1
|
Guo B, Pu Y, Zhang R, Huang H, Wu Q, Geng S, Qiao C, Feng Z. Iron-Catalyzed Tunable Alkene Migratory Silylation and Transposition. Org Lett 2025; 27:5181-5187. [PMID: 40340424 DOI: 10.1021/acs.orglett.5c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The example of iron-catalyzed alkenes migratory silylation and transposition has been demonstrated, affording a tunable approach to synthesize thermodynamically stable allylsilanes and internal alkenes with high efficiency and regioselectivity. These reactions showcase several advantageous features, including good functional group tolerance, excellent regioselectivity, a broad substrate scope, scalability to gram-scale synthesis, and late-stage functionalization of bio-relevant molecules. Furthermore, the relay catalytic mechanism of the migratory silylation, involving both iron-silyl and iron-hydride intermediates, provides valuable insights into iron-catalyzed coupling reactions, opening new avenues for the development of novel transformations under iron catalysis.
Collapse
Affiliation(s)
- Bohao Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yu Pu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Ruichen Zhang
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Hong Huang
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Qingyun Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Shasha Geng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Chang Qiao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
2
|
Wang X, Zhao J, Wang D, Deng L, Lu Z. Iron-catalyzed sequential hydrosilylation. Nat Commun 2025; 16:4338. [PMID: 40346082 PMCID: PMC12064691 DOI: 10.1038/s41467-025-59364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025] Open
Abstract
Highly regio-, diastereo- and enantioselective iron-catalyzed sequential hydrosilylation of o-alk-n-enyl-phenyl silanes with alkynes is reported for various 5-, 6-, and 7-membered benzosilacycles in 60-94% yields with up to 95:5 rr, 95:5 dr, and 99% ee. Chiral fully carbon-substituted silicon-stereogenic benzosilacycles could also be obtained via triple hydrosilylation reactions. The unique electronic effect of ligands is observed while adjusting the regioselectivity and enantioselectivity in hydrosilylation reactions. A possible mechanism has been proposed by variable time normalization analysis (VTNA) and H/D exchange experiment.
Collapse
Affiliation(s)
- Xue Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Jiajin Zhao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Dongyang Wang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Liang Deng
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhan Lu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Zhu XY, Gao W, Xu JL, Wang ZL, Zhao JB, Xu YH. Copper-catalyzed intermolecular Regio- and Enantioselective Hydrosilylation of Alkenes with Prochiral Silanes. Nat Commun 2025; 16:378. [PMID: 39753543 PMCID: PMC11698737 DOI: 10.1038/s41467-024-55592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
This study presents a copper-catalyzed, substrate-controlled regio- and enantioselective intermolecular hydrosilylation method capable of accommodating a broad scope of alkenes and prochiral silanes. The approach offers an efficient and versatile pathway to generate enantioenriched linear and branched alkyl-substituted Si-stereogenic silanes. Key features of this reaction include mild reaction conditions, simple catalytic systems, compatibility with diverse substrates, high yields and enantioselectivities.
Collapse
Affiliation(s)
- Xiao-Yan Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, PR China
| | - Wenyu Gao
- Faculty of Chemistry and Life Science, Changchun University of Technology, Changchun, PR China
| | - Jian-Lin Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, PR China
| | - Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, PR China
| | - Jin-Bo Zhao
- Faculty of Chemistry and Life Science, Changchun University of Technology, Changchun, PR China.
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, PR China.
| |
Collapse
|
4
|
Ma JH, Jin CL, Couve-Bonnaire S, Bouillon JP, Xu LW. Rhodium-Catalyzed Enantioselective Hydrosilylation of 1,1-Disubstituted Enamides. Org Lett 2024; 26:10684-10689. [PMID: 39648479 DOI: 10.1021/acs.orglett.4c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Catalytic hydrosilylation of 1,1-disubstituted enamides is one of the most challenging and synthetically useful processes in organosilicon chemistry and asymmetric catalysis. Herein, we report a rhodium-catalyzed enantioselective hydrosilylation of α-arylenamides with substituted hydrosilanes with the aid of chiral P-ligand, including newly developed spirophosphite ligands, giving various chiral β-silylated amides in excellent yields with good to excellent enantioselectivities (98:2 er after recrystallization). In addition, chiral β-silylated amines can be obtained by further functionalization of the hydrosilylation product.
Collapse
Affiliation(s)
- Jun-Han Ma
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Chen-Li Jin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Samuel Couve-Bonnaire
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | | | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
5
|
Liu JB, Wang HY, Wang Y, Liu XJ. Computational Insights into the Effect of Ligands and Transition-Metal Centers on the Mechanism and Regioselectivity of Hydrosilylation of Alkenes. Inorg Chem 2024; 63:23939-23948. [PMID: 39628040 DOI: 10.1021/acs.inorgchem.4c04299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Development of sustainable synthetic methods for the hydrosilylation of alkenes, catalyzed by 3d transition metals, offers a promising alternative to traditional noble metal catalysts. This study presents a computational mechanistic investigation into the hydrosilylation of alkenes, focusing on the role of ligands and metal centers in modulating the reaction's mechanism and regioselectivity. The ligand's electronic and steric properties were found to modulate the regioselectivity for cobalt catalysts, with phosphine ligand (xantphos) promoting higher linear selectivity compared to nitrogen-based ligand (mesPDI). The energy decomposition analysis reveals that the xantphos ligand favors linear products due to stronger electrostatic and orbital interactions despite increased steric repulsion. The metal center also plays a crucial role, with cobalt catalysts favoring the modified Chalk-Harrod mechanism for branched product formation in the presence of PNN ligand (iPrPCNNMe), due to lower activation barriers in alkene insertion. Beneficial electrostatic and orbital interactions predominate, rendering the alkene insertion transition state for cobalt more favorable compared to that for iron. This work provides a comprehensive understanding of how ligand and metal center effects can be harnessed to control regioselectivity in hydrosilylation reactions.
Collapse
Affiliation(s)
- Jian-Biao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Hai-Yan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiao-Jun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
6
|
Yin T, Sui S, Li S, Chang J, Bai D. Nickel-catalyzed stereospecific reductive cross-coupling of vinyl chlorosilanes with axially chiral biaryl electrophiles. Chem Commun (Camb) 2024; 60:14204-14207. [PMID: 39530918 DOI: 10.1039/d4cc04293j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Enantioenriched organosilanes are important chiral molecules in materials science and organic synthesis. The synthesis of axially chiral organosilanes is particularly significant in terms of applications. Herein, we report a Ni-catalyzed reductive cross-electrophile coupling of vinyl chlorosilanes with sterically hindered chiral biaryl electrophiles for the synthesis of atropisomeric biaryl organosilanes. Various enantioenriched axially chiral vinylsilanes are accessible in high efficiency under mild conditions. The synthetic transformations and applications of new chiral silicon-containing alkene ligands are demonstrated.
