1
|
Zhuang HF, Gu J, Ye Z, He Y. Stereospecific 3-Aza-Cope Rearrangement Interrupted Asymmetric Allylic Substitution-Isomerization. Angew Chem Int Ed Engl 2025; 64:e202418951. [PMID: 39417348 DOI: 10.1002/anie.202418951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Transition-metal catalyzed asymmetric allylic substitution with alkyl and heteroaryl carbon nucleophiles has been well-established. However, the asymmetric allylic arylation of acyclic internal alkenes with aryl nucleophiles remains challenging and underdeveloped. Herein we report a stereospecific 3-aza-Cope rearrangement interrupted asymmetric allylic substitution-isomerization (Int-AASI) that enables asymmetric allylic arylation. By means of this stepwise strategy, both enantioenriched allylic arylation products and axially chiral alkenes could be readily obtained in high enantioselectivities. Experimental studies support a mechanism involving a cascade of asymmetric allylic amination, stereospecific 3-aza-Cope rearrangement and alkene isomerization. Density functional theory studies detailed the reasons of achieving the high chemoselectivity, regioselectivity, stereoselectivity and stereospecificity, respectively.
Collapse
Affiliation(s)
- Hong-Feng Zhuang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
2
|
Yang S, Fang X. Copper-catalyzed yne-allylic substitutions: concept and recent developments. Beilstein J Org Chem 2024; 20:2739-2775. [PMID: 39498447 PMCID: PMC11533123 DOI: 10.3762/bjoc.20.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
The catalytic (asymmetric) allylation and propargylation have been established as powerful strategies allowing access to enantioenriched α-chiral alkenes and alkynes. In this context, combining allylic and propargylic substitutions offers new opportunities to expand the scope of transition metal-catalyzed substitution reactions. Since its discovery in 2022, copper-catalyzed yne-allylic substitution has undergone rapid development and significant progress has been made using the key copper vinyl allenylidene intermediates. This review summarizes the developments and illustrates the influences of copper salt, ligand, and substitution pattern of the substrate on the regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
3
|
Li J, Wang Y, Wang Y, Zhai L, Huang J, Song L, You H, Chen FE. Desymmetrization of Inert meso-Diethers through Copper-Catalyzed Asymmetric Allylic Alkylation with Grignard Reagents. Org Lett 2024; 26:5844-5849. [PMID: 38950387 DOI: 10.1021/acs.orglett.4c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
We have developed a highly regio-, diastereo-, and enantioselective Cu-catalyzed desymmetrization of inert meso-diethers using Grignard reagents. Moreover, previous inaccessible sterically hindered organometallic reagents are realized in the reaction with broad secondary alkyl Grignard reagents. Finally, detailed control experiments and density functional theory calculations revealed the desymmetrization of meso-diethers exploits a direct anti-SN2' pathway, in the absence of an in situ-generated allyl bromine intermediate. The following oxidative addition is the crucial rate-determining and enantioselectivity-determining step.
Collapse
Affiliation(s)
- Jun Li
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yu Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yan Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lianjie Zhai
- National Key Lab of Science and Technology on Combustion and Explosion, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Li J, Huang J, Wang Y, Liu Y, Zhu Y, You H, Chen FE. Copper-catalyzed asymmetric allylic substitution of racemic/ meso substrates. Chem Sci 2024; 15:8280-8294. [PMID: 38846404 PMCID: PMC11151816 DOI: 10.1039/d4sc02135e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
The synthesis of enantiomerically pure compounds is a pivotal subject in the field of chemistry, with enantioselective catalysis currently standing as the primary approach for delivering specific enantiomers. Among these strategies, Cu-catalyzed asymmetric allylic substitution (AAS) is significant and irreplaceable, especially when it comes to the use of non-stabilized nucleophiles (pK a > 25). Although Cu-catalyzed AAS of prochiral substrates has also been widely developed, methodologies involving racemic/meso substrates are highly desirable, as the substrates undergo dynamic processes to give single enantiomer products. Inspired by the pioneering work of the Alexakis, Feringa and Gennari groups, Cu-catalyzed AAS has been continuously employed in deracemization and desymmetrization processes for the synthesis of enantiomerically enriched products. In this review, we mainly focus on the developments of Cu-catalyzed AAS with racemic/meso substrates over the past two decades, providing an explicit outline of the ligands employed, the scope of nucleophiles, the underlying dynamic processes and their practical applications.
