1
|
Pérez-Alonso C, Lasala F, Rodríguez-Pérez L, Delgado R, Rojo J, Ramos-Soriano J. Glycan-Silica Nanoparticles as Effective Inhibitors for Blocking Virus Infection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10292-10304. [PMID: 39908032 PMCID: PMC11881045 DOI: 10.1021/acsami.4c15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Small solid silica nanoparticles (SiNPs) have been used for multivalent carbohydrate presentation in DC-/L-SIGN-mediated viral infection models. Glycosylated SiNPs (glycoSiNPs) were fully characterized by different experimental techniques, including NMR, DLS, TGA, FTIR, and XPS, which confirmed their chemical structures. As a proof-of-concept, the capacity of glycoSiNPs to interact with Concanavalin A (ConA), a model lectin, using DLS binding experiments and UV-vis turbidimetry assays was analyzed. Their antiviral activity was assessed in a cellular assay using an artificial Ebola virus, demonstrating the potent inhibition of DC-SIGN-mediated infection. Notably, glycoSiNPs functionalized with a trivalent Manα1,2Man glycodendron exhibited the strongest inhibitory activity, with an IC50 of 135 ng/mL and a 170-fold lower efficiency in blocking L-SIGN-mediated viral infection. These findings suggest that glycoSiNPs present a promising approach for developing antiviral agents that selectively target the DC-SIGN pathway over the L-SIGN one.
Collapse
Affiliation(s)
- Carmen Pérez-Alonso
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - Fátima Lasala
- Laboratorio
de Microbiología Molecular Instituto de Investigación
Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Laura Rodríguez-Pérez
- Departamento
de Química Orgánica, Facultad
de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Rafael Delgado
- Laboratorio
de Microbiología Molecular Instituto de Investigación
Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Javier Rojo
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - Javier Ramos-Soriano
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| |
Collapse
|
2
|
Kaur R, Bhardwaj G, Singh N, Kaur N. Geometric Transformation of Modified Multiwalled Carbon Nanotubes-Based Heterometallic Nanostructured Material: A Model for the Electrochemical Discrimination of Insecticides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12911-12924. [PMID: 38691550 DOI: 10.1021/acs.langmuir.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Multifunctional carbon-based materials exhibit a large number of unprecedented active sites via an electron transfer process and act as a desired platform for exploring high-performance electroactive material. Herein, we exemplify the holistic design of a heterometallic nanostructured material (MWCNTs@KR-6/Mn/Sn/Pb) formed by the integration of metals (Mn2+, Sn2+, and Pb2+) and a dipodal ligand (KR-6) at the surface of multiwalled carbon nanotubes (MWCNTs). First, MWCNTs@KR-6 was readily synthesized via a noncovalent approach, which was further sequentially doped by Mn2+, Sn2+, and Pb2+ to give MWCNTs@KR-6/Mn/Sn/Pb. The designed material showed excellent electrochemical activity for the discrimination of insecticides belonging to structurally different classes. In contrast to that of the individual building components, both the stability and electrochemical activity of heterometallic nanostructured material were remarkably enhanced, resulting in a magnificent electrochemical performance of the developed material. Hence, the current work reports a comprehensive synthetic approach for MWCNTs@KR-6/Mn/Sn/Pb synthesis by synergizing unique properties of the heterometallic complex with MWCNTs. This work also offers a new insight into the design of multifunctional carbon-based materials for discrimination of different analytes on the basis of their redox potential.
Collapse
Affiliation(s)
- Randeep Kaur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Geetika Bhardwaj
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab 140001, India
| | - Navneet Kaur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
3
|
Ramírez-López P, Martínez C, Merchán A, Perona A, Hernaiz MJ. Expanding the synthesis of a library of potent glucuronic acid glycodendrons for Dengue virus inhibition. Bioorg Chem 2023; 141:106913. [PMID: 37852115 DOI: 10.1016/j.bioorg.2023.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Multivalent glycodendrons are valuable tools to mimic many structural and functional features of cell-surface glycoconjugates and its focal position scaffolds represent important components to increase specificity and affinity. Previous work in our group described the preparation of a tetravalent glucuronic acid dendron that binds with good affinity to Dengue virus envelope protein (KD = 22 μM). Herein, the chemical synthesis and binding analysis of a new library of potent glucuronic acid dendrons bearing different functional group at the focal position and different level of multivalency are described. Their chemical synthesis was performed sequentially in three stages and with good yields. Namely a) the chemical synthesis of the oligo and polyalkynyl scaffolds, b) assembling with fully protected glucuronic acid-based azide units by using a microwave assisted copper-catalysed azide-alkyne cycloaddition reaction and c) sequential deprotection of hydroxyl and carboxylic acid groups. Surface Plasmon Resonance studies have demonstrated that the valency and the focal position functional group exert influence on the interaction with Dengue virus envelope protein. Molecular modelling studies were carried out in order to understand the binding observed. This work reports an efficient glycodendrons chemical synthesis that provides appropriate focal position functional group and multivalence, that offer an easy and versatile strategy to find new active compounds against Dengue virus.
Collapse
Affiliation(s)
- Pedro Ramírez-López
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Carlos Martínez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Alejandro Merchán
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Almudena Perona
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - María J Hernaiz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain.
| |
Collapse
|
4
|
Ravindra Bhoge P, Chandra A, Kikkeri R. The Impact of Nanomaterial Morphology on Modulation of Carbohydrate-Protein Interactions. ChemMedChem 2023; 18:e202300262. [PMID: 37403554 DOI: 10.1002/cmdc.202300262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023]
Abstract
Carbohydrate-protein interactions (CPIs) play a crucial role in the regulation of various physiological and pathological processes within living systems. However, these interactions are typically weak, prompting the development of multivalent probes, including nanoparticles and polymer scaffolds, to enhance the avidity of CPIs. Additionally, the morphologies of glyco-nanostructures can significantly impact protein binding, bacterial adhesion, cellular internalization, and immune responses. In this review, we have examined the advancements in glyco-nanostructures of different shapes that modulate CPIs. We specifically emphasize glyco-nanostructures constructed from small-molecule amphiphilic carbohydrates, block copolymers, metal-based nanoparticles, and carbon-based materials, highlighting their potential applications in glycobiology.
Collapse
Affiliation(s)
- Preeti Ravindra Bhoge
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ankita Chandra
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Raghavendra Kikkeri
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
5
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
6
|
Ramos-Soriano J, Ghirardello M, Galan MC. Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes. Chem Soc Rev 2022; 51:9960-9985. [PMID: 36416290 PMCID: PMC9743786 DOI: 10.1039/d2cs00741j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 11/24/2022]
Abstract
Cell surface carbohydrates mediate a wide range of carbohydrate-protein interactions key to healthy and disease mechanisms. Many of such interactions are multivalent in nature and in order to study these processes at a molecular level, many glycan-presenting platforms have been developed over the years. Among those, carbon nanoforms such as graphene and their derivatives, carbon nanotubes, carbon dots and fullerenes, have become very attractive as biocompatible platforms that can mimic the multivalent presentation of biologically relevant glycosides. The most recent examples of carbon-based nanoplatforms and their applications developed over the last few years to study carbohydrate-mediate interactions in the context of cancer, bacterial and viral infections, among others, are highlighted in this review.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Departamento de Química, Universidad de La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
7
|
Konietzny PB, Freytag J, Feldhof MI, Müller JC, Ohl D, Stehle T, Hartmann L. Synthesis of Homo- and Heteromultivalent Fucosylated and Sialylated Oligosaccharide Conjugates via Preactivated N-Methyloxyamine Precision Macromolecules and Their Binding to Polyomavirus Capsid Proteins. Biomacromolecules 2022; 23:5273-5284. [PMID: 36398945 DOI: 10.1021/acs.biomac.2c01092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycoconjugates are a versatile class of bioactive molecules that have found application as vaccines and antivirals and in cancer therapy. Their synthesis typically involves elaborate functionalization and use of protecting groups on the carbohydrate component in order to ensure efficient and selective conjugation. Alternatively, non-functionalized, non-protected carbohydrates isolated from biological sources or derived through biotechnological methods can be directly conjugated via N-methyloxyamine groups. In this study, we introduce such N-methyloxyamine groups into a variety of multivalent scaffolds─from small to oligomeric to polymeric scaffolds─making use of solid-phase polymer synthesis to assemble monodisperse sequence-defined macromolecules. These scaffolds are then successfully functionalized with different types of human milk oligosaccharides deriving a library of homo- and heteromultivalent glycoconjugates. Glycomacromolecules presenting oligosaccharide side chains with either α2,3- or α2,6-linked terminal sialic acid are used in a binding study with two types of polyomavirus capsid proteins showing that the multivalent presentation through the N-methyloxyamine-derived scaffolds increases the number of contacts with the protein. Overall, a straightforward route to derive glycoconjugates from complex oligosaccharides with high variability yet control in the multivalent scaffold is presented, and applicability of the derived structures is demonstrated.