Collapse
Affiliation(s)
- Tiantian Yin
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Shiyuan Sui
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Shuqi Li
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Dachang Bai
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
7
|
Guo S, Wang W, Zhang Y. Radical-Chain Hydrosilylation of Alkenes Enabled by Triplet Energy Transfer. Chemistry 2024; 30:e202402051. [PMID: 38978189 DOI: 10.1002/chem.202402051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Development of mild, robust and metal-free catalytic approach for the hydrosilylation of alkenes is critical to the advancement of modern organosilicon chemistry given their powerful capacity in the construction of various C-Si bonds. Herein, we wish to disclose a visible light-triggered organophotocatalytic strategy, which proceeds via a triplet energy transfer (EnT)-enabled radical chain pathway. Notably, this redox-neutral protocol is capable of accommodating a broad spectrum of electron-deficient and -rich alkenes with excellent functional group compatibility. Electron-deficient alkenes are more reactive and the reaction could be finished within a couple of minutes even in PBS solution with extremely low concentration, which suggests its click-like potential in organic synthesis. The preparative power of the transformations has been further highlighted in a number of complex settings, including the late-stage functionalization and scale-up experiments. Furthermore, although only highly reactive (TMS)3SiH is suitable hydrosilane substrate, our studies revealed the great reactivity and versatility of (TMS)3Si- group in diverse C-Si and Si-Si bond cleavage-based transformations, enabling the rapid introduction of diverse functional groups and the facile construction of valuable quaternary silicon architectures.
Collapse
Affiliation(s)
- Shixun Guo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
8
|
Bai D, Zhong K, Chang L, Qiao Y, Wu F, Xu G, Chang J. Nickel-catalyzed regiodivergent hydrosilylation of α-(fluoroalkyl)styrenes without defluorination. Nat Commun 2024; 15:6360. [PMID: 39069515 PMCID: PMC11284216 DOI: 10.1038/s41467-024-50743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
The fluoroalkyl-containing organic molecules are widely used in drug discovery and material science. Herein, we report ligand regulated nickel(0)-catalyzed regiodivergent hydrosilylation of α-(fluoroalkyl)styrenes without defluorination, providing an atom- and step-economical synthesis route of two types of fluoroalkyl substituted silanes with exclusive regioselectivity. The anti-Markovnikov addition products (β-fluoroalkyl substituted silanes) are formed with monodentate phosphine ligand. Noteworthy, the bidentate phosphine ligand promote the generation of the more challenging Markovnikov products (α-fluoroalkyl substituted silanes) with tetrasubstituted saturated carbon centers. This protocol features with easy available starting materials and commercially available nickel catalysis, a wide range of substrates and excellent regioselectivity. The structure divergent products undergo a variety of transformations. Comprehensive mechanistic studies including the inverse kinetic isotope effects demonstrate the regioselectivity controlled by ligand structure through α-CF3 nickel intermediate. DFT calculations reveal a distinctive mechanism involving an open-shell singlet state, which is crucial for generating intricate tetra-substituted Markovnikov products.
Collapse
Affiliation(s)
- Dachang Bai
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan laboratory, Xinxiang, 453007, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P R China.
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan laboratory, Xinxiang, 453007, China
| | - Lingna Chang
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan laboratory, Xinxiang, 453007, China
| | - Yan Qiao
- School of Basic Medicine, Zhengzhou University, Zhengzhou, 450001, P R China
| | - Fen Wu
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan laboratory, Xinxiang, 453007, China
| | - Guiqing Xu
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan laboratory, Xinxiang, 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan laboratory, Xinxiang, 453007, China.
| |
Collapse
|
9
|
Geng S, Pu Y, Wang S, Ji Y, Feng Z. Advances in disilylation reactions to access cis/ trans-1,2-disilylated and gem-disilylated alkenes. Chem Commun (Camb) 2024; 60:3484-3506. [PMID: 38469709 DOI: 10.1039/d4cc00288a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organosilane compounds are widely used in both organic synthesis and materials science. Particularly, 1,2-disilylated and gem-disilylated alkenes, characterized by a carbon-carbon double bond and multiple silyl groups, exhibit significant potential for subsequently diverse transformations. The versatility of these compounds renders them highly promising for applications in materials, enabling them to be valuable and versatile building blocks in organic synthesis. This review provides a comprehensive summary of methods for the preparation of cis/trans-1,2-disilylated and gem-disilylated alkenes. Despite notable advancements in this field, certain limitations persist, including challenges related to regioselectivity in the incorporation and chemoselectivity in the transformation of two nearly identical silyl groups. The primary objective of this review is to outline synthetic methodologies for the generation of these alkenes through disilylation reactions, employing silicon reagents, specifically disilanes, hydrosilanes, and silylborane reagents. The review places particular emphasis on investigating the practical applications of the C-Si bond of disilylalkenes and delves into an in-depth discussion of reaction mechanisms, particularly those reactions involving the activation of Si-Si, Si-H, and Si-B bonds, as well as the C-Si bond formation.
Collapse
Affiliation(s)
- Shasha Geng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Yu Pu
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| | - Siyu Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Yanru Ji
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| |
Collapse
|
10
|
Fang L, Gou G, Wang M, Fan T, Yin Y, Li L. Regulating the Flexibility to Assemble Porous Single-Atom Fe-Coordinated Metallopolymers for Efficient Heterogeneous Catalytic Oxidations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5823-5833. [PMID: 38285621 DOI: 10.1021/acsami.3c15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Metallopolymers as organic-inorganic hybrid materials formulated by metal embedding organic polymers show great potential for novel heterogeneous catalysis, in terms of the facile structural design and tunability. Herein, the disadvantage of nonporous stacking of one-dimensional (1D) structures has been suppressed by chain modulation of the 1D metallopolymers, allowing for the convenient construction of porous assemblies with single-atom dispersion and accessible active sites. By postmodification, the Fe/CM-1 catalyst readily synthesized by coordinating the Fe(II) to the twisted chain of 1D Schiff-base polymer possesses expedient flexibility, showing the highest porosity, remarkable heterogeneous recyclability, and thus prominent catalytic activity for the selective oxidation of benzylamine and alcohols. Moreover, control experiments supported by computational studies demonstrated that the unique pincer structure of Fe/CM-1 effectively maintains the valence state of the anchored single-atom iron, facilitating single-electron transfer and promoting efficient iron redox cycling during the catalytic process. Notably, these 1D metallopolymers have the advantage of cost-effectiveness, easy preparation in gram-scale, and utilization in continuous reaction, providing inspirations for facile synthesis of efficient heterogeneous catalysts from the well-developed 1D metallopolymers.