Collapse
Affiliation(s)
- Jun Li
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Yan Wang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Yuexin Liu
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Yuxiang Zhu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
5
|
Hui C, Craggs L, Antonchick AP. Ring contraction in synthesis of functionalized carbocycles. Chem Soc Rev 2022; 51:8652-8675. [PMID: 36172989 DOI: 10.1039/d1cs01080h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbocycles are a key and widely present structural motif in organic compounds. The construction of structurally intriguing carbocycles, such as highly-strained fused rings, spirocycles or highly-functionalized carbocycles with congested stereocenters, remains challenging in organic chemistry. Cyclopropanes, cyclobutanes and cyclopentanes within such carbocycles can be synthesized through ring contraction. These ring contractions involve re-arrangement of and/or small molecule extrusion from a parental ring, which is either a carbocycle or a heterocycle of larger size. This review provides an overview of synthetic methods for ring contractions to form cyclopropanes, cyclobutanes and cyclopentanes en route to structurally intriguing carbocycles.
Collapse
Affiliation(s)
- Chunngai Hui
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany. .,Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Luke Craggs
- Nottingham Trent University, School of Science and Technology, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, UK
| | - Andrey P Antonchick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany. .,Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany.,Nottingham Trent University, School of Science and Technology, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, UK
| |
Collapse
|
6
|
Li J, Song X, Wu F, You H, Chen FE. Cu‐Catalyzed Asymmetric Allylic Alkylation of Racemic Cyclic Allyl Bromides with Organolithium Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun Li
- Harbin Institute of Technology Shenzhen School of science CHINA
| | - Xiao Song
- Harbin Institute of Technology Shenzhen School of science CHINA
| | - Fusong Wu
- Harbin Institute of Technology Shenzhen School of science CHINA
| | - Hengzhi You
- Harbin Institute of Technology Shenzhen School of science Xili University Town, Building G, Room 608 518055 Shenzhen CHINA
| | - Fen-Er Chen
- Harbin Institute of Technology Shenzhen School of science CHINA
| |
Collapse
|
7
|
Chaves-Pouso A, Álvarez-Constantino AM, Fañanás-Mastral M. Enantio- and Diastereoselective Copper-Catalyzed Allylboration of Alkynes with Allylic gem-Dichlorides. Angew Chem Int Ed Engl 2022; 61:e202117696. [PMID: 35263483 PMCID: PMC9314970 DOI: 10.1002/anie.202117696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/06/2022]
Abstract
Allylic gem-dichlorides are shown to be efficient substrates for catalytic asymmetric allylboration of alkynes. The method employs a chiral NHC-Cu catalyst capable of generating in a single step chiral skipped dienes bearing a Z-alkenyl chloride, a trisubstituted E-alkenyl boronate and a bis-allylic stereocenter with excellent levels of chemo-, regio- enantio- and diastereoselectivity. This high degree of functionalization makes these products versatile building blocks as illustrated with the synthesis of several optically active compounds. DFT calculations support the key presence of a metal cation bridge ligand-substrate interaction and account for the stereoselectivity outcome.