Collapse
Affiliation(s)
- Patrick B Konietzny
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Jasmin Freytag
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Melina I Feldhof
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Joshua C Müller
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Daniel Ohl
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
8
|
Gallego I, Ramos‐Soriano J, Méndez‐Ardoy A, Cabrera‐González J, Lostalé‐Seijo I, Illescas BM, Reina JJ, Martín N, Montenegro J. A 3D Peptide/[60]Fullerene Hybrid for Multivalent Recognition. Angew Chem Int Ed Engl 2022; 61:e202210043. [PMID: 35989251 PMCID: PMC9826239 DOI: 10.1002/anie.202210043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 01/11/2023]
Abstract
Fully substituted peptide/[60]fullerene hexakis-adducts offer an excellent opportunity for multivalent protein recognition. In contrast to monofunctionalized fullerene hybrids, peptide/[60]fullerene hexakis-adducts display multiple copies of a peptide in close spatial proximity and in the three dimensions of space. High affinity peptide binders for almost any target can be currently identified by in vitro evolution techniques, often providing synthetically simpler alternatives to natural ligands. However, despite the potential of peptide/[60]fullerene hexakis-adducts, these promising conjugates have not been reported to date. Here we present a synthetic strategy for the construction of 3D multivalent hybrids that are able to bind with high affinity the E-selectin. The here synthesized fully substituted peptide/[60]fullerene hybrids and their multivalent recognition of natural receptors constitute a proof of principle for their future application as functional biocompatible materials.
Collapse
Affiliation(s)
- Iván Gallego
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain
| | - Javier Ramos‐Soriano
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain,Present address: Glycosystems LaboratoryInstituto de Investigaciones Químicas (IIQ), CSICUniversidad de SevillaAv.Américo Vespucio, 4941092SevilleSpain
| | - Alejandro Méndez‐Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain
| | - Justo Cabrera‐González
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain
| | - Irene Lostalé‐Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain
| | - Beatriz M. Illescas
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain
| | - Jose J. Reina
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain,Present address: Universidad de Málaga, IBIMADpto. de Química OrgánicaCampus de Teatinos, s/n.29071MálagaSpain,Centro Andaluz de Nanomedicina y Biotecnología, BIONAND, Parque Tecnológico de AndalucíaC/Severo Ochoa, 3529590Campanillas (Málaga)Spain
| | - Nazario Martín
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain,IMDEA-NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain
| |
Collapse
|
9
|
Gallego I, Ramos-Soriano J, Méndez-Ardoy A, Cabrera-González J, Lostalé-Seijo I, Reina JJ, Illescas BM, Martin N, Montenegro J. A 3D Peptide/[60]Fullerene Hybrid for Multivalent Recognition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ivan Gallego
- University of Santiago de Compostela: Universidade de Santiago de Compostela CIQUS SPAIN
| | - Javier Ramos-Soriano
- Complutense University of Madrid: Universidad Complutense de Madrid Organic Chemistry SPAIN
| | | | - Justo Cabrera-González
- Complutense University of Madrid: Universidad Complutense de Madrid Organic Chemistry SPAIN
| | - Irene Lostalé-Seijo
- University of Santiago de Compostela: Universidade de Santiago de Compostela CIQUS SPAIN
| | - Jose J. Reina
- University of Malaga: Universidad de Malaga Organic Chemistry SPAIN
| | - Beatriz M. Illescas
- Complutense University of Madrid: Universidad Complutense de Madrid organic chemistry SPAIN
| | - Nazario Martin
- Complutense University of Madrid: Universidad Complutense de Madrid organic chemistry SPAIN
| | - Javier Montenegro
- Universidad de Santiago de Compostela Departamento de Química Orgánica c/ Jenaro de la Fuente s/n 15782 Santiago de Compostela SPAIN
| |
Collapse
|
10
|
Xu PY, Li XQ, Chen WG, Deng LL, Tan YZ, Zhang Q, Xie SY, Zheng LS. Progress in Antiviral Fullerene Research. NANOMATERIALS 2022; 12:nano12152547. [PMID: 35893515 PMCID: PMC9330071 DOI: 10.3390/nano12152547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Unlike traditional small molecule drugs, fullerene is an all-carbon nanomolecule with a spherical cage structure. Fullerene exhibits high levels of antiviral activity, inhibiting virus replication in vitro and in vivo. In this review, we systematically summarize the latest research regarding the different types of fullerenes investigated in antiviral studies. We discuss the unique structural advantage of fullerenes, present diverse modification strategies based on the addition of various functional groups, assess the effect of structural differences on antiviral activity, and describe the possible antiviral mechanism. Finally, we discuss the prospective development of fullerenes as antiviral drugs.
Collapse
Affiliation(s)
- Piao-Yang Xu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (P.-Y.X.); (Y.-Z.T.); (S.-Y.X.); (L.-S.Z.)
| | - Xiao-Qing Li
- Funano New Material Technology Company Ltd., Xiamen 361110, China; (X.-Q.L.); (W.-G.C.)
| | - Wei-Guang Chen
- Funano New Material Technology Company Ltd., Xiamen 361110, China; (X.-Q.L.); (W.-G.C.)
| | - Lin-Long Deng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China;
| | - Yuan-Zhi Tan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (P.-Y.X.); (Y.-Z.T.); (S.-Y.X.); (L.-S.Z.)
| | - Qianyan Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (P.-Y.X.); (Y.-Z.T.); (S.-Y.X.); (L.-S.Z.)
- Correspondence:
| | - Su-Yuan Xie
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (P.-Y.X.); (Y.-Z.T.); (S.-Y.X.); (L.-S.Z.)
| | - Lan-Sun Zheng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (P.-Y.X.); (Y.-Z.T.); (S.-Y.X.); (L.-S.Z.)
| |
Collapse
|
11
|
Arellano LM, Gobeze HB, Jang Y, Barrejón M, Parejo C, Álvarez JC, Gómez‐Escalonilla MJ, Sastre‐Santos Á, D'Souza F, Langa F. Formation and Photoinduced Electron Transfer in Porphyrin- and Phthalocyanine-Bearing N-Doped Graphene Hybrids Synthesized by Click Chemistry. Chemistry 2022; 28:e202200254. [PMID: 35254708 PMCID: PMC9314890 DOI: 10.1002/chem.202200254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/05/2022]
Abstract
Graphene doped with heteroatoms such as nitrogen, boron, and phosphorous by replacing some of the skeletal carbon atoms is emerging as an important class of two-dimensional materials as it offers the much-needed bandgap for optoelectronic applications and provides better access for chemical functionalization at the heteroatom sites. Covalent grafting of photosensitizers onto such doped graphenes makes them extremely useful for light-induced applications. Herein, we report the covalent functionalization of N-doped graphene (NG) with two well-known electron donor photosensitizers, namely, zinc porphyrin (ZnP) and zinc phthalocyanine (ZnPc), using the simple click chemistry approach. Covalent attachment of ZnP and ZnPc at the N-sites of NG in NG-ZnP and NG-ZnPc hybrids was confirmed by using a range of spectroscopic, thermogravimetric and imaging techniques. Ground- and excited-state interactions in NG-ZnP and NG-ZnPc were monitored by using spectral and electrochemical techniques. Efficient quenching of photosensitizer fluorescence in these hybrids was observed, and the relatively easier oxidations of ZnP and ZnPc supported excited-state charge-separation events. Photoinduced charge separation in NG-ZnP and NG-ZnPc hybrids was confirmed by using the ultrafast pump-probe technique. The measured rate constants were of the order of 1010 s,-1 thus indicating ultrafast electron transfer phenomena.
Collapse
Affiliation(s)
- Luis M. Arellano
- Universidad de Castilla-La ManchaInstituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL)Avda. Carlos III, s/n45071-ToledoSpain
| | - Habtom B. Gobeze
- Department of Chemistry and Materials Science and EngineeringUniversity of North TexasDentonTX 76203-5017USA
| | - Youngwoo Jang
- Department of Chemistry and Materials Science and EngineeringUniversity of North TexasDentonTX 76203-5017USA
| | - Myriam Barrejón
- Neural Repair and Biomaterials LaboratoryHospital Nacional de Parapléjicos (SESCAM)Finca la Peraleda s/n45071ToledoSpain
| | - Concepción Parejo
- Área de Química Orgánica, Instituto de BioingenieríaUniversidad Miguel HernándezAvda. de la Universidad, s/nElche03202Spain
| | - Julio C. Álvarez
- Área de Química Orgánica, Instituto de BioingenieríaUniversidad Miguel HernándezAvda. de la Universidad, s/nElche03202Spain
| | - María J. Gómez‐Escalonilla
- Universidad de Castilla-La ManchaInstituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL)Avda. Carlos III, s/n45071-ToledoSpain
| | - Ángela Sastre‐Santos
- Área de Química Orgánica, Instituto de BioingenieríaUniversidad Miguel HernándezAvda. de la Universidad, s/nElche03202Spain
| | - Francis D'Souza
- Department of Chemistry and Materials Science and EngineeringUniversity of North TexasDentonTX 76203-5017USA
| | - Fernando Langa
- Universidad de Castilla-La ManchaInstituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL)Avda. Carlos III, s/n45071-ToledoSpain
| |
Collapse
|
12
|
Zank S, Fernández‐García JM, Stasyuk AJ, Voityuk AA, Krug M, Solà M, Guldi DM, Martín N. Initiating Electron Transfer in Doubly Curved Nanographene Upon Supramolecular Complexation of C 60. Angew Chem Int Ed Engl 2022; 61:e202112834. [PMID: 34633126 PMCID: PMC9303211 DOI: 10.1002/anie.202112834] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/25/2022]
Abstract
The formation of supramolecular complexes between C60 and a molecular nanographene endowed with both positive and negative curvatures is described. The presence of a corannulene moiety and the saddle shape of the molecular nanographene allows the formation of complexes with 1:1, 1:2, and 2:1 stoichiometries. The association constants for the three possible supramolecular complexes were determined by 1 H NMR titration. Furthermore, the stability of the three complexes was calculated by theoretical methods that also predict the photoinduced electron transfer from the curved nanographene to the electron acceptor C60 . Time-resolved transient absorption measurements on the ns-time scale showed that the addition of C60 to NG-1 solutions and photo-exciting them at 460 nm leads to the solvent-dependent formation of new species, in particular the formation of the one-electron reduced form of C60 in benzonitrile was observed.