Collapse
Affiliation(s)
- Lei Fang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Gaozhang Gou
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Man Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Tao Fan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ying Yin
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
11
|
Aguilera M, Gogoi AR, Lee W, Liu L, Brennessel WW, Gutierrez O, Neidig ML. Insight into Radical Initiation, Solvent Effects, and Biphenyl Production in Iron-Bisphosphine Cross-Couplings. ACS Catal 2023; 13:8987-8996. [PMID: 37441237 PMCID: PMC10334425 DOI: 10.1021/acscatal.3c02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Indexed: 07/15/2023]
Abstract
Iron-bisphosphines have attracted broad interest as highly effective and versatile catalytic systems for two- and three-component cross-coupling strategies. While recent mechanistic studies have defined the role of organoiron(II)-bisphosphine species as key intermediates for selective cross-coupled product formation in these systems, mechanistic features that are essential for catalytic performance remain undefined. Specifically, key questions include the following: what is the generality of iron(II) intermediates for radical initiation in cross-couplings? What factors control reactivity toward homocoupled biaryl side-products in these systems? Finally, what are the solvent effects in these reactions that enable high catalytic performance? Herein, we address these key questions by examining the mechanism of enantioselective coupling between α-chloro- and α-bromoalkanoates and aryl Grignard reagents catalyzed by chiral bisphosphine-iron complexes. By employing freeze-trapped 57Fe Mössbauer and EPR studies combined with inorganic synthesis, X-ray crystallography, reactivity studies, and quantum mechanical calculations, we define the key in situ iron speciation as well as their catalytic roles. In contrast to iron-SciOPP aryl-alkyl couplings, where monophenylated species were found to be the predominant reactive intermediate or prior proposals of reduced iron species to initiate catalysis, the enantioselective system utilizes an iron(II)-(R,R)-BenzP* bisphenylated intermediate to initiate the catalytic cycle. A profound consequence of this radical initiation process is that halogen abstraction and subsequent reductive elimination result in considerable amounts of biphenyl side products, limiting the efficiency of this method. Overall, this study offers key insights into the broader role of iron(II)-bisphosphine species for radical initiation, factors contributing to biphenyl side product generation, and protocol effects (solvent, Grignard reagent addition rate) that are critical to minimizing biphenyl generation to obtain more selective cross-coupling methods.
Collapse
Affiliation(s)
- Maria
Camila Aguilera
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Achyut Ranjan Gogoi
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wes Lee
- Department
of Chemistry and Biochemistry, University
of Maryland, College Park, Maryland 20742, United States
| | - Lei Liu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - William W. Brennessel
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Osvaldo Gutierrez
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry and Biochemistry, University
of Maryland, College Park, Maryland 20742, United States
| | - Michael L. Neidig
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| |
Collapse
|
12
|
Zhang WR, Zhang WW, Li H, Li BJ. Amide-Directed, Rhodium-Catalyzed Enantioselective Hydrosilylation of Unactivated Internal Alkenes. Org Lett 2023; 25:1667-1672. [PMID: 36892303 DOI: 10.1021/acs.orglett.3c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Despite the recent advances made in the area of asymmetric hydrosilylation, metal-catalyzed enantioselective hydrosilylation of unactivated internal alkenes remains a challenge. Here, we report a rhodium-catalyzed enantioselective hydrosilylation of unactivated internal alkenes bearing a polar group. The coordination assistance by an amide group enables the hydrosilylation to occur with high regio- and enantioselectivity.
Collapse
Affiliation(s)
- Wen-Ran Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.,Center of Basic Molecular Science (CBMS), and Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wen-Wen Zhang
- Center of Basic Molecular Science (CBMS), and Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huanrong Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), and Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Liu T, Mao XR, Song S, Chen ZY, Wu Y, Xu LP, Wang P. Enantioselective Nickel-Catalyzed Hydrosilylation of 1,1-Disubstituted Allenes. Angew Chem Int Ed Engl 2023; 62:e202216878. [PMID: 36651564 DOI: 10.1002/anie.202216878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
Here, we report the first example of Ni-catalyzed asymmetric hydrosilylation of 1,1-disubstituted allenes with high level of regioselectivities and enantioselectivities. The key to achieve this stereoselective hydrosilylation reaction was the development of the SPSiOL-derived bisphosphite ligands (SPSiPO). This protocol features broad substrate scope, excellent functional group, and heterocycle tolerance, thus provides a versatile method for the construction of enantioenriched tertiary allylsilanes in a straightforward and atom-economic manner. DFT calculations were performed to reveal the reaction mechanism and the origins of the enantioselectivity.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Xin-Rui Mao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, P. R. China
| | - Shuo Song
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zi-Yang Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
- CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
14
|
Wang X, Chai GL, Hou YJ, Zhou MQ, Chang J. Enantioselective Synthesis of Chiral Organosilicon Compounds by Organocatalytic Asymmetric Conjugate Addition of Boronic Acids to β-Silyl-α,β-Unsaturated Ketones. J Org Chem 2023. [PMID: 36812405 DOI: 10.1021/acs.joc.3c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Herein, we report (R)-3,3'-(3,5-(CF3)2-C6H3)2-BINOL-catalyzed enantioselective conjugate addition of organic boronic acids to β-silyl-α,β-unsaturated ketones, furnishing moderate to excellent yields of the corresponding β-silyl carbonyl compounds with stereogenic centers in excellent enantioselectivities (up to 98% ee). Moreover, the catalytic system features mild reaction conditions, high efficiency, broad substrate scope, and easy scale-up.