Collapse
Affiliation(s)
- Andrea Chaves-Pouso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Andrés M Álvarez-Constantino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Niu S, Luo Y, Xu C, Liu J, Yang S, Fang X. Copper-Catalyzed Yne-Allylic Substitutions Using Stabilized Nucleophiles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Shengtong Niu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Yingkun Luo
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Chao Xu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
9
|
Chaves‐Pouso A, Álvarez‐Constantino AM, Fañanás‐Mastral M. Enantio‐ and Diastereoselective Copper‐Catalyzed Allylboration of Alkynes with Allylic
gem
‐Dichlorides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrea Chaves‐Pouso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Andrés M. Álvarez‐Constantino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Fañanás‐Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
10
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Fernandes VA, Lima RN, Broterson YB, Kawamura MY, Echemendía R, de la Torre AF, Ferreira MAB, Rivera DG, Paixão MW. Direct access to tetrasubstituted cyclopentenyl scaffolds through a diastereoselective isocyanide-based multicomponent reaction. Chem Sci 2021; 12:15862-15869. [PMID: 35024110 PMCID: PMC8672720 DOI: 10.1039/d1sc04158d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022] Open
Abstract
An efficient strategy combining the stereocontrol of organocatalysis with the diversity-generating character of multicomponent reactions is described to produce structurally unique, tetrasubstituted cyclopentenyl frameworks. An asymmetric Michael addition-hemiacetalization between α-cyanoketones and α,β-unsaturated aliphatic aldehydes was performed for constructing cyclic hemiacetals, which were next employed as chiral bifunctional substrates in a new diastereoselective intramolecular isocyanide-based multicomponent reaction. This approach furnished a diversity of structurally complex compounds - including peptidomimetics and natural product hybrids in high stereoselectivity (up to >99% ee and up to >99 : 1 dr) and in moderate to high yields.
Collapse
Affiliation(s)
- Vitor A Fernandes
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos São Carlos São Paulo 13565-905 Brazil
| | - Rafaely N Lima
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos São Carlos São Paulo 13565-905 Brazil
| | - Yoisel B Broterson
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos São Carlos São Paulo 13565-905 Brazil
| | - Meire Y Kawamura
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos São Carlos São Paulo 13565-905 Brazil
| | - Radell Echemendía
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos São Carlos São Paulo 13565-905 Brazil
- Faculty of Chemistry, University of Havana La Habana Cuba
| | - Alexander F de la Torre
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción Concepción Chile
| | - Marco A B Ferreira
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos São Carlos São Paulo 13565-905 Brazil
| | | | - Marcio W Paixão
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos São Carlos São Paulo 13565-905 Brazil
| |
Collapse
|
12
|
Karmacharya M, Kumar S, Gulenko O, Cho YK. Advances in Facemasks during the COVID-19 Pandemic Era. ACS APPLIED BIO MATERIALS 2021; 4:3891-3908. [PMID: 35006814 PMCID: PMC7839420 DOI: 10.1021/acsabm.0c01329] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The outbreak of coronavirus disease (COVID-19) has transformed the daily lifestyles of people worldwide. COVID-19 was characterized as a pandemic owing to its global spread, and technologies based on engineered materials that help to reduce the spread of infections have been reported. Nanotechnology present in materials with enhanced physicochemical properties and versatile chemical functionalization offer numerous ways to combat the disease. Facemasks are a reliable preventive measure, although they are not 100% effective against viral infections. Nonwoven materials, which are the key components of masks, act as barriers to the virus through filtration. However, there is a high chance of cross-infection because the used mask lacks virucidal properties and can become an additional source of infection. The combination of antiviral and filtration properties enhances the durability and reliability of masks, thereby reducing the likelihood of cross-infection. In this review, we focus on masks, from the manufacturing stage to practical applications, and their abilities to combat COVID-19. Herein, we discuss the impacts of masks on the environment, while considering safe industrial production in the future. Furthermore, we discuss available options for future research directions that do not negatively impact the environment.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Sumit Kumar
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Oleksandra Gulenko
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| |
Collapse
|
13
|
Xu K, Zheng Y, Ye Y, Liu D, Zhang W. Desymmetrization of meso-Dicarbonatecyclohexene with β-Hydrazino Carboxylic Esters via a Pd-Catalyzed Allylic Substitution Cascade. Org Lett 2020; 22:8836-8841. [PMID: 33170017 DOI: 10.1021/acs.orglett.0c03211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The desymmetrization of meso-dicarbonatecyclohexene with β-hydrazino carboxylic esters has been achieved via a RuPHOX/Pd-catalyzed allylic substitution cascade for the construction of chiral hexahydrocinnoline derivatives with high performance. Mechanistic studies reveal that the reaction exploits a pathway different from that of our previous work and that the first nitrogen nucleophilic process is the rate-determining step. The protocol could be conducted on a gram scale without any loss of catalytic behavior, and the corresponding chiral hexahydrocinnolines can undergo diverse transformations.