Collapse
Affiliation(s)
- Simon Zank
- Department of Chemistry and PharmacyFriedrich-Alexander-UniversitätEgerlandstrasse 391058ErlangenGermany
| | - Jesús M. Fernández‐García
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
| | - Anton J. Stasyuk
- Institut de Química Computacional and Departament de QuímicaUniversitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
| | - Alexander A. Voityuk
- Institut de Química Computacional and Departament de QuímicaUniversitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
- Institució Catalana de Recerca i Estudis Avancats (ICREA)08010BarcelonaSpain
| | - Marcel Krug
- Department of Chemistry and PharmacyFriedrich-Alexander-UniversitätEgerlandstrasse 391058ErlangenGermany
| | - Miquel Solà
- Institut de Química Computacional and Departament de QuímicaUniversitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
| | - Dirk M. Guldi
- Department of Chemistry and PharmacyFriedrich-Alexander-UniversitätEgerlandstrasse 391058ErlangenGermany
| | - Nazario Martín
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
- IMDEA-NanocienciaC/ Faraday, 9, Campus de Cantoblanco28049MadridSpain
| |
Collapse
|
13
|
Inhibitory effect and mechanism of gelatin stabilized ferrous sulfide nanoparticles on porcine reproductive and respiratory syndrome virus. J Nanobiotechnology 2022; 20:70. [PMID: 35123507 PMCID: PMC8817501 DOI: 10.1186/s12951-022-01281-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/21/2022] [Indexed: 12/16/2022] Open
Abstract
Background The infection and spread of porcine reproductive and respiratory syndrome virus (PRRSV) pose a serious threat to the global pig industry, and inhibiting the viral infection process is a promising treatment strategy. Nanomaterials can interact with viruses and have attracted much attention due to their large specific surface area and unique physicochemical properties. Ferrous sulfide nanoparticles (FeS NPs) with the characteristics of high reactivity, large specific surface area, and low cost are widely applied to environmental remediation, catalysis, energy storage and medicine. However, there is no report on the application of FeS NPs in the antiviral field. In this study, gelatin stabilized FeS nanoparticles (Gel-FeS NPs) were large-scale synthesized rapidly by the one-pot method of co-precipitation of Fe2+ and S2‒. Results The prepared Gel-FeS NPs exhibited good stability and dispersibility with an average diameter of 47.3 nm. Additionally, they were characterized with good biocompatibility and high antiviral activity against PRRSV proliferation in the stages of adsorption, invasion, and replication. Conclusions We reported for the first time the virucidal and antiviral activity of Gel-FeS NPs. The synthesized Gel-FeS NPs exhibited good dispersibility and biocompatibility as well as effective inhibition on PRRSV proliferation. Moreover, the Fe2+ released from degraded Gel-FeS NPs still displayed an antiviral effect, demonstrating the advantage of Gel-FeS NPs as an antiviral nanomaterial compared to other nanomaterials. This work highlighted the antiviral effect of Gel-FeS NPs and provided a new strategy for ferrous-based nanoparticles against PRRSV. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01281-4.
Collapse
|
14
|
Zhao T, Terracciano R, Becker J, Monaco A, Yilmaz G, Becer CR. Hierarchy of Complex Glycomacromolecules: From Controlled Topologies to Biomedical Applications. Biomacromolecules 2022; 23:543-575. [PMID: 34982551 DOI: 10.1021/acs.biomac.1c01294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrates bearing a distinct complexity use a special code (Glycocode) to communicate with carbohydrate-binding proteins at a high precision to manipulate biological activities in complex biological environments. The level of complexity in carbohydrate-containing macromolecules controls the amount and specificity of information that can be stored in biomacromolecules. Therefore, a better understanding of the glycocode is crucial to open new areas of biomedical applications by controlling or manipulating the interaction between immune cells and pathogens in terms of trafficking and signaling, which would become a powerful tool to prevent infectious diseases. Even though a certain level of progress has been achieved over the past decade, synthetic glycomacromolecules are still lagging far behind naturally existing glycans in terms of complexity and precision because of insufficient and inefficient synthetic techniques. Currently, specific targeting at a cellular level using synthetic glycomacromolecules is still challenging. It is obvious that multidisciplinary collaborations are essential between different specialized disciplines to enhance the carbohydrate receptor-targeting paradigm for new biomedical applications. In this Perspective, recent developments in the synthesis of sophisticated glycomacromolecules are highlighted, and their biological and biomedical applications are also discussed in detail.
Collapse
Affiliation(s)
- Tieshuai Zhao
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Roberto Terracciano
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Jonas Becker
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alessandra Monaco
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
15
|
Zhao J, Song W, Tang Z, Chen X. Macromolecular Effects in Medicinal Chemistry ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Zank S, Fernández‐García JM, Stasyuk AJ, Voityuk AA, Krug M, Solà M, Guldi DM, Martín N. Initiating Electron Transfer in Doubly Curved Nanographene Upon Supramolecular Complexation of C
60. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simon Zank
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Egerlandstrasse 3 91058 Erlangen Germany
| | - Jesús M. Fernández‐García
- Departamento de Química Orgánica I Facultad de Ciencias Químicas Universidad Complutense de Madrid Avd. de la Complutense, S/N 28040 Madrid Spain
| | - Anton J. Stasyuk
- Institut de Química Computacional and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Alexander A. Voityuk
- Institut de Química Computacional and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany 69 17003 Girona Spain
- Institució Catalana de Recerca i Estudis Avancats (ICREA) 08010 Barcelona Spain
| | - Marcel Krug
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Egerlandstrasse 3 91058 Erlangen Germany
| | - Miquel Solà
- Institut de Química Computacional and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Egerlandstrasse 3 91058 Erlangen Germany
| | - Nazario Martín
- Departamento de Química Orgánica I Facultad de Ciencias Químicas Universidad Complutense de Madrid Avd. de la Complutense, S/N 28040 Madrid Spain
- IMDEA-Nanociencia C/ Faraday, 9, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
17
|
Chakroun K, Taouai M, Porkolab V, Luczkowiak J, Sommer R, Cheneau C, Mathiron D, Ben Maaouia MA, Pilard S, Abidi R, Mullié C, Fieschi F, Cragg PJ, Halary F, Delgado R, Benazza M. Low-Valent Calix[4]arene Glycoconjugates Based on Hydroxamic Acid Bearing Linkers as Potent Inhibitors in a Model of Ebola Virus Cis-Infection and HCMV-gB-Recombinant Glycoprotein Interaction with MDDC Cells by Blocking DC-SIGN. J Med Chem 2021; 64:14332-14343. [PMID: 34524803 DOI: 10.1021/acs.jmedchem.1c00818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to a variety of viral-glycoprotein receptors (e.g., heparan sulfate, Niemann-Pick C1, etc.), dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), from the C-type lectin receptor family, plays one of the most important pathogenic functions for a wide range of viruses (e.g., Ebola, human cytomegalovirus (HCMV), HIV-1, severe acute respiratory syndrome coronavirus 2, etc.) that invade host cells before replication; thus, its inhibition represents a relevant extracellular antiviral therapy. We report two novel p-tBu-calixarene glycoclusters 1 and 2, bearing tetrahydroxamic acid groups, which exhibit micromolar inhibition of soluble DC-SIGN binding and provide nanomolar IC50 inhibition of both DC-SIGN-dependent Jurkat cis-cell infection by viral particle pseudotyped with Ebola virus glycoprotein and the HCMV-gB-recombinant glycoprotein interaction with monocyte-derived dendritic cells expressing DC-SIGN. A unique cooperative involvement of sugar, linker, and calixarene core is likely behind the strong avidity of DC-SIGN for these low-valent systems. We claim herein new promising candidates for the rational development of a large spectrum of antiviral therapeutics.