Collapse
Affiliation(s)
- Xiao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guo-Li Chai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ya-Jing Hou
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ming-Qian Zhou
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
15
|
Iron/B2pin2 catalytic system enables the generation of alkyl radicals from inert alkyl C-O bonds for amine synthesis. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
16
|
Cheng Z, Li M, Zhang XY, Sun Y, Yu QL, Zhang XH, Lu Z. Cobalt-Catalyzed Regiodivergent Double Hydrosilylation of Arylacetylenes. Angew Chem Int Ed Engl 2023; 62:e202215029. [PMID: 36330602 DOI: 10.1002/anie.202215029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Double hydrosilylation of alkynes represents a straightforward method to synthesize bis(silane)s, yet it is challenging if α-substituted vinylsilanes act as the intermediates. Here, a cobalt-catalyzed regiodivergent double hydrosilylation of arylacetylenes is reported for the first time involving this challenge, accessing both vicinal and geminal bis(silane)s with exclusive regioselectivity. Various novel bis(silane)s containing Si-H bonds can be easily obtained. The gram-scale reactions could be performed smoothly. Preliminarily mechanistic studies demonstrated that the reactions were initiated by cobalt-catalyzed α-hydrosilylation of alkynes, followed by cobalt-catalyzed β-hydrosilylation of the α-vinylsilanes to deliver vicinal bis(silane)s, or hydride-catalyzed α-hydrosilylation to give geminal ones. Notably, these bis(silane)s can be used for the synthesis of high-refractive-index polymers (nd up to 1.83), demonstrating great potential utility in optical materials.
Collapse
Affiliation(s)
- Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Minghua Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yang Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Sun
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing-Lei Yu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing-Hong Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310058, China
| |
Collapse
|
17
|
Wang Z, Gimeno A, Lete MG, Overkleeft HS, van der Marel GA, Chiodo F, Jiménez‐Barbero J, Codée JDC. Synthetic Zwitterionic Streptococcus pneumoniae Type 1 Oligosaccharides Carrying Labile O-Acetyl Esters. Angew Chem Int Ed Engl 2023; 62:e202211940. [PMID: 36350770 PMCID: PMC10107948 DOI: 10.1002/anie.202211940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 11/11/2022]
Abstract
We herein report the first total synthesis of the Streptococcus pneumoniae serotype 1 (Sp1) oligosaccharide, a unique zwitterionic capsular polysaccharide carrying labile O-acetyl esters. The target oligosaccharides, featuring rare α-2,4-diamino-2,4,6-trideoxy galactose (AAT) and α-galacturonic acids, were assembled up to the 9-mer level, in a highly stereoselective manner using trisaccharide building blocks. The lability of the O-acetyl esters imposed a careful deprotection scheme to prevent migration and hydrolysis. The migration was investigated in detail at various pD values using NMR spectroscopy, to show that migration and hydrolysis of the C-3-O-acetyl esters readily takes place under neutral conditions. Structural investigation showed the oligomers to adopt a right-handed helical structure with the acetyl esters exposed on the periphery of the helix in close proximity of the neighboring AAT residues, thereby imposing conformational restrictions on the AATα1-4GalA(3OAc) glycosidic linkages, supporting the helical shape of the polysaccharide, that has been proposed to be critical for its unique biological activity.
Collapse
Affiliation(s)
- Zhen Wang
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Ana Gimeno
- CIC bioGUNEBizkaia Technology Park, Building 801A48170DerioSpain
| | - Marta G. Lete
- CIC bioGUNEBizkaia Technology Park, Building 801A48170DerioSpain
| | - Herman S. Overkleeft
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | | | - Fabrizio Chiodo
- Institute of Biomolecular ChemistryNational Research Council (CNR)Pozzuoli, NapoliItaly
- Amsterdam Infection and Immunity InstituteDepartment of Molecular Cell Biology and Immunology Amsterdam UMC, Location VUmc1007 MBAmsterdam (TheNetherlands
| | - Jesús Jiménez‐Barbero
- CIC bioGUNEBizkaia Technology Park, Building 801A48170DerioSpain
- IkerbasqueBasque Foundation for SciencePlaza Euskadi 548009Bilbao, BizkaiaSpain
- Department of Organic ChemistryII Faculty of Science and Technology, EHU-UPV48940LeioaSpain
- Centro de Investigación Biomédica En Red de Enfermedades RespiratoriasMadridSpain
| | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| |
Collapse
|
18
|
Yang SN, Liu CH, He LB, Zheng H, Kuai CS, Wan B, Ji DW, Chen QA. Ligand-controlled regiodivergence in cobalt-catalyzed hydrosilylation of isoprene. Org Chem Front 2023. [DOI: 10.1039/d3qo00041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
An atom-economical, regiodivergent hydrosilylation reaction of isoprene was developed using an Earth-abundant cobalt catalyst through variation of ligands.
Collapse
|
19
|
Chakraborty U, Fedulin A, Jacobi von Wangelin A. Synthesis and Catalysis of Anionic Amido Iron(II) Complexes. ChemCatChem 2022; 14:e202201105. [PMID: 37064762 PMCID: PMC10099668 DOI: 10.1002/cctc.202201105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Low-coordinate, open-shell 3d metal complexes have attracted great attention due to their critical role in several catalytic transformations but have been notoriously difficult to prepare and study due to their high lability. Here, we report the synthesis of a heteroleptic tri-coordinate amidoferrate that displays high catalytic activity in the regioselective hydrosilylation of alkenes.
Collapse
Affiliation(s)
- Uttam Chakraborty
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | - Andrey Fedulin
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | |
Collapse
|
20
|
Yang H, Hinz A, Fan Q, Xie S, Qi X, Huang W, Li Q, Sun H, Li X. Control over Selectivity in Alkene Hydrosilylation Catalyzed by Cobalt(III) Hydride Complexes. Inorg Chem 2022; 61:19710-19725. [PMID: 36455154 DOI: 10.1021/acs.inorgchem.2c02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Two new bisphosphine [PCP] pincer cobalt(III) hydrides, [(L1)Co(PMe3)(H)(Cl)] (L11, L1 = 2,6-((Ph2P)(Et)N)2C6H3) and [(L2)Co(PMe3)(H)(Cl)] (L21, L2 = 2,6-((iPr2P)(Et)N)2C6H3), as well as one new bissilylene [SiCSi] pincer cobalt(III) hydride, [(L3)Co(PMe3)(H)(Cl)] (L31, L3 = 1,3-((PhC(tBuN)2Si)(Et)N)2C6H3), were synthesized by reaction of the corresponding protic [PCP] or [SiCSi] pincer ligands L1H, L2H, and L3H with CoCl(PMe3)3. Despite the similarities in the ligand scaffolds, the three cobalt(III) hydrides show remarkably different performance as catalysts in alkene hydrosilylation. Among the PCP pincer complexes, L11 has higher catalytic activity than complex L21, and both catalysts afford anti-Markovnikov selectivity for both aliphatic and aromatic alkenes. In contrast, the catalytic activity for alkene hydrosilylation of silylene complex L31 is comparable to phosphine complex L11, but a dependence of regioselectivity on the substrates was observed: While aliphatic alkenes are converted in an anti-Markovnikov fashion, the hydrosilylation of aromatic alkenes affords Markovnikov products. The substrate scope was explored with 28 examples. Additional experiments were conducted to elucidate these mechanisms of hydrosilylation. The synthesis of cobalt(I) complex (L1)Co(PMe3)2 (L17) and its catalytic properties for alkene hydrosilylation allowed for the proposal of the mechanistic variations that occur in dependence of reaction conditions and substrates.
