthesizing essential pharmacophores from nitro(hetero)arenes while simultaneously advancing knowledge in excited-state and radical chemistry and stimulating new reaction design and development.
Collapse
Affiliation(s)
- Jagrut A. Shah
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
| | - Arghya Banerjee
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
| | - Upasana Mukherjee
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Ming-Yu Ngai
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
- Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, United States
- Lead Contact
| |
Collapse
|
12
|
Abstract
The interest of scientists in the carbazole core has risen steadily over the last 30 years, particularly over the last decade given its presence in several active pharmaceutical ingredients, functional materials and a wide range of biologically active natural products. The continuous development of more efficient, more (regio-)selective and "greener" methodologies to access the carbazole core is thus imperative. This review compares and evaluates synthetic strategies towards the carbazole core that have been reported since 2013, with a focus on their applicability towards the total synthesis of carbazole-containing natural products.
Collapse
Affiliation(s)
- Lewis A T Allen
- CheMastery, Paper Yard, 11a Quebec Way, London, SE16 7LG, UK
| | - Philipp Natho
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
13
|
Vu V, Powell JN, Ford RL, Patel PJ, Driver TG. The Development and Mechanistic Study of an Iron-Catalyzed Intramolecular Nitroso Ene Reaction of Nitroarenes. ACS Catal 2023; 13:15175-15181. [PMID: 38292415 PMCID: PMC10824534 DOI: 10.1021/acscatal.3c04483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
An intramolecular iron-catalyzed nitroso ene reaction was developed to afford six- or seven-membered N-heterocycles from nitroarenes using an earth abundant iron catalyst and phenylsilane as the terminal reductant. The reaction can be triggered using as little as 3 mol % of iron(II) acetate and 3 mol % of 4,7-dimethoxyphenanthroline as the ligand. The scope of the reaction is broad tolerating a range of electron-releasing or electron-withdrawing substituents on the nitroarene, and the ortho-substituent can be modified to diastereoselectively construct benzoxazines, dihydrobenzothiazines, tetrahydroquinolines, tetrahydroquinoxalines, or tetrahydrobenzooxazepines. Mechanistic investigations indicated that the reaction proceeds via a nitrosoarene intermediate, and kinetic analysis of the reaction revealed a first-order rate dependence in catalyst-, nitroarene-, and silane concentration, and an inverse kinetic order in acetate was observed. The difference in rates between PhSiH3 and PhSiD3 was found to be 1.50 ± 0.09, and investigation of the temperature dependence of the reaction rate revealed that the activation parameters to be ΔH‡ = 13.5 kcal•mol-1 and ΔS‡ = -39.1 cal•mol-1•K-1. These data were interpreted to indicate that the turnover-limiting step to be hydride transfer from iron to the coordinated nitroarene, which occurs through an ordered transition state with little Fe-H bond breaking.
Collapse
Affiliation(s)
- Van Vu
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, 60607-7061, USA
| | - Jair N. Powell
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, 60607-7061, USA
| | - Russell L. Ford
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, 60607-7061, USA
| | - Pooja J. Patel
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, 60607-7061, USA
| | - Tom G. Driver
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, 60607-7061, USA
| |
Collapse
|
14
|
Winslow C, Rathke P, Rittle J. Multielectron Bond Cleavage Processes Enabled by Redox-Responsive Phosphinimide Ligands. Inorg Chem 2023; 62:17697-17704. [PMID: 37847032 PMCID: PMC10618924 DOI: 10.1021/acs.inorgchem.3c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 10/18/2023]
Abstract
The activation of small molecules via multielectron redox processes offers promise in mediating difficult transformations related to energy conversion processes. While molecular systems that engage in one- and two-electron redox processes are widespread, those that participate in the direct transfer of four or more electrons to small molecules are very rare. To that end, we report a mononuclear CrII complex competent for the 4-electron reduction of dioxygen (O2) and nitrosoarenes. These systems additionally engage in facile two-electron group transfer reactivity, including O atom excision and nitrene transfer. Structural, spectroscopic, and computational studies support bond activation processes that intimately occur at a mononuclear chromium(phosphinimide) center and highlight the unusual structural responsiveness of the phosphinimides in stabilizing a range of metal redox states.