Collapse
Affiliation(s)
- Khouloud Chakroun
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France.,Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Marwa Taouai
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France.,Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Vanessa Porkolab
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, GrenobleF-38044, France
| | - Joanna Luczkowiak
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Roman Sommer
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken66123, Germany
| | - Coraline Cheneau
- Nantes Université, Inserm, CHU Nantes, Center for Research in Transplantation and Immunology UMR1064, ITUN, Nantes44093, France
| | - David Mathiron
- UFR des Sciences Bâtiment Serres-Transfert Rue Dallery, Passage du sourire d'Avril, Amiens 80039 Cedex 1, France
| | - Mohamed Amine Ben Maaouia
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France.,Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Serge Pilard
- UFR des Sciences Bâtiment Serres-Transfert Rue Dallery, Passage du sourire d'Avril, Amiens 80039 Cedex 1, France
| | - Rym Abidi
- Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Catherine Mullié
- Laboratoire AGIR-UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens80037, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, GrenobleF-38044, France
| | - Peter J Cragg
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton BN2 4GJ, U.K
| | - Franck Halary
- Nantes Université, Inserm, CHU Nantes, Center for Research in Transplantation and Immunology UMR1064, ITUN, Nantes44093, France
| | - Rafael Delgado
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Mohammed Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France
| |
Collapse
|
18
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Izquierdo-García P, Fernández-García JM, Fernández I, Perles J, Martín N. Helically Arranged Chiral Molecular Nanographenes. J Am Chem Soc 2021; 143:11864-11870. [PMID: 34283596 PMCID: PMC9490840 DOI: 10.1021/jacs.1c05977] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A benchtop solution-phase synthesis of molecular nanographenes composed of two orthogonal dibenzo[fg,ij]phenanthro[9,10,1,2,3-pqrst]pentaphene (DBPP) moieties covalently connected through a tetrafluorobenzene ring is described. The helical arrangement of these three covalently linked molecular fragments leads to the existence of a chiral axis which gives rise to a racemic mixture, even with the molecular moieties being symmetrically substituted. X-ray diffraction studies show that both enantiomers cocrystallize in a single crystal, and the racemic mixture can be resolved by chiral HPLC. Asymmetric substitution in DBPP moieties affords a pair of diastereoisomers whose rotational isomerization has been studied by 1H NMR. Additionally, the electrochemical and photophysical properties derived from these new molecular nanographenes reveal an electroactive character and a significant fluorescent behavior.
Collapse
Affiliation(s)
- Patricia Izquierdo-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Jesús M Fernández-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Josefina Perles
- Single Crystal X-ray Diffraction Laboratory, Interdepartmental Research Service (SIdI), Universidad Autónoma, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.,IMDEA-Nanociencia, C/Faraday, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
20
|
Cramer J, Aliu B, Jiang X, Sharpe T, Pang L, Hadorn A, Rabbani S, Ernst B. Poly-l-lysine Glycoconjugates Inhibit DC-SIGN-mediated Attachment of Pandemic Viruses. ChemMedChem 2021; 16:2345-2353. [PMID: 34061468 DOI: 10.1002/cmdc.202100348] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 12/27/2022]
Abstract
The C-type lectin receptor DC-SIGN mediates interactions with envelope glycoproteins of many viruses such as SARS-CoV-2, ebola, and HIV and contributes to virus internalization and dissemination. In the context of the recent SARS-CoV-2 pandemic, involvement of DC-SIGN has been linked to severe cases of COVID-19. Inhibition of the interaction between DC-SIGN and viral glycoproteins has the potential to generate broad spectrum antiviral agents. Here, we demonstrate that mannose-functionalized poly-l-lysine glycoconjugates efficiently inhibit the attachment of viral glycoproteins to DC-SIGN-presenting cells with picomolar affinity. Treatment of these cells leads to prolonged receptor internalization and inhibition of virus binding for up to 6 h. Furthermore, the polymers are fully bio-compatible and readily cleared by target cells. The thermodynamic analysis of the multivalent interactions reveals enhanced enthalpy-driven affinities and promising perspectives for the future development of multivalent therapeutics.
Collapse
Affiliation(s)
- Jonathan Cramer
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Butrint Aliu
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Xiaohua Jiang
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Timothy Sharpe
- Biophysics Facility, Biocenter of the University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Lijuan Pang
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Adrian Hadorn
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Said Rabbani
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
21
|
Ramos-Soriano J, Ghirardello M, Galan MC. Recent advances in multivalent carbon nanoform-based glycoconjugates. Curr Med Chem 2021; 29:1232-1257. [PMID: 34269658 DOI: 10.2174/0929867328666210714160954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/22/2022]
Abstract
Multivalent carbohydrate-mediated interactions are fundamental to many biological processes, including disease mechanisms. To study these significant glycan-mediated interactions at a molecular level, carbon nanoforms such as fullerenes, carbon nanotubes, or graphene and their derivatives have been identified as promising biocompatible scaffolds that can mimic the multivalent presentation of biologically relevant glycans. In this minireview, we will summarize the most relevant examples of the last few years in the context of their applications.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
22
|
Ramos‐Soriano J, Pérez‐Sánchez A, Ramírez‐Barroso S, Illescas BM, Azmani K, Rodríguez‐Fortea A, Poblet JM, Hally C, Nonell S, García‐Fresnadillo D, Rojo J, Martín N. An Ultra‐Long‐Lived Triplet Excited State in Water at Room Temperature: Insights on the Molecular Design of Tridecafullerenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Javier Ramos‐Soriano
- Department of Organic Chemistry Faculty of Chemistry University Complutense of Madrid Avenida Complutense 28040 Madrid Spain
| | - Alfonso Pérez‐Sánchez
- Department of Organic Chemistry Faculty of Chemistry University Complutense of Madrid Avenida Complutense 28040 Madrid Spain
| | - Sergio Ramírez‐Barroso
- Department of Organic Chemistry Faculty of Chemistry University Complutense of Madrid Avenida Complutense 28040 Madrid Spain
| | - Beatriz M. Illescas
- Department of Organic Chemistry Faculty of Chemistry University Complutense of Madrid Avenida Complutense 28040 Madrid Spain
| | - Khalid Azmani
- Department of Physical and Inorganic Chemistry Rovira i Virgili University Marcel lí Domingo 1 43007 Tarragona Spain
| | - Antonio Rodríguez‐Fortea
- Department of Physical and Inorganic Chemistry Rovira i Virgili University Marcel lí Domingo 1 43007 Tarragona Spain
| | - Josep M. Poblet
- Department of Physical and Inorganic Chemistry Rovira i Virgili University Marcel lí Domingo 1 43007 Tarragona Spain
| | - Cormac Hally
- Institut Químic de Sarrià Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Santi Nonell
- Institut Químic de Sarrià Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - David García‐Fresnadillo
- Department of Organic Chemistry Faculty of Chemistry University Complutense of Madrid Avenida Complutense 28040 Madrid Spain
| | - Javier Rojo
- Glycosystems Laboratory, — Chemical Research Institute (IIQ) CSIC—Seville University Avenida Américo Vespucio 49 41092 Sevilla Spain
| | - Nazario Martín
- Department of Organic Chemistry Faculty of Chemistry University Complutense of Madrid Avenida Complutense 28040 Madrid Spain
- IMDEA Nanoscience Institute C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
23
|
Ramos‐Soriano J, Pérez‐Sánchez A, Ramírez‐Barroso S, Illescas BM, Azmani K, Rodríguez‐Fortea A, Poblet JM, Hally C, Nonell S, García‐Fresnadillo D, Rojo J, Martín N. An Ultra-Long-Lived Triplet Excited State in Water at Room Temperature: Insights on the Molecular Design of Tridecafullerenes. Angew Chem Int Ed Engl 2021; 60:16109-16118. [PMID: 33984168 PMCID: PMC8361972 DOI: 10.1002/anie.202104223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Suitably engineered molecular systems exhibiting triplet excited states with very long lifetimes are important for high-end applications in nonlinear optics, photocatalysis, or biomedicine. We report the finding of an ultra-long-lived triplet state with a mean lifetime of 93 ms in an aqueous phase at room temperature, measured for a globular tridecafullerene with a highly compact glycodendrimeric structure. A series of three tridecafullerenes bearing different glycodendrons and spacers to the C60 units have been synthesized and characterized. UV/Vis spectra and DLS experiments confirm their aggregation in water. Steady-state and time-resolved fluorescence experiments suggest a different degree of inner solvation of the multifullerenes depending on their molecular design. Efficient quenching of the triplet states by O2 but not by waterborne azide anions has been observed. Molecular modelling reveals dissimilar access of the aqueous phase to the internal structure of the tridecafullerenes, differently shielded by the glycodendrimeric shell.