Collapse
Affiliation(s)
- Haiquan Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| | - Alexander Hinz
- Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| | - Xinghao Qi
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| | - Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| |
Collapse
|
21
|
Chang ASM, Kawamura KE, Henness HS, Salpino VM, Greene JC, Zakharov LN, Cook AK. (NHC)Ni(0)-Catalyzed Branched-Selective Alkene Hydrosilylation with Secondary and Tertiary Silanes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alison Sy-min Chang
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Kiana E. Kawamura
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Hayden S. Henness
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Victor M. Salpino
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Jack C. Greene
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Lev N. Zakharov
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Amanda K. Cook
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
22
|
Li S, Xu JL, Xu YH. Copper-Catalyzed Enantioselective Hydrosilylation of Allenes to Access Axially Chiral (Cyclohexylidene)ethyl Silanes. Org Lett 2022; 24:6054-6059. [PMID: 35948075 DOI: 10.1021/acs.orglett.2c02359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel strategy of copper-catalyzed regio- and enantioselective hydrosilylation of 4-substituted vinylidenecyclohexanes with silanes was developed. In this protocol, various allenes and silanes were used to afford the corresponding (cyclohexylidene)ethyl silanes in moderate to high yields with good enantioselectivities.
Collapse
Affiliation(s)
- Shu Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jian-Lin Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
23
|
Wang L, Lu W, Zhang J, Chong Q, Meng F. Cobalt‐Catalyzed Regio‐, Diastereo‐ and Enantioselective Intermolecular Hydrosilylation of 1,3‐Dienes with Prochiral Silanes. Angew Chem Int Ed Engl 2022; 61:e202205624. [DOI: 10.1002/anie.202205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Wenxin Lu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Jiwu Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences China
| |
Collapse
|
24
|
Jin S, Li J, Liu K, Ding WY, Wang S, Huang X, Li X, Yu P, Song Q. Enantioselective Cu-catalyzed double hydroboration of alkynes to access chiral gem-diborylalkanes. Nat Commun 2022; 13:3524. [PMID: 35725731 PMCID: PMC9209482 DOI: 10.1038/s41467-022-31234-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/08/2022] [Indexed: 01/16/2023] Open
Abstract
Chiral organoborons are of great value in asymmetric synthesis, functional materials, and medicinal chemistry. The development of chiral bis(boryl) alkanes, especially optically enriched 1,1-diboron compounds, has been greatly inhibited by the lack of direct synthetic protocols. Therefore, it is very challenging to develop a simple and effective strategy to obtain chiral 1,1-diborylalkanes. Herein, we develop an enantioselective copper-catalyzed cascade double hydroboration of terminal alkynes and highly enantioenriched gem-diborylalkanes were readily obtained. Our strategy uses simple terminal alkynes and two different boranes to construct valuable chiral gem-bis(boryl) alkanes with one catalytic and one ligand pattern, which represents the simplest and most straightforward strategy for constructing such chiral gem-diborons.
Collapse
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Jinxia Li
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kang Liu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Wei-Yi Ding
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuai Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xiujuan Huang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xue Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China.
| |
Collapse
|
25
|
Wang L, Lu W, Zhang J, Chong Q, Meng F. Cobalt‐Catalyzed Regio‐, Diastereo‐ and Enantioselective Intermolecular Hydrosilylation of 1,3‐Dienes with Prochiral Silanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Wenxin Lu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Jiwu Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences China
| |
Collapse
|
26
|
Han B, Zhang M, Jiao H, Chen R, Ma H, Li R, Wang J, Zhang Y. Regioselective Hydrogenation of Polycyclic Aromatic Hydrocarbons and Olefins Catalyzed by Magnesium‐Activated Chromium Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202200776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Han
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| | - Miaomiao Zhang
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| | - Hongmei Jiao
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| | - Rong Chen
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| | - Haojie Ma
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| | - Ran Li
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| | - Jijiang Wang
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| | - Yuqi Zhang
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| |
Collapse
|
27
|
Yang W, Fan Q, Yang H, Sun H, Li X. [P, C] Chelate Cobalt(I)-Catalyzed Distinct Selective Hydrosilylation of Alkenes under Mild Conditions. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenjing Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Haiquan Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| |
Collapse
|
28
|
Sun W, Li MP, Li LJ, Huang Q, Hu MY, Zhu SF. Phenanthroline-imine ligands for iron-catalyzed alkene hydrosilylation. Chem Sci 2022; 13:2721-2728. [PMID: 35340863 PMCID: PMC8890093 DOI: 10.1039/d1sc06727c] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/09/2022] [Indexed: 01/13/2023] Open
Abstract
Iron-catalyzed organic reactions have been attracting increasing research interest but still have serious limitations on activity, selectivity, functional group tolerance, and stability relative to those of precious metal catalysts. Progress in this area will require two key developments: new ligands that can impart new reactivity to iron catalysts and elucidation of the mechanisms of iron catalysis. Herein, we report the development of novel 2-imino-9-aryl-1,10-phenanthrolinyl iron complexes that catalyze both anti-Markovnikov hydrosilylation of terminal alkenes and 1,2-anti-Markovnikov hydrosilylation of various conjugated dienes. Specifically, we achieved the first examples of highly 1,2-anti-Markovnikov hydrosilylation reactions of aryl-substituted 1,3-dienes and 1,1-dialkyl 1,3-dienes with these newly developed iron catalysts. Mechanistic studies suggest that the reactions may involve an Fe(0)-Fe(ii) catalytic cycle and that the extremely crowded environment around the iron center hinders chelating coordination between the diene and the iron atom, thus driving migration of the hydride from the silane to the less-hindered, terminal end of the conjugated diene and ultimately leading to the observed 1,2-anti-Markovnikov selectivity. Our findings, which have expanded the types of iron catalysts available for hydrosilylation reactions and deepened our understanding of the mechanism of iron catalysis, may inspire the development of new iron catalysts and iron-catalyzed reactions.