Collapse
Affiliation(s)
- Charles
C. Winslow
- Department of Chemistry, University
of California, Berkeley, California 94720, United States
| | - Paul Rathke
- Department of Chemistry, University
of California, Berkeley, California 94720, United States
| | - Jonathan Rittle
- Department of Chemistry, University
of California, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Sirvinskaite G, Nardo CS, Müller P, Gasser AC, Morandi B. Direct Synthesis of Unprotected Indolines Through Intramolecular sp 3 C-H Amination Using Nitroarenes as Aryl Nitrene Precursors. Chemistry 2023; 29:e202301978. [PMID: 37404217 DOI: 10.1002/chem.202301978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
Given the prevalence of molecules containing nitro groups in organic synthesis, innovative methods to expand the reactivity of this functional group are of interest in both industrial and academic settings. In this report, a metal-free intramolecular benzylic sp3 C-H amination is disclosed using aryl nitro compounds as aryl nitrene precursors. Organosilicon reagent N,N'-bis(trimethylsilyl)-4,4'-bipyridinylidene (Si-DHBP) served as an efficient reductant in the transformation, enabling the in situ generation of aryl nitrene species for the direct, metal-free synthesis of unprotected 2-arylindolines from the corresponding nitroarene compounds.
Collapse
Affiliation(s)
- Giedre Sirvinskaite
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Celine S Nardo
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Patrick Müller
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Aurelio C Gasser
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
16
|
Sun G, Li J, Liu X, Liu Y, Wen X, Sun H, Xu QL. Organophosphorus-Catalyzed "Dual-Substrate Deoxygenation" Strategy for C-S Bond Formation from Sulfonyl Chlorides and Alcohols/Acids. J Org Chem 2023. [PMID: 37296496 DOI: 10.1021/acs.joc.3c00532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A green method to construct C-S bonds using sulfonyl chlorides and alcohols/acids via a PIII/PV═O catalytic system is reported. The organophosphorus-catalyzed umpolung reaction promotes us to propose the "dual-substrate deoxygenation" strategy. Herein, we adopt the "dual-substrate deoxygenation" strategy, which achieves the deoxygenation of sulfonyl chlorides and alcohols/acids to synthesize thioethers/thioesters driven by PIII/PV═O redox cycling. The catalytic method represents an operationally simple approach using stable phosphine oxide as a precatalyst and shows broad functional group tolerance. The potential application of this protocol is demonstrated by the late-stage diversification of drug analogues.
Collapse
Affiliation(s)
- Gang Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Jing Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xin Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Yiting Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Qing-Long Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| |
Collapse
|
17
|
Thobokholt EN, Simonetti SO, Kaufman TS, Larghi EL, Bracca ABJ. Efficient Buchwald-Hartwig and nitrene-mediated five-membered ring closure approaches to the total synthesis of quindoline. Unexpected direct conversion of a nitro group into a phosphazene. RSC Adv 2023; 13:13715-13724. [PMID: 37152581 PMCID: PMC10162371 DOI: 10.1039/d3ra02468g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023] Open
Abstract
Two total syntheses of quindoline, which take place through the intermediacy of 3-nitroquinoline derivatives, are reported. The general synthetic sequence involves construction of the latter by mechanochemical condensation of benzaldehydes with 2-amino-nitrostyrene, followed either by reduction of the nitro group of the heterocycle and Buchwald-Hartwig cyclization or by a nitrene-mediated cyclization under solventless conditions. Use of PPh3 to generate the nitrene resulted in the unprecedented formation of a phosphazene in place of quindoline. This unexpected transformation was explained by means of DFT computations.
Collapse
Affiliation(s)
- Elida N Thobokholt
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 2000 Rosario Argentina
| | - Sebastián O Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 2000 Rosario Argentina
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 2000 Rosario Argentina
| | - Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 2000 Rosario Argentina
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 2000 Rosario Argentina
| |
Collapse
|
18
|
Fouad M, Ferretti F, Ragaini F. Formic Acid as Carbon Monoxide Source in the Palladium-Catalyzed N-Heterocyclization of o-Nitrostyrenes to Indoles. J Org Chem 2023; 88:5108-5117. [PMID: 36655880 PMCID: PMC10127278 DOI: 10.1021/acs.joc.2c02613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Indexed: 01/20/2023]
Abstract
The reductive cyclization reaction of o-nitrostyrenes to generate indoles has been investigated for three decades using CO as a cheap reducing agent, but it remains an interesting area of research and improvements. However, using toxic CO gas has several drawbacks. As a result, it is highly preferable to use safe and efficient surrogates for in situ generation of CO from nontoxic and affordable sources. Among several CO sources that have been previously explored for the generation of gaseous CO, here we report the use of cheap and readily available formic acid as an effective reductant for the reductive cyclization of o-nitrostyrenes. The reaction is air and water tolerant and provides the desired indoles in yields up to 99%, at a low catalyst loading (0.5 mol %) and without generating toxic or difficult to separate byproducts. A cheap glass thick-walled "pressure tube" can be used instead of less available autoclaves, even on a 2 g scale, thus widening the applicability of our protocol.