Collapse
Grants
- CTQ2017-84327-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CTQ2017-83531-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CTQ2017-87269-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CTQ2017-86265-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CTQ2015-71896-REDT Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CTQ2016-78454-C2-1-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- FPU fellowship Ministerio de Economía, Industria y Competitividad, Gobierno de España
- SEV-2016-0686 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- 2017SGR629 Generalitat de Catalunya
- 2017 FI_B 00617 and 2018 FI_B1 00174 Generalitat de Catalunya
- ICREA ACADEMIA Institució Catalana de Recerca i Estudis Avançats
- Ministerio de Economía, Industria y Competitividad, Gobierno de España
- Generalitat de Catalunya
- Institució Catalana de Recerca i Estudis Avançats
Collapse
Affiliation(s)
- Javier Ramos‐Soriano
- Department of Organic ChemistryFaculty of ChemistryUniversity Complutense of MadridAvenida Complutense28040MadridSpain
| | - Alfonso Pérez‐Sánchez
- Department of Organic ChemistryFaculty of ChemistryUniversity Complutense of MadridAvenida Complutense28040MadridSpain
| | - Sergio Ramírez‐Barroso
- Department of Organic ChemistryFaculty of ChemistryUniversity Complutense of MadridAvenida Complutense28040MadridSpain
| | - Beatriz M. Illescas
- Department of Organic ChemistryFaculty of ChemistryUniversity Complutense of MadridAvenida Complutense28040MadridSpain
| | - Khalid Azmani
- Department of Physical and Inorganic ChemistryRovira i Virgili UniversityMarcel lí Domingo 143007TarragonaSpain
| | - Antonio Rodríguez‐Fortea
- Department of Physical and Inorganic ChemistryRovira i Virgili UniversityMarcel lí Domingo 143007TarragonaSpain
| | - Josep M. Poblet
- Department of Physical and Inorganic ChemistryRovira i Virgili UniversityMarcel lí Domingo 143007TarragonaSpain
| | - Cormac Hally
- Institut Químic de SarriàUniversitat Ramon LlullVia Augusta 39008017BarcelonaSpain
| | - Santi Nonell
- Institut Químic de SarriàUniversitat Ramon LlullVia Augusta 39008017BarcelonaSpain
| | - David García‐Fresnadillo
- Department of Organic ChemistryFaculty of ChemistryUniversity Complutense of MadridAvenida Complutense28040MadridSpain
| | - Javier Rojo
- Glycosystems Laboratory, —Chemical Research Institute (IIQ) CSIC—Seville UniversityAvenida Américo Vespucio 4941092SevillaSpain
| | - Nazario Martín
- Department of Organic ChemistryFaculty of ChemistryUniversity Complutense of MadridAvenida Complutense28040MadridSpain
- IMDEA Nanoscience InstituteC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| |
Collapse
|
24
|
Losada-Garcia N, Garcia-Sanz C, Andreu A, Velasco-Torrijos T, Palomo JM. Glyconanomaterials for Human Virus Detection and Inhibition. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1684. [PMID: 34206886 PMCID: PMC8308178 DOI: 10.3390/nano11071684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/23/2023]
Abstract
Viruses are among the most infectious pathogens, responsible for the highest death toll around the world. Lack of effective clinical drugs for most viral diseases emphasizes the need for speedy and accurate diagnosis at early stages of infection to prevent rapid spread of the pathogens. Glycans are important molecules which are involved in different biological recognition processes, especially in the spread of infection by mediating virus interaction with endothelial cells. Thus, novel strategies based on nanotechnology have been developed for identifying and inhibiting viruses in a fast, selective, and precise way. The nanosized nature of nanomaterials and their exclusive optical, electronic, magnetic, and mechanical features can improve patient care through using sensors with minimal invasiveness and extreme sensitivity. This review provides an overview of the latest advances of functionalized glyconanomaterials, for rapid and selective biosensing detection of molecules as biomarkers or specific glycoproteins and as novel promising antiviral agents for different kinds of serious viruses, such as the Dengue virus, Ebola virus, influenza virus, human immunodeficiency virus (HIV), influenza virus, Zika virus, or coronavirus SARS-CoV-2 (COVID-19).
Collapse
Affiliation(s)
- Noelia Losada-Garcia
- Department of Biocatalysis, Institute of Catalysis (CSIC), Marie Curie 2, 28049 Madrid, Spain; (N.L.-G.); (C.G.-S.); (A.A.)
| | - Carla Garcia-Sanz
- Department of Biocatalysis, Institute of Catalysis (CSIC), Marie Curie 2, 28049 Madrid, Spain; (N.L.-G.); (C.G.-S.); (A.A.)
| | - Alicia Andreu
- Department of Biocatalysis, Institute of Catalysis (CSIC), Marie Curie 2, 28049 Madrid, Spain; (N.L.-G.); (C.G.-S.); (A.A.)
| | | | - Jose M. Palomo
- Department of Biocatalysis, Institute of Catalysis (CSIC), Marie Curie 2, 28049 Madrid, Spain; (N.L.-G.); (C.G.-S.); (A.A.)
| |
Collapse
|
25
|
Ruiz-Santaquiteria M, Illescas BM, Abdelnabi R, Boonen A, Mills A, Martí-Marí O, Noppen S, Neyts J, Schols D, Gago F, San-Félix A, Camarasa MJ, Martín N. Multivalent Tryptophan- and Tyrosine-Containing [60]Fullerene Hexa-Adducts as Dual HIV and Enterovirus A71 Entry Inhibitors. Chemistry 2021; 27:10700-10710. [PMID: 33851758 PMCID: PMC8361981 DOI: 10.1002/chem.202101098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 01/04/2023]
Abstract
Unprecedented 3D hexa‐adducts of [60]fullerene peripherally decorated with twelve tryptophan (Trp) or tyrosine (Tyr) residues have been synthesized. Studies on the antiviral activity of these novel compounds against HIV and EV71 reveal that they are much more potent against HIV and equally active against EV71 than the previously described dendrimer prototypes AL‐385 and AL‐463, which possess the same number of Trp/Tyr residues on the periphery but attached to a smaller and more flexible pentaerythritol core. These results demonstrate the relevance of the globular 3D presentation of the peripheral groups (Trp/Tyr) as well as the length of the spacer connecting them to the central core to interact with the viral envelopes, particularly in the case of HIV, and support the hypothesis that [60]fullerene can be an alternative and attractive biocompatible carbon‐based scaffold for this type of highly symmetrical dendrimers. In addition, the functionalized fullerenes here described, which display twelve peripheral negatively charged indole moieties on their globular surface, define a new and versatile class of compounds with a promising potential in biomedical applications.
Collapse
Affiliation(s)
- Marta Ruiz-Santaquiteria
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040, Madrid, Spain
| | - Beatriz M Illescas
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040, Madrid, Spain
| | - Rana Abdelnabi
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, University of Leuven, 3000, Leuven, Belgium
| | - Arnaud Boonen
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, University of Leuven, 3000, Leuven, Belgium
| | - Alberto Mills
- Departamento de Ciencias Biomédicas y Unidad Asociada IQM-UAH, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Olaia Martí-Marí
- Instituto de Química Médica (IQM-CSIC), IQM-CSIC, 28006, Madrid, Spain
| | - Sam Noppen
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, University of Leuven, 3000, Leuven, Belgium
| | - Johan Neyts
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, University of Leuven, 3000, Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, University of Leuven, 3000, Leuven, Belgium
| | - Federico Gago
- Departamento de Ciencias Biomédicas y Unidad Asociada IQM-UAH, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Ana San-Félix
- Instituto de Química Médica (IQM-CSIC), IQM-CSIC, 28006, Madrid, Spain
| | | | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040, Madrid, Spain.,IMDEA-Nanoscience, C/ Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
26
|
Guo X, Sun M, Gao R, Qu A, Chen C, Xu C, Kuang H, Xu L. Ultrasmall Copper (I) Sulfide Nanoparticles Prevent Hepatitis B Virus Infection. Angew Chem Int Ed Engl 2021; 60:13073-13080. [PMID: 33837622 DOI: 10.1002/anie.202103717] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) poses a severe threat to public health and social development. Here, we synthesized 4±0.5 nm copper (I) sulfide (Cu2 S) nanoparticles (NPs) with 46 mdeg chiroptical property at 530 nm to selectively cleavage HBV core antigen (HBcAg) and effectively blocked HBV assembly and prevented HBV infection both in vitro and in vivo under light at 808 nm. Experimental analysis showed that the chiral Cu2 S NPs specific bound with the functional domain from phenylalanine23 (F23 ) to leucine30 (L30 ) from HBcAg primary sequence and the cutting site was between amino acid residues F24 and proline25 (P25 ). Under excitation at 808 nm, the intracellular HBcAg concentration was reduced by 95 %, and in HBV transgenic mice, the levels of HBV surface antigen (HBsAg) and HBV DNA were decreased by 93 % and 86 %, respectively. Together, these results reveal the potential nanomedicine for HBV control and provide fresh tools for viral infection.
Collapse
Affiliation(s)
- Xiao Guo
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Rui Gao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chen Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
27
|
Guo X, Sun M, Gao R, Qu A, Chen C, Xu C, Kuang H, Xu L. Ultrasmall Copper (I) Sulfide Nanoparticles Prevent Hepatitis B Virus Infection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao Guo
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Rui Gao
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chen Chen
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
28
|
Hoyos P, Perona A, Juanes O, Rumbero Á, Hernáiz MJ. Synthesis of Glycodendrimers with Antiviral and Antibacterial Activity. Chemistry 2021; 27:7593-7624. [PMID: 33533096 DOI: 10.1002/chem.202005065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Indexed: 12/27/2022]
Abstract
Glycodendrimers are an important class of synthetic macromolecules that can be used to mimic many structural and functional features of cell-surface glycoconjugates. Their carbohydrate moieties perform key important functions in bacterial and viral infections, often regulated by carbohydrate-protein interactions. Several studies have shown that the molecular structure, valency and spatial organisation of carbohydrate epitopes in glycoconjugates are key factors in the specificity and avidity of carbohydrate-protein interactions. Choosing the right glycodendrimers almost always helps to interfere with such interactions and blocks bacterial or viral adhesion and entry into host cells as an effective strategy to inhibit bacterial or viral infections. Herein, the state of the art in the design and synthesis of glycodendrimers employed for the development of anti-adhesion therapy against bacterial and viral infections is described.