Collapse
Affiliation(s)
- Kai Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yan Zheng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, P. R. China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, P. R. China
| |
Collapse
|
14
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N‐Heterocyclic Carbene–Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C−C, C−B, C−H, and C−Si Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| | - Yuebiao Zhou
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Ying Shi
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - M. Kevin Brown
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Hao Wu
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Sebastian Torker
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| |
Collapse
|
15
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N-Heterocyclic Carbene-Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C-C, C-B, C-H, and C-Si Bonds. Angew Chem Int Ed Engl 2020; 59:21304-21359. [PMID: 32364640 DOI: 10.1002/anie.202003755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Indexed: 12/21/2022]
Abstract
A copper-based complex that contains a sulfonate N-heterocyclic carbene ligand was first reported 15 years ago. Since then, these organometallic entities have proven to be uniquely effective in catalyzing an assortment of enantioselective transformations, including allylic substitutions, conjugate additions, proto-boryl additions to alkenes, boryl and silyl substitutions, hydride-allyl additions to alkenyl boronates, and additions of boron-containing allyl moieties to N-H ketimines. In this review article, we detail the shortcomings in the state-of-the-art that fueled the development of this air stable ligand class, members of which can be prepared on multigram scale. For each reaction type, when relevant, the prior art at the time of the advance involving sulfonate NHC-Cu catalysts and/or subsequent key developments are briefly analyzed, and the relevance of the advance to efficient and enantioselective total or formal synthesis of biologically active molecules is underscored. Mechanistic analysis of the structural attributes of sulfonate NHC-Cu catalysts that are responsible for their ability to facilitate transformations with high efficiency as well as regio- and enantioselectivity are detailed. This review contains several formerly undisclosed methodological advances and mechanistic analyses, the latter of which constitute a revision of previously reported proposals.
Collapse
Affiliation(s)
- Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| | - Yuebiao Zhou
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Ying Shi
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - M Kevin Brown
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Hao Wu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Sebastian Torker
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| |
Collapse
|
16
|
Chua MH, Cheng W, Goh SS, Kong J, Li B, Lim JYC, Mao L, Wang S, Xue K, Yang L, Ye E, Zhang K, Cheong WCD, Tan BH, Li Z, Tan BH, Loh XJ. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7286735. [PMID: 32832908 PMCID: PMC7429109 DOI: 10.34133/2020/7286735] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023]
Abstract
The increasing prevalence of infectious diseases in recent decades has posed a serious threat to public health. Routes of transmission differ, but the respiratory droplet or airborne route has the greatest potential to disrupt social intercourse, while being amenable to prevention by the humble face mask. Different types of masks give different levels of protection to the user. The ongoing COVID-19 pandemic has even resulted in a global shortage of face masks and the raw materials that go into them, driving individuals to self-produce masks from household items. At the same time, research has been accelerated towards improving the quality and performance of face masks, e.g., by introducing properties such as antimicrobial activity and superhydrophobicity. This review will cover mask-wearing from the public health perspective, the technical details of commercial and home-made masks, and recent advances in mask engineering, disinfection, and materials and discuss the sustainability of mask-wearing and mask production into the future.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Weiren Cheng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Shermin Simin Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Junhua Kong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Bing Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Jason Y. C. Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Lu Mao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Suxi Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kun Xue
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Enyi Ye
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kangyi Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Wun Chet Davy Cheong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Ban Hock Tan