Collapse
Affiliation(s)
- Manar
Ahmed Fouad
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via C. Golgi 19, 20133 Milano, Italy
- Chemistry
Department, Faculty of Science, Alexandria
University, P.O. Box 426, Alexandria 21321, Egypt
| | - Francesco Ferretti
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Fabio Ragaini
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
19
|
Zou D, Wang W, Hu Y, Jia T. Nitroarenes and nitroalkenes as potential amino sources for the synthesis of N-heterocycles. Org Biomol Chem 2023; 21:2254-2271. [PMID: 36825326 DOI: 10.1039/d3ob00064h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Nitro-compounds are one of the cheapest and most readily available materials in the chemical industry and are commonly utilized as versatile building blocks. Previously, the synthesis of N-heterocycles was largely based on anilines. The utilization of nitroarenes and nitroalkenes for the synthesis of N-heterocyclic compounds can save at least one step, however, as compared to anilines. Thus, considerable attention has been paid to nitroarenes and nitroalkenes as new potential amino sources. Significant progress has been made in the reductive cyclization of nitroarenes or nitroalkenes to access various N-heterocycles in recent years. Herein, we comprehensively summarize the recent progress in the construction of N-heterocycles using nitroarenes and nitroalkenes as potential amino sources. The compatibility of the reaction substrate, its mechanism, applications, advantages, and limitations in this field are also discussed in detail.
Collapse
Affiliation(s)
- Dong Zou
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang, University, Hangzhou, Zhejiang, 310016, China.
| | - Wei Wang
- Department of Pharmacy, Qiantang Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310018, China
| | - Yaqin Hu
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang, University, Hangzhou, Zhejiang, 310016, China.
| | - Tingting Jia
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
20
|
Parsons PJ, Natho P, Allen LAT. A Cyclobutanol Ring-Expansion Approach to Oxygenated Carbazoles: Total Synthesis of Glycoborine, Carbazomycin A and Carbazomycin B. Synlett 2023. [DOI: 10.1055/s-0042-1751411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractThe transition-metal-free total syntheses of the oxygenated carbazole natural products glycoborine, carbazomycin A and carbazomycin B are reported. The key step involves an NBS-mediated cyclobutanol ring expansion to 4-tetralones for the preparation of the tricyclic carbazole core.
Collapse
|
21
|
Li G, Lavagnino MN, Ali SZ, Hu S, Radosevich AT. Tandem C/N-Difunctionalization of Nitroarenes: Reductive Amination and Annulation by a Ring Expansion/Contraction Sequence. J Am Chem Soc 2023; 145:41-46. [PMID: 36562776 PMCID: PMC9839621 DOI: 10.1021/jacs.2c12450] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A synthetic method for the reductive transformation of nitroarenes into ortho-aminated and -annulated products is reported. The method operates via the exhaustive deoxygenation of nitroarenes by an organophosphorus catalyst and a mild terminal reductant to access aryl nitrenes, which after ring expansion, are trapped by amine nucleophiles to give dearomatized 2-amino-3H-azepines. Treatment of these ring-expanded intermediates with acyl electrophiles triggers 6π electrocyclization to extrude the nitrogen atom and restore aromaticity of the phenyl ring, which delivers via C-H functionalization 2-aminoanilide and benzimidazole products.
Collapse
Affiliation(s)
- Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Marissa N. Lavagnino
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Siraj Z. Ali
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Shicheng Hu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Alexander T. Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
22
|
Hersh WH, Chan TY. Improving the accuracy of 31P NMR chemical shift calculations by use of scaling methods. Beilstein J Org Chem 2023; 19:36-56. [PMID: 36726479 PMCID: PMC9843238 DOI: 10.3762/bjoc.19.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Calculation of 31P NMR chemical shifts for a series of tri- and tetracoordinate phosphorus compounds using several basis sets and density functional theory (DFT) functionals gave a modest fit to experimental chemical shifts, but an excellent linear fit when plotted against the experimental values. The resultant scaling methods were then applied to a variety of "large" compounds previously selected by Latypov et al. and a set of stereoisomeric and unusual compounds selected here. No one method was best for all structural types. For compounds that contain P-P bonds and P-C multiple bonds, the Latypov et al. method using the PBE0 functional was best (mean absolute deviation/root mean square deviation (MAD/RMSD) = 6.9/8.5 ppm and 6.6/8.2 ppm, respectively), but for the full set of compounds gave higher deviations (MAD/RMSD = 8.2/12.3 ppm), and failed by over 60 ppm for a three-membered phosphorus heterocycle. Use of the M06-2X functional for both the structural optimization and NMR chemical shift calculation was best overall for the compounds without P-C multiple bonds (MAD/RMSD = 5.4/7.1 ppm), but failed by 30-49 ppm for compounds having any P-C multiple-bond character. Failures of these magnitudes have not been reported previously for these widely used functionals. These failures were then used to screen a variety of recommended functionals, leading to better overall methods for calculation of these chemical shifts: optimization with the M06-2X functional and NMR calculation with the PBE0 or ωB97x-D functionals gave values for MAD/RMSD = 6.9/8.5 ppm and 6.8/9.1 ppm, respectively, over an experimental chemical shift range of -181 to 356 ppm. Due to the unexplained failures observed, we recommend use of more than one method when looking at novel structures.