Collapse
Affiliation(s)
- Pilar Hoyos
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Almudena Perona
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Olga Juanes
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Ángel Rumbero
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - María J Hernáiz
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
29
|
Ramos-Soriano J, Rojo J. Glycodendritic structures as DC-SIGN binders to inhibit viral infections. Chem Commun (Camb) 2021; 57:5111-5126. [PMID: 33977972 DOI: 10.1039/d1cc01281a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DC-SIGN, a lectin discovered two decades ago, plays a relevant role in innate immunity. Since its discovery, it has turned out to be a target for developing antiviral drugs based on carbohydrates due to its participation in the infection process of several pathogens. A plethora of carbohydrate multivalent systems using different scaffolds have been described to achieve this goal. Our group has made significant contributions to this field, which are revised herein.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
30
|
Illescas BM, Pérez-Sánchez A, Mallo A, Martín-Domenech Á, Rodríguez-Crespo I, Martín N. Multivalent cationic dendrofullerenes for gene transfer: synthesis and DNA complexation. J Mater Chem B 2021; 8:4505-4515. [PMID: 32369088 DOI: 10.1039/d0tb00113a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-viral nucleic acid vectors able to display high transfection efficiencies with low toxicity and overcoming the multiple biological barriers are needed to further develop the clinical applications of gene therapy. The synthesis of hexakis-adducts of [60]fullerene endowed with 12, 24 and 36 positive ammonium groups and a tridecafullerene appended with 120 positive charges has been performed. The delivery of a plasmid containing the green fluorescent protein (EGFP) gene into HEK293 (Human Embryonic Kidney) cells resulting in effective gene expression has demonstrated the efficacy of these compounds to form polyplexes with DNA. Particularly, giant tridecafullerene macromolecules have shown higher efficiency in the complexation and transfection of DNA. Thus, they can be considered as promising non-viral vectors for transfection purposes.
Collapse
Affiliation(s)
- Beatriz M Illescas
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid 28040, Spain.
| | - Alfonso Pérez-Sánchez
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid 28040, Spain.
| | - Araceli Mallo
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Ángel Martín-Domenech
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid 28040, Spain.
| | | | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid 28040, Spain. and IMDEA-Nanociencia, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
31
|
Stuart-Walker W, Mahon CS. Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Adv Drug Deliv Rev 2021; 171:77-93. [PMID: 33539854 DOI: 10.1016/j.addr.2021.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
Carbohydrate-based materials offer exciting opportunities for drug delivery. They present readily available, biocompatible components for the construction of macromolecular systems which can be loaded with cargo, and can enable targeting of a payload to particular cell types through carbohydrate recognition events established in biological systems. These systems can additionally be engineered to respond to environmental stimuli, enabling triggered release of payload, to encompass multiple modes of therapeutic action, or to simultaneously fulfil a secondary function such as enabling imaging of target tissue. Here, we will explore the use of glycomacromolecules to deliver therapeutic benefits to address key health challenges, and suggest future directions for development of next-generation systems.
Collapse
|
32
|
Li S, Guo X, Gao R, Sun M, Xu L, Xu C, Kuang H. Recent Progress on Biomaterials Fighting against Viruses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005424. [PMID: 33644954 DOI: 10.1002/adma.202005424] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/19/2020] [Indexed: 05/24/2023]
Abstract
Viruses not only pose severe threats to public health, but also influence the development of society. Over the past decade, rapid advances have been seen in the application of nanomaterials to virus research. As an interdisciplinary field, nanotechnology offers powerful functions because the structures of nanomaterials are unique, with remarkable physicochemical properties and excellent biocompatibility. Nanomaterials have been developed for virus detection and tracking and for antiviral strategies, to better understand viruses and reduce viral infections, implying a bright future for this field. Herein, the recent advances are systematically summarized regarding the nanomaterials used in viral studies. Representative applications of nanomaterials to viral detection and tracking are described. The antiviral effects achieved with nanomaterials based on different mechanisms are also described, including entry inhibition, inhibition of viral replication, and immunological enhancement. The current challenges and future opportunities in this promising field are also discussed.
Collapse
Affiliation(s)
- Si Li
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiao Guo
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Rui Gao
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
33
|
Chen S, Yang WW, Hou HL, Li ZJ, Gao X. Reactions of [60]Fullerene with Acetone under Basic Condition: Nucleophilic Ring Opening of the [5,6]-Cyclopropane in C 60 and Formation of the Substituted Methano[60]Fulleroids. J Org Chem 2021; 86:4843-4848. [PMID: 33630594 DOI: 10.1021/acs.joc.0c02902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The reactions of C60 with acetone were carried out under basic condition in the presence of 1.0 M TBAOH (tetra-n-butylammonium hydroxide) methanol solution and ArCH2Br (Ar = Ph or o-BrPh), where methano[60]fulleroids with a novel 1,1,4,9,9,25-configuration were obtained and structurally characterized by single crystal diffraction. The product was formed via the ring-opening reaction of the [5,6]-cyclopropane by the nucleophilic addition of MeO-, which is different from the reactions of other ketones reported previously.
Collapse
Affiliation(s)
- Si Chen
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, Shandong 264005, China
| | - Wei-Wei Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Hui-Lei Hou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Zong-Jun Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Xiang Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| |
Collapse
|
34
|
Nie C, Stadtmüller M, Parshad B, Wallert M, Ahmadi V, Kerkhoff Y, Bhatia S, Block S, Cheng C, Wolff T, Haag R. Heteromultivalent topology-matched nanostructures as potent and broad-spectrum influenza A virus inhibitors. SCIENCE ADVANCES 2021; 7:7/1/eabd3803. [PMID: 33523846 PMCID: PMC7775783 DOI: 10.1126/sciadv.abd3803] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/09/2020] [Indexed: 05/28/2023]
Abstract
Here, we report the topology-matched design of heteromultivalent nanostructures as potent and broad-spectrum virus entry inhibitors based on the host cell membrane. Initially, we investigate the virus binding dynamics to validate the better binding performance of the heteromultivalent moieties as compared to homomultivalent ones. The heteromultivalent binding moieties are transferred to nanostructures with a bowl-like shape matching the viral spherical surface. Unlike the conventional homomultivalent inhibitors, the heteromultivalent ones exhibit a half maximal inhibitory concentration of 32.4 ± 13.7 μg/ml due to the synergistic multivalent effects and the topology-matched shape. At a dose without causing cellular toxicity, >99.99% reduction of virus propagation has been achieved. Since multiple binding sites have also been identified on the S protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), we envision that the use of heteromultivalent nanostructures may also be applied to develop a potent inhibitor to prevent coronavirus infection.
Collapse
Affiliation(s)
- Chuanxiong Nie
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestr. 10, 13353 Berlin, Germany
| | - Marlena Stadtmüller
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestr. 10, 13353 Berlin, Germany
| | - Badri Parshad
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Matthias Wallert
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Vahid Ahmadi
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Yannic Kerkhoff
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Sumati Bhatia
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Stephan Block
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestr. 10, 13353 Berlin, Germany.
| | - Rainer Haag
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| |
Collapse
|
35
|
Jakšić J, Mitrović A, Tokić Vujošević Z, Milčić M, Maslak V. Selective formation of dihydrofuran fused [60] fullerene derivatives by TEMPO mediated [3 + 2] cycloaddition of medium chain β-keto esters to C 60. RSC Adv 2021; 11:29426-29432. [PMID: 35479550 PMCID: PMC9040907 DOI: 10.1039/d1ra03944j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, β-keto esters as readily available bio-based building blocks were used to decorate the C60 sphere. Generally, cyclopropanated fullerene derivatives are obtained by the standard Bingel–Hirsch procedure. Herein, omitting the iodine from the reaction mixture and adding TEMPO afforded dihydrofuran fused C60 fullerene derivatives. The mechanism of the reaction shifted from nucleophilic aliphatic substitution to oxidative [3 + 2] cycloaddition via fullerenyl cations as an intermediate. This mechanism is proposed based on a series of control experiments with radical scavengers. Therefore, dihydrofuran-fused C60 derivatives were selectively obtained in good yields and their structures were established based on UV-Vis, IR, NMR spectroscopy and mass spectrometry. The electrochemical properties of the synthesized compounds were investigated by cyclic voltammetry. DFT calculations were performed in order to investigate the difference in stability, electronic properties and π-electron delocalization between methano and furano fullerenes. In this study, β-keto esters as readily available bio-based building blocks were used to decorate the C60 sphere.![]()
Collapse
Affiliation(s)
- Jovana Jakšić
- Department of Organic Chemistry, University of Belgrade, Faculty of Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Aleksandra Mitrović
- Department of Organic Chemistry, University of Belgrade, Faculty of Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Zorana Tokić Vujošević
- Department of Organic Chemistry, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Miloš Milčić
- Department of Organic Chemistry, University of Belgrade, Faculty of Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Veselin Maslak
- Department of Organic Chemistry, University of Belgrade, Faculty of Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
36
|
Wu H, Zhong D, Zhang Z, Li Y, Zhang X, Li Y, Zhang Z, Xu X, Yang J, Gu Z. Bioinspired Artificial Tobacco Mosaic Virus with Combined Oncolytic Properties to Completely Destroy Multidrug-Resistant Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904958. [PMID: 33231347 DOI: 10.1002/adma.201904958] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/22/2019] [Indexed: 05/06/2023]
|
37
|
de la Cruz N, Sousa-Herves A, Rojo J. Glyconanogels as a versatile platform for the multivalent presentation of carbohydrates: From monosaccharides to dendritic glycostructures. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Pineux F, Federico S, Klotz KN, Kachler S, Michiels C, Sturlese M, Prato M, Spalluto G, Moro S, Bonifazi D. Targeting G Protein-Coupled Receptors with Magnetic Carbon Nanotubes: The Case of the A 3 Adenosine Receptor. ChemMedChem 2020; 15:1909-1920. [PMID: 32706529 DOI: 10.1002/cmdc.202000466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The A3 adenosine receptor (AR) is a G protein-coupled receptor (GPCR) overexpressed in the membrane of specific cancer cells. Thus, the development of nanosystems targeting this receptor could be a strategy to both treat and diagnose cancer. Iron-filled carbon nanotubes (CNTs) are an optimal platform for theranostic purposes, and the use of a magnetic field can be exploited for cancer magnetic cell sorting and thermal therapy. In this work, we have conjugated an A3 AR ligand on the surface of iron-filled CNTs with the aim of targeting cells overexpressing A3 ARs. In particular, two conjugates bearing PEG linkers of different length were designed. A docking analysis of A3 AR showed that neither CNT nor linker interferes with ligand binding to the receptor; this was confirmed by in vitro preliminary radioligand competition assays on A3 AR. Encouraged by this result, magnetic cell sorting was applied to a mixture of cells overexpressing or not the A3 AR in which our compound displayed indiscriminate binding to all cells. Despite this, it is the first time that a GPCR ligand has been anchored to a magnetic nanosystem, thus it opens the door to new applications for cancer treatment.