Collapse
Affiliation(s)
- Wei Sun
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Ming-Peng Li
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Lu-Jie Li
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Qiang Huang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Meng-Yang Hu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
29
|
Wang YF, He YH, Su Y, Ji Y, Li R. Asymmetric Hydrosilylation of β-Silyl Styrenes Catalyzed by a Chiral Palladium Complex. J Org Chem 2022; 87:2831-2844. [PMID: 35080877 DOI: 10.1021/acs.joc.1c02734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium complex coordinated with a chiral SIPHOS ligand was evaluated as an efficient catalyst for asymmetric hydrosilylation of β-silyl styrenes with trichlorosilane and 23 1,2-bis(silyl) chiral compounds were produced. Good to excellent enantioselectivities were observed with 1-aryl-2-silyl ethanols, where the trichlorosilyl groups of the hydrosilylation products were selectively converted into a hydroxyl group in the presence of pre-installed trialkylsilyl groups. Asymmetric hydrosilylation of β-silyl styrenes followed by methylation of the trichlorosilyl group gave stable 1,2-bis(silyl) chiral compounds 4 with excellent yields. DFT calculations of hydridopalladium B coordinated with a SIPHOS ligand, an intermediate of the hydrosilylation reaction, established the optical structures to be energy minima, and the structural information could well illustrate the enantioselectivity for the hydrosilylation reaction.
Collapse
Affiliation(s)
- Yi-Fan Wang
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu-Han He
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Yan Su
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yang Ji
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Rui Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
30
|
Bai D, Wu F, Chang L, Wang M, Wu H, Chang J. Highly Regio‐ and Enantioselective Hydrosilylation of
gem
‐Difluoroalkenes by Nickel Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dachang Bai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P.R. China
| | - Fen Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Lingna Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Manman Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Hao Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| |
Collapse
|
31
|
Mondal R, Guin AK, Chakraborty G, Paul ND. Metal-ligand cooperative approaches in homogeneous catalysis using transition metal complex catalysts of redox noninnocent ligands. Org Biomol Chem 2022; 20:296-328. [PMID: 34904619 DOI: 10.1039/d1ob01153g] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catalysis offers a straightforward route to prepare various value-added molecules starting from readily available raw materials. The catalytic reactions mostly involve multi-electron transformations. Hence, compared to the inexpensive and readily available 3d-metals, the 4d and 5d-transition metals get an extra advantage for performing multi-electron catalytic reactions as the heavier transition metals prefer two-electron redox events. However, for sustainable development, these expensive and scarce heavy metal-based catalysts need to be replaced by inexpensive, environmentally benign, and economically affordable 3d-metal catalysts. In this regard, a metal-ligand cooperative approach involving transition metal complexes of redox noninnocent ligands offers an attractive alternative. The synergistic participation of redox-active ligands during electron transfer events allows multi-electron transformations using 3d-metal catalysts and allows interesting chemical transformations using 4d and 5d-metals as well. Herein we summarize an up-to-date literature report on the metal-ligand cooperative approaches using transition metal complexes of redox noninnocent ligands as catalysts for a few selected types of catalytic reactions.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| |
Collapse
|
32
|
Cui H, Niu C, Xing M, Zhang C. NiH-catalyzed C(sp 3)–Si coupling of alkenes with vinyl chlorosilanes. Chem Commun (Camb) 2022; 58:11989-11992. [DOI: 10.1039/d2cc04232k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel NiH-catalyzed highly selective cross-coupling of alkenes with vinyl chlorosilanes is developed. Using this practical chemistry, various benzyl organosilanes could be produced with good functional group tolerance.
Collapse
Affiliation(s)
- Huanhuan Cui
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Changhao Niu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Mimi Xing
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Du Q, Zhang L, Gao F, Wang L, Zhang W. Progress in Transition Metal-Catalyzed Asymmetric Ring-Opening Reactions of Epoxides and Aziridines. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Nihala R, Hisana KN, Afsina CMA, Anilkumar G. Applications of iron pincer complexes in hydrosilylation reactions. RSC Adv 2022; 12:24339-24361. [PMID: 36128525 PMCID: PMC9414319 DOI: 10.1039/d2ra04239h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Due to its abundance, low cost and low toxicity, the first-row transition metal, iron is widely preferred as a catalyst in organic synthesis. The only drawback of lower selectivity due to high reactivity and low stability of the metal centre is tuned by using pincer ligands of different types. The different iron pincer complexes thus prepared are extensively used in catalyzing different types of organic reactions with great selectivity and functional group tolerance under moderate reaction conditions. In this review, we focus on the applications of iron pincer complexes in hydrosilylation reactions, especially the hydrosilylation of carbonyl derivatives and alkene/alkynes. Iron pincer complexes are efficient in catalyzing various organic reactions with excellent selectivity and functional group tolerance at moderate reaction conditions. This review focuses on the applications of iron pincer complexes in hydrosilylation reactions.![]()
Collapse
Affiliation(s)
- Rasheed Nihala
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India, +91-481-2731036
| | - Kalathingal Nasreen Hisana
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - C. M. A. Afsina
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Gopinathan Anilkumar
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India, +91-481-2731036
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| |
Collapse
|
35
|
Bai D, Cheng R, Yang J, Xu W, Chen X, Chang J. Regiodivergent hydrosilylation in the nickel(0)-catalyzed cyclization of 1,6-enynes. Org Chem Front 2022. [DOI: 10.1039/d2qo01266a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The divergent nickel(0)-catalyzed hydrosilylation/cyclization of 1,6-enynes has been developed, providing an efficient synthetic route for vinyl silanes or alkyl silanes from the same starting materials.
Collapse
Affiliation(s)
- Dachang Bai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China
| | - Ruoshi Cheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jiaxin Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Wenjie Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xingge Chen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
36
|
Huang W, Lu J, Fan Q, Li X, Hinz A, Sun H. Synthesis of aryl cobalt and iron complexes and their catalytic activity on hydrosilylation of alkenes. NEW J CHEM 2022. [DOI: 10.1039/d1nj06133j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Four aryl Co and Fe complexes, (F4C5N)CoCl(PMe3)3 (1), (F4C5N)Fe(PMe3)4 (2), (F5C6)CoCl(PMe3)3 (3) and (F4C5)FeCl(PMe3)3 (4), were synthesized from the reactions of 3-chloro-2,4,5,6-tetrafluoro-pyridine and chloropentafluorobenzene with Co(PMe3)4 and Fe(PMe3)4, respectively.