Collapse
Affiliation(s)
- William H Hersh
- Department of Chemistry and Biochemistry, Queens College, Queens, NY 11367-1597, USA,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Tsz-Yeung Chan
- Department of Chemistry and Biochemistry, Queens College, Queens, NY 11367-1597, USA,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
23
|
Xue J, Zhang YS, Huan Z, Yang JD, Cheng JP. Catalytic Vilsmeier-Haack Reactions for C1-Deuterated Formylation of Indoles. J Org Chem 2022; 87:15539-15546. [PMID: 36348629 DOI: 10.1021/acs.joc.2c02085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Vilsmeier-Haack reaction is a powerful tool to introduce formyl groups into electron-rich arenes, but its wide application is significantly restricted by stoichiometric employment of caustic POCl3. Herein, we reported a catalytic version of the Vilsmeier-Haack reaction enabled by a P(III)/P(V)═O cycle. This catalytic reaction provides a facile and efficient route for the direct construction of C1-deuterated indol-3-carboxaldehyde under mild conditions with stoichiometric DMF-d7 as the deuterium source. The products feature a remarkably higher deuteration level (>99%) than previously reported ones and are not contaminated by the likely unselective deuteration at other sites. The present transformation can also be used to transfer other carbonyl groups. Further downstream derivatizations of these deuterated products manifested their potential applications in the synthesis of deuterated bioactive molecules. Mechanistic insight was disclosed from studies of kinetics and intermediates.
Collapse
Affiliation(s)
- Jing Xue
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhen Huan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin 300192, China
| |
Collapse
|
24
|
Wang B, Ren H, Cao HJ, Lu C, Yan H. A switchable redox annulation of 2-nitroarylethanols affording N-heterocycles: photoexcited nitro as a multifunctional handle. Chem Sci 2022; 13:11074-11082. [PMID: 36320483 PMCID: PMC9516892 DOI: 10.1039/d2sc03590a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 09/09/2023] Open
Abstract
The efficient transformation of nitroaromatics to functional molecules such as N-heterocycles has been an attractive and significant topic in synthesis chemistry. Herein, a photoexcited nitro-induced strategy for switchable annulations of 2-nitroarylethanols was developed to construct N-heterocycles including indoles, N-hydroxyl oxindoles and N-H oxindoles. The metal- and photocatalyst-free reaction proceeds through intramolecular redox C-N coupling of branched hydroxyalkyl and nitro units, which is initiated by a double hydrogen atom abstraction (d-HAA) process. The key to the switchable reaction outcomes is the mediation of a diboron reagent by its favorable oxy-transfer reactivity to in situ generated nitroso species. The utility of this protocol was well demonstrated by broad substrate scope, excellent yields, functional group tolerance and wide applications. Finally, detailed mechanistic studies were performed, and kinetic isotope effect (KIE) experiments indicate that the homolysis of the C-H bond is involved in the rate-determining step.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hou-Ji Cao
- School of Chemistry and Chemical Engineering, Henan Normal University XinXiang Henan 453007 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
25
|
Boyarskaya DV, Ongaro A, Piemontesi C, Wang Q, Zhu J. Synthesis of 3-Acyloxyindolenines by TiCl 3-Mediated Reductive Cyclization of 2-( ortho-Nitroaryl)-Substituted Enol Esters. Org Lett 2022; 24:7004-7008. [PMID: 36121329 DOI: 10.1021/acs.orglett.2c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the presence of TiCl3, the reductive cyclization of tetrasubstituted enol esters bearing a 2-(ortho-nitroaryl) substituent affords 3-acyloxy-2,3-disubstituted indolenines in good yields. A domino process involving the partial reduction of nitro to a nitroso group followed by 5-center-6π-electrocyclization, 1,2-acyloxy migration, and the further reduction of the resulting nitrone intermediate accounts for the reaction outcome. The so-obtained indolenines are converted smoothly to 2,2-disubstituted oxindoles via a sequence of saponification and semipinacol rearrangement.