- Department of Infectious Disease, Singapore General Hospital, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| |
Collapse
|
17
|
Xu K, Ye J, Liu H, Shen J, Liu D, Zhang W. Pd‐Catalyzed Asymmetric Allylic Substitution Annulation Using Enolizable Ketimines as Nucleophiles: An Alternative Approach to Chiral Tetrahydroindoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kai Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Jianxun Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Hao Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Jiefeng Shen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative MoleculesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| |
Collapse
|
18
|
Dong M, Wang J, Wu S, Zhao Y, Ma Y, Xing Y, Cao F, Li L, Li Z, Zhu H. Catalytic Mechanism Study on the 1,2‐ and 1,4‐Transfer Hydrogenation of Ketimines and β‐Enamino Esters Catalyzed by Axially Chiral Biscarboline‐Based Alcohols. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mengxian Dong
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Jie Wang
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Shijie Wu
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Yang Zhao
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Yangyang Ma
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Yongfei Xing
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Fei Cao
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Longfei Li
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Zhenqiu Li
- College of Life ScienceHebei University Baoding 071002 People's Republic of China
| | - Huajie Zhu
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| |
Collapse
|
19
|
Jacques R, Hell AM, Pullin RD, Fletcher SP. Desymmetrization of meso-bisphosphates via rhodium catalyzed asymmetric allylic arylation. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Desymmetrization of meso-bisphosphates using copper catalysis and alkylzirconocene nucleophiles. Nat Commun 2019; 10:21. [PMID: 30604753 PMCID: PMC6318275 DOI: 10.1038/s41467-018-07871-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/30/2018] [Indexed: 01/30/2023] Open
Abstract
The desymmetrization of meso-compounds is a useful synthetic method, as illustrated by numerous applications of this strategy in natural product synthesis. Cu-catalyzed allylic desymmetrizations enable the enantioselective formation of carbon-carbon bonds, but these transformations are limited in substrate scope and by the use of highly reactive premade organometallic reagents at cryogenic temperatures. Here we show that diverse meso-bisphosphates in combination with alkylzirconium nucleophiles undergo highly regio-, diastereo- and enantio-selective Cu-catalyzed desymmetrization reactions. In addition, C2-symmetric chiral bisphosphates undergo stereospecific reactions and a racemic substrate undergoes a Cu-catalyzed kinetic resolution. The reaction tolerates functional groups incompatible with many common organometallic reagents and provides access to a broad range of functionalized carbo- and hetero-cyclic structures. The products bear up to three contiguous stereogenic centers, including quaternary centers and spirocyclic ring systems. We anticipate that the method will be a useful complement to existing catalytic enantioselective reactions.
Collapse
|
21
|
Skotnitzki J, Spessert L, Knochel P. Regio- und stereoselektive allylische Substitutionen chiraler sekundärer Alkylkupferverbindungen: Totalsynthese von (+)-Lasiol, (+)-13-Norfaranal und (+)-Faranal. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Juri Skotnitzki
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13, Haus F 81377 München Deutschland
| | - Lukas Spessert
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13, Haus F 81377 München Deutschland
| |
Collapse
|
22
|
Skotnitzki J, Spessert L, Knochel P. Regio- and Stereoselective Allylic Substitutions of Chiral Secondary Alkylcopper Reagents: Total Synthesis of (+)-Lasiol, (+)-13-Norfaranal, and (+)-Faranal. Angew Chem Int Ed Engl 2018; 58:1509-1514. [DOI: 10.1002/anie.201811330] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Juri Skotnitzki
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13, Haus F 81377 München Germany
| | - Lukas Spessert
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13, Haus F 81377 München Germany
| | - Paul Knochel
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13, Haus F 81377 München Germany
| |
Collapse
|
23
|
Zhong F, Yue WJ, Zhang HJ, Zhang CY, Yin L. Catalytic Asymmetric Construction of Halogenated Stereogenic Carbon Centers by Direct Vinylogous Mannich-Type Reaction. J Am Chem Soc 2018; 140:15170-15175. [DOI: 10.1021/jacs.8b09484] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Feng Zhong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen-Jun Yue
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hai-Jun Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Cheng-Yuan Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|