Collapse
Affiliation(s)
- Wei Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Jiahui Lu
- School of Chemsitry and Chemical Engineering, University of Jinan, 250022 Jinan, People's Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Alexander Hinz
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Engesserstr.15, 76131 Karlsruhe, Germany
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| |
Collapse
|
37
|
Bai D, Wu F, Chang L, Wang M, Wu H, Chang J. Highly Regio- and Enantioselective Hydrosilylation of gem-Difluoroalkenes via Nickel Catalysis. Angew Chem Int Ed Engl 2021; 61:e202114918. [PMID: 34957676 DOI: 10.1002/anie.202114918] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/10/2022]
Abstract
The synthesis of small organic molecules with a difluoromethylated stereocenter is particularly attractive in drug discovery. Herein, we developed an efficient method for the direct generation of difluoromethylated stereocenters through Ni(0)-catalyzed regio - and enantioselective hydrosilylation of gem -difluoroalkenes. The reaction also represents the enantioselective construction of carbon(sp 3 )-silicon bonds with nickel catalysis, which provides an atom- and step-economical synthesis route of high-value optically active α-difluoromethylsilanes. This protocol features with readily available starting materials and commercial chiral catalysis, broad substrates spanning a range of functional groups with high yield (up to 99% yield) and excellent enantioselectivity (up to 96% ee). The enantioenriched products undergo a variety of stereospecific transformations. Preliminary mechanistic studies were performed.
Collapse
Affiliation(s)
- Dachang Bai
- Henan Normal University, school of chemistry and chemical engineering, 46# jianshe road, 456007, xinxiang, CHINA
| | - Fen Wu
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Lingna Chang
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Manman Wang
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Hao Wu
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Junbiao Chang
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
38
|
Kobayashi K, Nakazawa H. Base Metal-terpyridine Complex Immobilized on Stationary Phase Aimed as Reusable Hydrosilylation Catalyst. Chem Asian J 2021; 16:3695-3701. [PMID: 34535984 DOI: 10.1002/asia.202100804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/10/2021] [Indexed: 11/06/2022]
Abstract
The catalytic activity of a base metal-terpyridine complex immobilized on silica gel (M(tpy)X2 @SiO2 /H2 O: M=Mn, Fe, Co, Ni, Cu; X=Cl, Br) for hydrosilylation was investigated. Co(tpy)Br2 @SiO2 /H2 O in the presence of NaBHEt3 exhibited the highest catalytic activity for hydrosilylation of 1-octene with diphenylsilane (Ph2 SiH2 ) to form the anti-Markovnikov-type hydrosilylation compound as the main product. The reusability of Co(tpy)Br2 @SiO2 /H2 O activated by NaBHEt3 was examined. It was found that the catalytic activity decreased with repeated use because of the peeling off of the Co complex anchor portion from the silica gel surface upon the attack of NaBHEt3 . The introduction of Co(OAc)2 instead of CoBr2 to silica gel formed Co(tpy)(OAc)2 - and Co(tpy)(OH)2 -immobilized silica gel, which exhibited catalytic activity for the hydrosilylation in the absence of an activator such as NaBHEt3 . The glassware in which Co(tpy)(OH)2 was immobilized on the inner wall was prepared. It was found that the hydrosilylation catalytically occurred on the surface of a pretreated glassware and that the catalytic activity did not decrease even after 10 repeated uses.
Collapse
Affiliation(s)
- Katsuaki Kobayashi
- Department of Chemistry, Graduate School of Science, Osaka City University Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Hiroshi Nakazawa
- Department of Chemistry, Graduate School of Science, Osaka City University Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
39
|
Abstract
Herein, a series of new 8-OIQ cobalt complexes were synthesized and used for cobalt-catalyzed chemo- and enantioselective 1,4-hydroboration of enones with HBpin to access chiral β,β-disubstituted ketones with good to excellent chemo- and enantioselectivties. This protocol is operationally simple and shows a broad substrate scope.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
40
|
Lu D, Lu P, Lu Z. Cobalt‐Catalyzed Asymmetric 1,4‐Reduction of
β,β‐
Dialkyl
α
,
β
‐Unsaturated Esters with PMHS. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dongpo Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Peng Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhan Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 310058 China
| |
Collapse
|
41
|
Jin S, Liu K, Wang S, Song Q. Enantioselective Cobalt-Catalyzed Cascade Hydrosilylation and Hydroboration of Alkynes to Access Enantioenriched 1,1-Silylboryl Alkanes. J Am Chem Soc 2021; 143:13124-13134. [PMID: 34382392 DOI: 10.1021/jacs.1c04248] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enantioenriched 1,1-silylboryl alkanes possess silyl and boryl groups that are both connected to the same stereogenic carbon center at well-defined orientations. As these chiral multifunctionalized compounds potentially offer two synthetic handles, they are highly valued building blocks in asymmetric synthesis as well as medicinal chemistry. Despite the potential usefulness, efficient synthetic approaches for their preparation are scarce. Seeking to address this deficiency, an enantioselective cobalt-catalyzed hydrosilylation/hydroboration cascade of terminal alkynes has been realized. This protocol constitutes an impressive case of chemo-, regio-, and stereoselectivity wherein the two different hydrofunctionalization events are exquisitely controlled by a single set of metal catalyst and ligand, an operation which would usually require two separate catalytic systems. Downstream transformations of enantioenriched 1,1-silyboryl alkanes led to various valuable chiral compounds. Mechanistic studies suggest that the present reaction undergoes highly regioselective and stereocontrolled sequential hydrosilylation and hydroboration processes.
Collapse
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Kang Liu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Shuai Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
42
|
Lu P, Ren X, Xu H, Lu D, Sun Y, Lu Z. Iron-Catalyzed Highly Enantioselective Hydrogenation of Alkenes. J Am Chem Soc 2021; 143:12433-12438. [PMID: 34343425 DOI: 10.1021/jacs.1c04773] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we reported for the first time an iron-catalyzed highly enantioselective hydrogenation of minimally functionalized 1,1-disubstituted alkenes to access chiral alkanes with full conversion and excellent ee. A novel chiral 8-oxazoline iminoquinoline ligand and its iron complex have been designed and synthesized. This protocol is operationally simple by using 1 atm of hydrogen gas and shows good functional group tolerance. A primary mechanism has been proposed by the deuterium-labeling experiments.