Collapse
Affiliation(s)
- Dina V Boyarskaya
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Alberto Ongaro
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| |
Collapse
|
26
|
Kaur M, Kumar R. A Minireview on Cadogan cyclization reactions leading to diverse azaheterocycles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manpreet Kaur
- Central University of Punjab Pharmaceutical Sciences and Natural Products Village Ghudda 151401 Bathinda INDIA
| | - Raj Kumar
- Central University of Punjab Pharmaceutical Sciences and Natural Products Village Ghudda, Bathinda 151401 Bathinda INDIA
| |
Collapse
|
27
|
Ramadan DR, Ferretti F, Ragaini F. Catalytic Reductive Cyclization of 2-Nitrobiphenyls Using Phenyl formate as CO Surrogate: a Robust Synthesis of 9H-Carbazoles. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
29
|
Moon HW, Cornella J. Bismuth Redox Catalysis: An Emerging Main-Group Platform for Organic Synthesis. ACS Catal 2022; 12:1382-1393. [PMID: 35096470 PMCID: PMC8787757 DOI: 10.1021/acscatal.1c04897] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Indexed: 12/11/2022]
Abstract
![]()
Bismuth has recently
been shown to be able to maneuver between
different oxidation states, enabling access to unique redox cycles
that can be harnessed in the context of organic synthesis. Indeed,
various catalytic Bi redox platforms have been discovered and revealed
emerging opportunities in the field of main group redox catalysis.
The goal of this perspective is to provide an overview of the synthetic
methodologies that have been developed to date, which capitalize on
the Bi redox cycling. Recent catalytic methods via low-valent Bi(II)/Bi(III),
Bi(I)/Bi(III), and high-valent Bi(III)/Bi(V) redox couples are covered
as well as their underlying mechanisms and key intermediates. In addition,
we illustrate different design strategies stabilizing low-valent and
high-valent bismuth species, and highlight the characteristic reactivity
of bismuth complexes, compared to the lighter p-block
and d-block elements. Although it is not redox catalysis
in nature, we also discuss a recent example of non-Lewis acid, redox-neutral
Bi(III) catalysis proceeding through catalytic organometallic steps.
We close by discussing opportunities and future directions in this
emerging field of catalysis. We hope that this Perspective will provide
synthetic chemists with guiding principles for the future development
of catalytic transformations employing bismuth.
Collapse
Affiliation(s)
- Hye Won Moon
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| |
Collapse
|
30
|
He HD, Zhang ZK, Tang HB, Xu YQ, Xu XB, Cao ZY, Xu H, Li Y. Manganese-mediated reductive N, N-dialkylation of nitroarenes: a dramatic NiI 2 effect. Org Chem Front 2022. [DOI: 10.1039/d2qo00928e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A dramatic NiI2 effect has been found for Mn-mediated reductive N,N-dialkylation of nitroaromatics.
Collapse
Affiliation(s)
- Hua-Dong He
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhi-Kai Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Hao-Bo Tang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yuan-Qing Xu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xiao-Bo Xu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Hao Xu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yang Li
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
31
|
Suárez-Pantiga S, Sanz R. Deoxygenation reactions in organic synthesis catalyzed by dioxomolybdenum(VI) complexes. Org Biomol Chem 2021; 19:10472-10492. [PMID: 34816863 DOI: 10.1039/d1ob01939b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dioxomolybdenum(VI) complexes have been applied as efficient, inexpensive and benign catalysts to deoxygenation reactions of a diverse number of compounds in the last two decades. Dioxomolybdenum complexes have demonstrated wide applicability to the deoxygenation of sulfoxides into sulfides and reduction of N-O bonds. Even the challenging nitro functional group was efficiently deoxygenated, affording amines or diverse heterocycles after reductive cyclization reactions. More recently, carbon-based substrates like epoxides, alcohols and ketones have been successfully deoxygenated. Also, dioxomolybdenum complexes accomplished deoxydehydration (DODH) reactions of biomass-derived vicinal 1,2-diols, affording valuable alkenes. The choice of the catalytic systems and reductant is decisive to achieve the desired transformation. Commonly found reducing agents involved phosphorous-based compounds, silanes, molecular hydrogen, or even glycols and other alcohols.
Collapse
Affiliation(s)
- Samuel Suárez-Pantiga
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Pza, Misael Bañuelos, s/n, Universidad de Burgos, 09001 Burgos, Spain.
| | - Roberto Sanz
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Pza, Misael Bañuelos, s/n, Universidad de Burgos, 09001 Burgos, Spain.
| |
Collapse
|
32
|
Manna K, Ganguly T, Baitalik S, Jana R. Visible-Light- and PPh 3-Mediated Direct C-N Coupling of Nitroarenes and Boronic Acids at Ambient Temperature. Org Lett 2021; 23:8634-8639. [PMID: 34643396 DOI: 10.1021/acs.orglett.1c03343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We present here a metal-free, visible-light- and triphenylphosphine-mediated intermolecular, reductive amination between nitroarenes and boronic acids at ambient temperature without any photocatalyst. Mechanistically, a slow reduction of nitroarenes to a nitroso and, finally, a nitrene intermediate occurs that leads to the amination product with concomitant 1,2-aryl/-alkyl migration from a boronate complex. A wide range of nitroarenes underwent C-N coupling with aryl-/alkylboronic acids providing high yields.