Collapse
Affiliation(s)
- Florent Pineux
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Carine Michiels
- Namur Research Institute for Life Science (NARILIS), Unité de Recherche en Biologie Cellulaire (URBC), University of Namur, 5000, Namur, Belgium
| | - Mattia Sturlese
- Dipartimento di Scienze del Farmaco Molecular Modeling Section (MMS), Università degli Studi di Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy.,Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain.,Basque Foundation for Science, Ikerbasque, 48013, Bilbao, Spain
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy
| | - Stefano Moro
- Dipartimento di Scienze del Farmaco Molecular Modeling Section (MMS), Università degli Studi di Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Davide Bonifazi
- Institut für Organische Chemie, Universität Wien, Währinger Str. 38, 1090, Wien, Austria
| |
Collapse
|
39
|
Ortega MÁ, Guzmán Merino A, Fraile-Martínez O, Recio-Ruiz J, Pekarek L, G. Guijarro L, García-Honduvilla N, Álvarez-Mon M, Buján J, García-Gallego S. Dendrimers and Dendritic Materials: From Laboratory to Medical Practice in Infectious Diseases. Pharmaceutics 2020; 12:pharmaceutics12090874. [PMID: 32937793 PMCID: PMC7560085 DOI: 10.3390/pharmaceutics12090874] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are one of the main global public health risks, predominantly caused by viruses, bacteria, fungi, and parasites. The control of infections is founded on three main pillars: prevention, treatment, and diagnosis. However, the appearance of microbial resistance has challenged traditional strategies and demands new approaches. Dendrimers are a type of polymeric nanoparticles whose nanometric size, multivalency, biocompatibility, and structural perfection offer boundless possibilities in multiple biomedical applications. This review provides the reader a general overview about the uses of dendrimers and dendritic materials in the treatment, prevention, and diagnosis of highly prevalent infectious diseases, and their advantages compared to traditional approaches. Examples of dendrimers as antimicrobial agents per se, as nanocarriers of antimicrobial drugs, as well as their uses in gene transfection, in vaccines or as contrast agents in imaging assays are presented. Despite the need to address some challenges in order to be used in the clinic, dendritic materials appear as an innovative tool with a brilliant future ahead in the clinical management of infectious diseases and many other health issues.
Collapse
Affiliation(s)
- Miguel Ángel Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Alberto Guzmán Merino
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Judith Recio-Ruiz
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Luis G. Guijarro
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Networking Research Centre on Hepatic and Digestive Diseases (CIBER-EHD), 28029 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology and Medicine Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Sandra García-Gallego
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
- Correspondence:
| |
Collapse
|
40
|
Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in Antiviral Material Development. Chempluschem 2020; 85:2105-2128. [PMID: 32881384 PMCID: PMC7461489 DOI: 10.1002/cplu.202000460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
The rise in human pandemics demands prudent approaches in antiviral material development for disease prevention and treatment via effective protective equipment and therapeutic strategy. However, the current state of the antiviral materials research is predominantly aligned towards drug development and its related areas, catering to the field of pharmaceutical technology. This review distinguishes the research advances in terms of innovative materials exhibiting antiviral activities that take advantage of fast-developing nanotechnology and biopolymer technology. Essential concepts of antiviral principles and underlying mechanisms are illustrated, followed with detailed descriptions of novel antiviral materials including inorganic nanomaterials, organic nanomaterials and biopolymers. The biomedical applications of the antiviral materials are also elaborated based on the specific categorization. Challenges and future prospects are discussed to facilitate the research and development of protective solutions and curative treatments.
Collapse
Affiliation(s)
- Lili Liang
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Interdisciplinary Graduate ProgramNanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Ashiq Ahamed
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Laboratory of Molecular Science and EngineeringJohan Gadolin Process Chemistry Centre Åbo Akademi UniversityFI-20500Turku/ÅboFinland
| | - Liya Ge
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Xiaoxu Fu
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| |
Collapse
|
41
|
Zhou Y, Jiang X, Tong T, Fang L, Wu Y, Liang J, Xiao S. High antiviral activity of mercaptoethane sulfonate functionalized Te/BSA nanostars against arterivirus and coronavirus. RSC Adv 2020; 10:14161-14169. [PMID: 35498493 PMCID: PMC9051606 DOI: 10.1039/d0ra01387k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Heparan sulfate (HS) is a kind of cellular adhesion receptor that mediates the attachment and internalization of virus infection. Herein, to mimic the cell surface receptor, mercaptoethane sulfonate (MES), an analogue of HS, was used as the surface modifier to synthesize bovine serum albumin (BSA)-coated tellurium nanoparticles (Te/BSA NPs) with a unique triangular star shape (Te/BSA nanostars). Using porcine reproductive and respiratory syndrome virus (PRRSV), which utilizes HS as a cellular receptor, as a model of arterivirus, we found that Te/BSA nanostars suppressed virus infection mainly by inhibiting the virus internalization process. Interestingly, Te/BSA nanostars exhibited much higher antiviral activity than the spherical Te/BSA NPs (Te/BSA nanospheres), the Te/BSA NPs were synthesized with GSH as a substitute of MES, suggesting that both MES modification and the novel shapes of Te/BSA NPs enhance their antiviral activity. Finally, the antiviral effect of Te/BSA nanostars on porcine epidemic diarrhea virus (PEDV), a model of coronavirus, was also demonstrated, indicating the potential broad-spectrum antiviral property of Te/BSA nanostars.
Collapse
Affiliation(s)
- Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan 430070 P. R. China +86-27-8728-2608 +86-27-8728-6884
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan 430070 P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production Wuhan 430070 P. R. China
| | - Xiaohan Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan 430070 P. R. China +86-27-8728-2608 +86-27-8728-6884
- College of Science, Huazhong Agricultural University Wuhan 430070 P. R. China
| | - Ting Tong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan 430070 P. R. China +86-27-8728-2608 +86-27-8728-6884
- College of Science, Huazhong Agricultural University Wuhan 430070 P. R. China
- College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 P. R. China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan 430070 P. R. China +86-27-8728-2608 +86-27-8728-6884
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan 430070 P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production Wuhan 430070 P. R. China
| | - Yuan Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan 430070 P. R. China +86-27-8728-2608 +86-27-8728-6884
- College of Science, Huazhong Agricultural University Wuhan 430070 P. R. China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan 430070 P. R. China +86-27-8728-2608 +86-27-8728-6884
- College of Science, Huazhong Agricultural University Wuhan 430070 P. R. China
- College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 P. R. China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan 430070 P. R. China +86-27-8728-2608 +86-27-8728-6884
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan 430070 P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production Wuhan 430070 P. R. China
| |
Collapse
|
42
|
Ramos-Soriano J, Reina JJ, Illescas BM, de la Cruz N, Rodríguez-Pérez L, Lasala F, Rojo J, Delgado R, Martín N. Synthesis of Highly Efficient Multivalent Disaccharide/[60]Fullerene Nanoballs for Emergent Viruses. J Am Chem Soc 2019; 141:15403-15412. [DOI: 10.1021/jacs.9b08003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Javier Ramos-Soriano
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - José J. Reina
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Beatriz M. Illescas
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Noelia de la Cruz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Laura Rodríguez-Pérez
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Fátima Lasala
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Rafael Delgado
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
- IMDEA-Nanoscience, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
43
|
Liu YJ, Ge J, Miao CB, Yang HT. Copper-Catalyzed Reaction of C60 with Tertiary Amines for the Preparation of Spiro-Linked Methanofullerenes and Fullerenoalkanals. J Org Chem 2019; 84:6134-6142. [DOI: 10.1021/acs.joc.9b00335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yong-Jian Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jie Ge
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
44
|
Zhao CM, Wang KR, Wang C, He X, Li XL. Cooling-Induced NIR Emission Enhancement and Targeting Fluorescence Imaging of Biperylene Monoimide and Glycodendrimer Conjugates. ACS Macro Lett 2019; 8:381-386. [PMID: 35651141 DOI: 10.1021/acsmacrolett.9b00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Under high concentrations, strong pressure, and low temperature, fluorophores usually exhibit the fluorescence quenching phenomenon. Of significance, the development of aggregation-induced emission (AIE) and pressure-induced emission (PIE) fluorophores has perfectly prevented fluorescence quenching under high concentrations and strong pressure. However, cooling-induced fluorescence quenching in water is still an urgent problem. In this paper, cooling-induced emission (CIE) enhancement based on a biperylene monoimide (BPMI) derivative, BPMI-18Lac, with a conjugated lactose-based glycodendrimer was developed. BPMI-18Lac, as a non-AIE molecule, exhibited the CIE phenomenon with a fluorescent intensity increasing 7-fold when the temperature decreased from 80 to -40 °C. The mechanism was due to the inhibition of the intramolecular electron interactions between the perylene monoimide moieties linked by the C-C single bond. In addition, BPMI-18Lac, as a multivalent glycodendrimer, showed selective fluorescence imaging for HepG 2 cells through the ASGP receptor on the cell surface. Importantly, this work developed a water-soluble CIE molecule for potential application below freezing temperature.