Collapse
Affiliation(s)
- Peng Lu
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Xiang Ren
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Haofeng Xu
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Dongpo Lu
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Yufeng Sun
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
43
|
Kobayashi K, Nakazawa H. Catalytic hydrosilylation of olefins and ketones by base metal complexes bearing a 2,2′:6′,2″-terpyridine ancillary ligand. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Zhou S, Pu Y, Liu Z, Zhang X, Zhu J, Feng Z. Iron-Catalyzed Diborylation of Unactivated Aliphatic gem-Dihalogenoalkenes: Synthesis of 1,2-Bis(boryl)alkanes. Org Lett 2021; 23:5565-5570. [PMID: 34231357 DOI: 10.1021/acs.orglett.1c01967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, we report the first example of iron-catalyzed defluoroborylation of unactivated gem-difluoroalkenes, gem-dichloroalkenes, and gem-dibromoalkenes, providing the 1,2-bis(boryl)alkanes in moderate to good yield. This transformation has high regioselectivity, wide substrate scope, and excellent functional group compatibility. Preliminary mechanistic studies indicate that double β-F elimination is involved in the catalytic cycle, and the 1,1-diborylated alkenes might be intermediates in this iron-catalyzed 1,2-diborylation reaction.
Collapse
Affiliation(s)
- Shangsheng Zhou
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yu Pu
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Zhengli Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Zhang Feng
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| |
Collapse
|
45
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
46
|
Jia JS, Cao Y, Wu TX, Tao Y, Pan YM, Huang FP, Tang HT. Highly Regio- and Stereoselective Markovnikov Hydrosilylation of Alkynes Catalyzed by High-Nuclearity {Co 14} Clusters. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01996] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun-Song Jia
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Yan Cao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Tai-Xue Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ye Tao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Fu-Ping Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| |
Collapse
|
47
|
Guo J, Cheng Z, Chen J, Chen X, Lu Z. Iron- and Cobalt-Catalyzed Asymmetric Hydrofunctionalization of Alkenes and Alkynes. Acc Chem Res 2021; 54:2701-2716. [PMID: 34011145 DOI: 10.1021/acs.accounts.1c00212] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transition metal catalyzed asymmetric hydrofunctionalization of readily available unsaturated hydrocarbons presents one of the most straightforward and atom-economic protocols to access valuable optically active products. For decades, noble transition metal catalysts have laid the cornerstone in this field, on account of their superior reactivity and selectivity. In recent years, from an economical and sustainable standpoint, first-row, earth-abundant transition metals have received considerable attention, due to their high natural reserves, affordable costs, and low toxicity. Meanwhile, the earth-abundant metal catalyzed hydrofunctionalization reactions have also gained much interest and been investigated gradually. However, since chiral ligand libraries for earth-abundant transition-metal catalysis are limited to date, the development of highly enantioselective versions remains a significant challenge.This Account summarizes our recent efforts in developing suitable chiral ligands for iron and cobalt catalysts and their applications in the highly enantioselective hydrofunctionalization reactions (hydroboration and hydrosilylation) of alkenes and alkynes. In ligand design, we envisioned that chiral unsymmetric NNN-tridentate (UNT) ligand scaffolds could promote these enantioselective transformations with earth-abundant metals. Therefore, several types of chiral UNT ligands were designed and prepared in our laboratory, utilizing readily available natural amino acids as chiral sources. In the very beginning, chiral oxazoline iminopyridine (OIP) ligands were proposed and investigated through the rational combination of nitrogen-containing ligand scaffolds. After a systematic survey of the ligand effects, the imine moiety in the rigid OIP ligands was replaced by a conformationally more flexible amine unit, leading to the construction of reactive oxazoline aminoisopropylpyridine (OAP) ligands. Subsequently, imidazoline iminopyridine (IIP) and thiazoline iminopyridine (TIP) ligands were prepared by altering the oxygen atom of oxazoline with nitrogen and sulfur linkers, respectively. To further expand the chiral ligand library, other tridentate ligands containing a twisted pincer, anionic, and nonrigid backbone were also designed and synthesized, including iminophenyl oxazolinyl phenylamine (IPOPA) and imidazoline phenyl picolinamide (ImPPA). The efficacy of these chiral UNT ligands for asymmetric induction in iron and cobalt catalysis has been demonstrated through asymmetric hydrofunctionalization of alkenes and asymmetric sequential hydrofunctionalization of alkynes, which exhibit excellent reactivity as well as high chemo-, regio-, and stereoselectivity with broad functional group tolerance. Notably, highly regio- and enantioselective hydrofunctionalization of challenging substrates, such as 1,1-disubstituted aryl alkenes and terminal aliphatic alkenes, was also achieved. Furthermore, the development of asymmetric sequential isomerization/hydroboration of internal alkenes and sequential hydrofunctionalization of alkynes further demonstrates the synthetic power of these catalytic systems. The chiral enantioenriched products obtained by these methodologies could be potentially utilized in organic synthesis, medicinal chemistry, and materials science. We believe that our continuous efforts in this field would be beneficial to the development of asymmetric earth-abundant metal catalysis.
Collapse
Affiliation(s)
- Jun Guo
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jianhui Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
48
|
You Y, Ge S. Asymmetric Cobalt‐Catalyzed Regioselective Hydrosilylation/Cyclization of 1,6‐Enynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang'en You
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Shaozhong Ge
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
49
|
You Y, Ge S. Asymmetric Cobalt-Catalyzed Regioselective Hydrosilylation/Cyclization of 1,6-Enynes. Angew Chem Int Ed Engl 2021; 60:12046-12052. [PMID: 33683810 DOI: 10.1002/anie.202100775] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/03/2021] [Indexed: 11/06/2022]
Abstract
We report an enantioselective cobalt-catalyzed hydrosilylation/cyclization reaction of 1,6-enynes with secondary and tertiary hydrosilanes employing a catalyst generated in situ from the combination of Co(acac)2 and (R,Sp )-Josiphos. A wide range of oxygen-, nitrogen-, and carbon-tethered 1,6-enynes reacted with Ph2 SiH2 , (EtO)3 SiH, or (RO)2 MeSiH to afford the corresponding chiral organosilane products in high yields and up to >99 % ee. This cobalt-catalyzed hydrosilylation/cyclization also occurred with prochiral secondary hydrosilane PhMeSiH2 to yield chiral alkylsilanes containing both carbon- and silicon-stereogenic centers with excellent enantioselectivity, albeit with modest diastereoselectivity. The chiral organosilane products from this cobalt-catalyzed asymmetric hydrosilylation/cyclization could be converted to a variety of chiral five-membered heterocyclic compounds by stereospecific conversion of their C-Si and Si-H bonds without loss of enantiopurity.
Collapse
Affiliation(s)
- Yang'en You
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
50
|
Newar R, Akhtar N, Antil N, Kumar A, Shukla S, Begum W, Manna K. Amino Acid‐Functionalized Metal‐Organic Frameworks for Asymmetric Base–Metal Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rajashree Newar
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Naved Akhtar
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Neha Antil
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Ajay Kumar
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Sakshi Shukla
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Wahida Begum
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Kuntal Manna
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|