Collapse
Affiliation(s)
- Kartic Manna
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Tanusree Ganguly
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| |
Collapse
|
33
|
Volochnyuk DM, Gorlova AO, Grygorenko OO. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021; 27:15277-15326. [PMID: 34499378 DOI: 10.1002/chem.202102108] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/13/2022]
Abstract
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3 )-C and C(sp3 )-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron "ate" complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the "classical" methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C-H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).
Collapse
Affiliation(s)
- Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Alina O Gorlova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
34
|
Mori-Quiroz LM, Comadoll CG, Super JE, Clift MD. Exploiting Iminoquinones as Electrophilic at Nitrogen "N+" Synthons for C-N Bond Construction. Org Lett 2021; 23:7008-7013. [PMID: 34477395 DOI: 10.1021/acs.orglett.1c00867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New methods for C-N bond construction exploiting the N-centered electrophilic character of iminoquinones are reported. Iminoquinones, generated in situ via the condensation of o-vinylanilines with benzoquinones, undergo acid-catalyzed cyclization to afford N-arylindoles in excellent yields. Under similar reaction conditions, homoallylic amines react analogously to afford N-arylpyrroles. Additionally, organometallic nucleophiles are shown to add to the nitrogen atom of N-alkyliminoquinones to provide amine products. Finally, iminoquinones are shown to be competent electrophiles for copper-catalyzed hydroamination.
Collapse
Affiliation(s)
- Luis M Mori-Quiroz
- Department of Chemistry, The University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Chelsea G Comadoll
- Department of Chemistry, The University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Jonathan E Super
- Department of Chemistry, The University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Michael D Clift
- Department of Chemistry, The University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
35
|
Lipshultz JM, Radosevich AT. Uniting Amide Synthesis and Activation by P III/P V-Catalyzed Serial Condensation: Three-Component Assembly of 2-Amidopyridines. J Am Chem Soc 2021; 143:14487-14494. [PMID: 34478308 DOI: 10.1021/jacs.1c07608] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An organophosphorus (PIII/PV redox) catalyzed method for the three-component condensation of amines, carboxylic acids, and pyridine N-oxides to generate 2-amidopyridines via serial dehydration is reported. Whereas amide synthesis and functionalization usually occur under divergent reaction conditions, here a phosphetane catalyst (together with a mild bromenium oxidant and terminal hydrosilane reductant) is shown to drive both steps chemoselectively in an auto-tandem catalytic cascade. The ability to both prepare and functionalize amides under the action of a single organocatalytic reactive intermediate enables new possibilities for the efficient and modular preparation of medicinal targets.
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
36
|
Li G, Miller SP, Radosevich AT. P III/P V═O-Catalyzed Intermolecular N-N Bond Formation: Cross-Selective Reductive Coupling of Nitroarenes and Anilines. J Am Chem Soc 2021; 143:14464-14469. [PMID: 34473484 DOI: 10.1021/jacs.1c07272] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An organophosphorus-catalyzed method for the synthesis of unsymmetrical hydrazines by cross-selective intermolecular N-N reductive coupling is reported. This method employs a small ring phosphacycle (phosphetane) catalyst together with hydrosilane as the terminal reductant to drive reductive coupling of nitroarenes and anilines with good chemoselectivity and functional group tolerance. Mechanistic investigations support an autotandem catalytic reaction cascade in which the organophosphorus catalyst drives two sequential and mechanistically distinct reduction events via PIII/PV═O cycling in order to furnish the target N-N bond.
Collapse
Affiliation(s)
- Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Steven P Miller
- Department of Process Research and Development, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Zhao Y, Zhu H, Sung S, Wink DJ, Zadrozny JM, Driver TG. Counterion Control of
t
‐BuO‐Mediated Single Electron Transfer to Nitrostilbenes to Construct
N
‐Hydroxyindoles or Oxindoles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yingwei Zhao
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
- College of Chemical Engineering Huaqiao University, Xiamen 668 Jimei Boulevard Xiamen Fujian 361021 P. R. China
| | - Haoran Zhu
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Siyoung Sung
- Department of Chemistry Colorado State University Fort Collins CO 80523 USA
| | - Donald J. Wink
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Joseph M. Zadrozny
- Department of Chemistry Colorado State University Fort Collins CO 80523 USA
| | - Tom G. Driver
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| |
Collapse
|
38
|
Zhao Y, Zhu H, Sung S, Wink DJ, Zadrozny JM, Driver TG. Counterion Control of t-BuO-Mediated Single Electron Transfer to Nitrostilbenes to Construct N-Hydroxyindoles or Oxindoles. Angew Chem Int Ed Engl 2021; 60:19207-19213. [PMID: 34129257 PMCID: PMC8380450 DOI: 10.1002/anie.202104319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 12/15/2022]
Abstract
tert-Butoxide unlocks new reactivity patterns embedded in nitroarenes. Exposure of nitrostilbenes to sodium tert-butoxide was found to produce N-hydroxyindoles at room temperature without an additive. Changing the counterion to potassium changed the reaction outcome to yield solely oxindoles through an unprecedented dioxygen-transfer reaction followed by a 1,2-phenyl migration. Mechanistic experiments established that these reactions proceed via radical intermediates and suggest that counterion coordination controls whether an oxindole or N-hydroxyindole product is formed.