Collapse
Affiliation(s)
- Chun-Miao Zhao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Ke-Rang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Chong Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xu He
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xiao-Liu Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
45
|
Taouai M, Porkolab V, Chakroun K, Cheneau C, Luczkowiak J, Abidi R, Lesur D, Cragg PJ, Halary F, Delgado R, Fieschi F, Benazza M. Unprecedented Thiacalixarene Fucoclusters as Strong Inhibitors of Ebola cis-Cell Infection and HCMV-gB Glycoprotein/DC-SIGN C-type Lectin Interaction. Bioconjug Chem 2019; 30:1114-1126. [DOI: 10.1021/acs.bioconjchem.9b00066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marwa Taouai
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - Vanessa Porkolab
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38044 Grenoble, France
| | - Khouloud Chakroun
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - Coraline Cheneau
- Centre de Recherche
en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, 44093 Nantes, France
| | - Joanna Luczkowiak
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Rym Abidi
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - David Lesur
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
| | - Peter J. Cragg
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Franck Halary
- Centre de Recherche
en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, 44093 Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France
| | - Rafael Delgado
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38044 Grenoble, France
| | - Mohammed Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
| |
Collapse
|
46
|
Wabra I, Holzwarth J, Hauke F, Hirsch A. Exohedral Addition Chemistry of the Fullerenide Anions C
60
2−
and C
60
⋅−. Chemistry 2019; 25:5186-5201. [DOI: 10.1002/chem.201805777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Isabell Wabra
- Department of Chemistry and PharmacyFriedrich-Alexander-University Erlangen-Nuremberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Germany
| | - Johannes Holzwarth
- Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander-University Erlangen-Nuremberg Dr.-Mack-Strasse 81 90762 Fürth Germany
| | - Frank Hauke
- Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander-University Erlangen-Nuremberg Dr.-Mack-Strasse 81 90762 Fürth Germany
| | - Andreas Hirsch
- Department of Chemistry and PharmacyFriedrich-Alexander-University Erlangen-Nuremberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Germany
| |
Collapse
|
47
|
Agrahari AK, Singh AS, Singh AK, Mishra N, Singh M, Prakash P, Tiwari VK. Click inspired synthesis of hexa and octadecavalent peripheral galactosylated glycodendrimers and their possible therapeutic applications. NEW J CHEM 2019. [DOI: 10.1039/c9nj02564b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Click inspired glycodendrimers comprising a rigid hexapropargyloxy benzene core with peripheral β-d-galactopyranosidic units were developed and evaluated for their therapeutic potential.
Collapse
Affiliation(s)
- Anand K. Agrahari
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Anoop S. Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Ashish Kumar Singh
- Department of Microbiology
- Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Nidhi Mishra
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Mala Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Pradyot Prakash
- Department of Microbiology
- Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Vinod K. Tiwari
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
48
|
Sapozhnikova KA, Slesarchuk NA, Orlov AA, Khvatov EV, Radchenko EV, Chistov AA, Ustinov AV, Palyulin VA, Kozlovskaya LI, Osolodkin DI, Korshun VA, Brylev VA. Ramified derivatives of 5-(perylen-3-ylethynyl)uracil-1-acetic acid and their antiviral properties. RSC Adv 2019; 9:26014-26023. [PMID: 35531032 PMCID: PMC9070374 DOI: 10.1039/c9ra06313g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 01/03/2023] Open
Abstract
The propargylamide of N3-Pom-protected 5-(perylen-3-ylethynyl)uracil acetic acid, a universal precursor, was used in a CuAAC click reaction for the synthesis of several derivatives, including three ramified molecules with high activities against tick-borne encephalitis virus (TBEV). Pentaerythritol-based polyazides were used for the assembly of molecules containing 2⋯4 antiviral 5-(perylen-3-ylethynyl)uracil scaffolds, the first examples of polyvalent perylene antivirals. Cluster compounds showed enhanced absorbance, however, their fluorescence was reduced due to self-quenching. Due to the solubility issues, Pom group removal succeeded only for compounds with one peryleneethynyluracil unit. Four compounds, including one ramified cluster 9f, showed remarkable 1⋯3 nM EC50 values against TBEV in cell culture. Ramified clusters of antiviral perylenylethynyl scaffold were prepared using CuAAC reaction of 5-(perylen-3-ylethynyl)-3-pivaloyloxymethyl-1-(propargylamidomethyl)uracil with azides. Compounds inhibited TBEV reproduction at nanomolar concentrations.![]()
Collapse
Affiliation(s)
| | - Nikita A. Slesarchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Moscow 117997
- Russia
- Department of Chemistry
- Lomonosov Moscow State University
| | - Alexey A. Orlov
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow 119991
- Russia
- FSBSI "Chumakov FSC R&D IBP RAS"
| | - Evgeny V. Khvatov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Moscow 117997
- Russia
- FSBSI "Chumakov FSC R&D IBP RAS"
- Moscow 108819
| | | | - Alexey A. Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Moscow 117997
- Russia
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Moscow 117997
- Russia
- Biotech Innovations Ltd
- Moscow 119992
| | | | - Liubov I. Kozlovskaya
- FSBSI "Chumakov FSC R&D IBP RAS"
- Moscow 108819
- Russia
- Sechenov First Moscow State Medical University
- Moscow 119991
| | - Dmitry I. Osolodkin
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow 119991
- Russia
- FSBSI "Chumakov FSC R&D IBP RAS"
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Moscow 117997
- Russia
- Department of Biology and Biotechnology
- National Research University Higher School of Economics
| | - Vladimir A. Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Moscow 117997
- Russia
- Biotech Innovations Ltd
- Moscow 119992
| |
Collapse
|
49
|
Rai M, Jamil B. Nanoformulations: A Valuable Tool in the Therapy of Viral Diseases Attacking Humans and Animals. Nanotheranostics 2019. [PMCID: PMC7121811 DOI: 10.1007/978-3-030-29768-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Various viruses can be considered as one of the most frequent causes of human diseases, from mild illnesses to really serious sicknesses that end fatally. Numerous viruses are also pathogenic to animals and plants, and many of them, mutating, become pathogenic also to humans. Several cases of affecting humans by originally animal viruses have been confirmed. Viral infections cause significant morbidity and mortality in humans, the increase of which is caused by general immunosuppression of the world population, changes in climate, and overall globalization. In spite of the fact that the pharmaceutical industry pays great attention to human viral infections, many of clinically used antivirals demonstrate also increased toxicity against human cells, limited bioavailability, and thus, not entirely suitable therapeutic profile. In addition, due to resistance, a combination of antivirals is needed for life-threatening infections. Thus, the development of new antiviral agents is of great importance for the control of virus spread. On the other hand, the discovery and development of structurally new antivirals represent risks. Therefore, another strategy is being developed, namely the reformulation of existing antivirals into nanoformulations and investigation of various metal and metalloid nanoparticles with respect to their diagnostic, prophylactic, and therapeutic antiviral applications. This chapter is focused on nanoscale materials/formulations with the potential to be used for the treatment or inhibition of the spread of viral diseases caused by human immunodeficiency virus, influenza A viruses (subtypes H3N2 and H1N1), avian influenza and swine influenza viruses, respiratory syncytial virus, herpes simplex virus, hepatitis B and C viruses, Ebola and Marburg viruses, Newcastle disease virus, dengue and Zika viruses, and pseudorabies virus. Effective antiviral long-lasting and target-selective nanoformulations developed for oral, intravenous, intramuscular, intranasal, intrarectal, intravaginal, and intradermal applications are discussed. Benefits of nanoparticle-based vaccination formulations with the potential to secure cross protection against divergent viruses are outlined as well.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, Amravati, Maharashtra, India, Department of Chemistry, Federal University of Piauí, Teresina, Piauí Brazil
| | - Bushra Jamil
- Department of DMLS, University of Lahore, Islamabad, Pakistan
| |
Collapse
|
50
|
Teng Q, Tan YC, Miao CB, Sun XQ, Yang HT. Tunable Copper-Catalyzed Reaction of C60 with 2-Ethoxycarbonylacetamides and Subsequent BF3·Et2O-Mediated Isomerization of the Generated Dihydrofuran-Fused Fullerenes to Fulleropyrrolidinones. J Org Chem 2018; 83:15268-15276. [DOI: 10.1021/acs.joc.8b02547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Qiaoqiao Teng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yi-Chen Tan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiao-Qiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|