Collapse
Affiliation(s)
- Yingwei Zhao
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
- College of Chemical Engineering, Huaqiao University, Xiamen, 668 Jimei Boulevard, Xiamen, Fujian, 361021, P. R. China
| | - Haoran Zhu
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Siyoung Sung
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Donald J Wink
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Tom G Driver
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| |
Collapse
|
39
|
Mironov VF, Dimukhametov MN, Ivkova GA, Khayarov KR, Islamov DR, Litvinov IA. The formation of cage phosphoranes and their rearrangements in the reactions of substituted 2-(3-oxo-3-phenyl)ethoxybenzo[d]-1,3,2-dioxaphospholes with perfluorodiacetyl. Chem Commun (Camb) 2021; 57:8516-8519. [PMID: 34352057 DOI: 10.1039/d1cc02941j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Kukhtin-Ramirez reaction of 2-(3-oxo-3-phenyl)ethoxy-benzo[d]-1,3,2-dioxaphospholes with perfluorodiacetyl was monitored by NMR methods. To our surprise the initial stage involved a kinetically controlled [4+4]-cycloaddition with the formation of a cage phosphorane containing a 2',5',8',9'-tetraoxa-2λ5-phosphaspiro[benzo[d][1,3,2]dioxaphosphole-2,1'-bicyclo[4.2.1]nonan]-3'-ene (compound 5) scaffold. Intermediate 5 then converts to spirophosphorane-4',5'-bis(trifluoromethyl)-2λ5-spiro[benzo[d] [1,3,2]dioxaphosphole-2-yl-2,2'-[1,3,2] dioxaphosphole (compound 4). Compound 4 further rearranges into a cage phosphorane derivative containing a [2,5]epoxybenzo[d][1,3,6,2]trioxaphosphocine] (compound 3) backbone.
Collapse
Affiliation(s)
- Vladimir F Mironov
- A.E.Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russia.
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Qu Z, Chen X, Zhong S, Deng GJ, Huang H. NaI/PPh 3-Mediated Photochemical Reduction and Amination of Nitroarenes. Org Lett 2021; 23:5349-5353. [PMID: 34180677 DOI: 10.1021/acs.orglett.1c01654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A mild transition-metal- and photosensitizer-free photoredox system based on the combination of NaI and PPh3 was found to enable highly selective reduction of nitroarenes. This protocol tolerates a broad range of reducible functional groups such as halogen (Cl, Br, and even I), aldehyde, ketone, carboxyl, and cyano. Moreover, the photoredox catalysis with NaI and stoichiometric PPh3 provides also an alternative entry to Cadogan-type reductive amination when o-nitrobiarenes were used.
Collapse
Affiliation(s)
- Zhonghua Qu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xing Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shuai Zhong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
42
|
Phosphine‐Catalyzed Synthesis of Chiral
N
‐Heterocycles through (Asymmetric) P(III)/P(V) Redox Cycling. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Lecroq W, Schleinitz J, Billoue M, Perfetto A, Gaumont AC, Lalevée J, Ciofini I, Grimaud L, Lakhdar S. Metal-Free Deoxygenation of Amine N-Oxides: Synthetic and Mechanistic Studies. Chemphyschem 2021; 22:1237-1242. [PMID: 33971075 DOI: 10.1002/cphc.202100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/20/2021] [Indexed: 12/14/2022]
Abstract
We report herein an unprecedented combination of light and P(III)/P(V) redox cycling for the efficient deoxygenation of aromatic amine N-oxides. Moreover, we discovered that a large variety of aliphatic amine N-oxides can easily be deoxygenated by using only phenylsilane. These practically simple approaches proceed well under metal-free conditions, tolerate many functionalities and are highly chemoselective. Combined experimental and computational studies enabled a deep understanding of factors controlling the reactivity of both aromatic and aliphatic amine N-oxides.
Collapse
Affiliation(s)
- William Lecroq
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6, Boulevard Maréchal Juin, Caen, 14000, France
| | - Jules Schleinitz
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Mallaury Billoue
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6, Boulevard Maréchal Juin, Caen, 14000, France
| | - Anna Perfetto
- Institute of Chemistry for Life and Health Sciences (i-CLeHS) Chimie ParisTech, PSL University, CNRS, 11 rue P. et M. Curie, 75005, Paris, France
| | - Annie-Claude Gaumont
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6, Boulevard Maréchal Juin, Caen, 14000, France
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, 68100, Mulhouse, France
| | - Ilaria Ciofini
- Institute of Chemistry for Life and Health Sciences (i-CLeHS) Chimie ParisTech, PSL University, CNRS, 11 rue P. et M. Curie, 75005, Paris, France
| | - Laurence Grimaud
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Sami Lakhdar
- Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| |
Collapse
|
44
|
Xie C, Smaligo AJ, Song XR, Kwon O. Phosphorus-Based Catalysis. ACS CENTRAL SCIENCE 2021; 7:536-558. [PMID: 34056085 PMCID: PMC8155461 DOI: 10.1021/acscentsci.0c01493] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 05/08/2023]
Abstract
Phosphorus-based organocatalysis encompasses several subfields that have undergone rapid growth in recent years. This Outlook gives an overview of its various aspects. In particular, we highlight key advances in three topics: nucleophilic phosphine catalysis, organophosphorus catalysis to bypass phosphine oxide waste, and organophosphorus compound-mediated single electron transfer processes. We briefly summarize five additional topics: chiral phosphoric acid catalysis, phosphine oxide Lewis base catalysis, iminophosphorane super base catalysis, phosphonium salt phase transfer catalysis, and frustrated Lewis pair catalysis. Although it is not catalytic in nature, we also discuss novel discoveries that are emerging in phosphorus(V) ligand coupling. We conclude with some ideas about the future of organophosphorus catalysis.
Collapse
Affiliation(s)
- Changmin Xie
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Andrew J. Smaligo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | | | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
45
|
Wang P, Zhu Q, Wang Y, Zeng G, Zhu J, Zhu C. Carbon-halogen bond activation by a structurally constrained phosphorus(III) platform. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Qi ZC, Lou QX, Niu Y, Yang SD. Temporary (P[double bond, length as m-dash]O) directing group enabled carbazole ortho arylation via palladium catalysis. Chem Commun (Camb) 2021; 57:2021-2024. [PMID: 33506237 DOI: 10.1039/d0cc07596e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed, temporary P(O) directing group assisted C-H bond arylation of carbazoles was achieved. The release of the directing group occurs spontaneously in the reaction and the mechanistic studies indicate that acid is essential for N-P bond cleavage.
Collapse
Affiliation(s)
- Zhi-Chao Qi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | |
Collapse
|
47
|
Han K, Wang Y, Zhao P, You X, Wang J, Guo Y, Zhao Y, Cao S. Investigation of the Stereochemical Mechanism of the Nucleophilic Substitution Reaction at Pentacoordinate Phosphorus of Spirophosphorane. J Org Chem 2021; 86:4512-4531. [DOI: 10.1021/acs.joc.0c02953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kehui Han
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Yanyan Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Pei Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Xiaohui You
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Jun Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Yanchun Guo
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Yufen Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
- Institute Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shuxia Cao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| |
Collapse
|
48
|
Lipshultz JM, Li G, Radosevich AT. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15. J Am Chem Soc 2021; 143:1699-1721. [PMID: 33464903 PMCID: PMC7934640 DOI: 10.1021/jacs.0c12816] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing number of organopnictogen redox catalytic methods have emerged-especially within the past 10 years-that leverage the plentiful reversible two-electron redox chemistry within Group 15. The goal of this Perspective is to provide readers the context to understand the dramatic developments in organopnictogen catalysis over the past decade with an eye toward future development. An exposition of the fundamental differences in the atomic structure and bonding of the pnictogens, and thus the molecular electronic structure of organopnictogen compounds, is presented to establish the backdrop against which organopnictogen redox reactivity-and ultimately catalysis-is framed. A deep appreciation of these underlying periodic principles informs an understanding of the differing modes of organopnictogen redox catalysis and evokes the key challenges to the field moving forward. We close by addressing forward-looking directions likely to animate this area in the years to come. What new catalytic manifolds can be developed through creative catalyst and reaction design that take advantage of the intrinsic redox reactivity of the pnictogens to drive new discoveries in catalysis?
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
49
|
|
50
|
Zhou S, Liu Q, Bao M, Huang J, Wang J, Hu W, Xu X. Gold(i)-catalyzed redox transformation of o-nitroalkynes with indoles for the synthesis of 2,3′-biindole derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00134e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A gold(i)-catalyzed cascade reaction of o-nitroalkynes with indoles has been reported for the rapid assembly of 2-indolyl indolone N-oxides, which exhibit high anticancer potency against SCLC cells.
Collapse
Affiliation(s)
- Su Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Qianqian Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jie Huang
- Guangdong Lung Cancer Institute
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer
- Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences
- Guangzhou 510080
- China
| | - Junjian Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|