1
|
Pirota V, Salvati E, Risoldi C, Manoli F, Rizzo A, Zizza P, Biroccio A, Freccero M, Manet I, Doria F. Core-Extended Naphthalene Diimide Dyads as Light-Up Probes with Targeted Cytotoxicity Toward Tumor Cells. Biomolecules 2025; 15:311. [PMID: 40001613 PMCID: PMC11852925 DOI: 10.3390/biom15020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Within the framework of rational drug design, this study introduces a novel approach to enhance the specificity of small molecules in targeting cancer cells. This approach starts from the use of dyads merging into a single entity, a naphthalene diimide (NDI) and core-extended NDI (ceNDI), both known as G-quadruplex (G4) ligands and fluorescent probes. The strategy aims to leverage the unique diagnostic strengths of the ceNDI moiety featuring red emission by improving its binding affinity and target selectivity through inclusion in dyads built with different linkers. The newly developed NDI-ceNDI dyads are promising probes, as they exhibit fluorescence turn-on upon DNA recognition and induced circular dichroism signals dependent on DNA conformation. Both dyads have an excellent affinity for hybrid G4, with two orders of magnitude higher binding constants than those for ds DNA. Their high cytotoxicity on cancer cell lines further demonstrates their potential as therapeutic agents, highlighting the role of the linker in target selectivity. Specifically, only the dyad with the rigid triazole linker exhibits selectively induced DNA damage in transformed cells, compared to normal cells primarily targeting telomeric regions. Our findings shed light on DIPAC's potential as a promising theranostic agent, offering insights into future developments in precision medicine.
Collapse
Affiliation(s)
- Valentina Pirota
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 10, 27100 Pavia, Italy; (V.P.); (M.F.)
| | - Erica Salvati
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Via degli Apuli 4, 00185 Roma, Italy; (E.S.); (C.R.)
| | - Carla Risoldi
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Via degli Apuli 4, 00185 Roma, Italy; (E.S.); (C.R.)
| | - Francesco Manoli
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Gobetti 101, 40129 Bologna, Italy;
| | - Angela Rizzo
- Translational Oncology Research Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (A.R.); (P.Z.); (A.B.)
| | - Pasquale Zizza
- Translational Oncology Research Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (A.R.); (P.Z.); (A.B.)
| | - Annamaria Biroccio
- Translational Oncology Research Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (A.R.); (P.Z.); (A.B.)
| | - Mauro Freccero
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 10, 27100 Pavia, Italy; (V.P.); (M.F.)
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Gobetti 101, 40129 Bologna, Italy;
| | - Filippo Doria
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 10, 27100 Pavia, Italy; (V.P.); (M.F.)
| |
Collapse
|
2
|
Pirota V, Stritto AD, Magnaghi LR, Biesuz R, Doria F, Mella M, Freccero M, Crespan E. A Novel G-Quadruplex Structure within Apolipoprotein E Promoter: A New Promising Target in Cancer and Dementia Fight? ACS OMEGA 2024; 9:45203-45213. [PMID: 39554422 PMCID: PMC11561760 DOI: 10.1021/acsomega.4c06430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024]
Abstract
Human apolipoprotein E (APOE) is a crucial lipid transport glycoprotein involved in various biological processes, including lipid metabolism, immune response, and neurodegeneration. Elevated APOE levels are linked to poor prognosis in several cancers and increased risk of Alzheimer's disease (AD). Therefore, modulating APOE expression presents a promising therapeutic strategy for both cancer and AD. Considering the pivotal role of G-quadruplex (G4) structures in medicinal chemistry as modulators of gene expression, here, we present a newly discovered G-quadruplex (G4) structure within the ApoE gene promoter. Bioinformatic analysis identified 21 potential G4-forming sequences in the ApoE promoter, with the more proximal to the transcription start site, pApoE, showing the highest G-score. Biophysical studies confirmed the folding of pApoE into a stable parallel G4 under physiological conditions, supported by circular dichroism, NMR spectroscopy, UV-melting, and a quantitative PCR stop assay. Moreover, the ability to modulate pApoE-G4 folding was demonstrated by using G4-stabilizing ligands (HPHAM, Braco19, and PDS), which increased the thermal stability of pApoE-G4. In contrast, peptide nucleic acid conjugates were synthesized to disrupt G4 formation, effectively hybridizing with pApoE sequences, and confirming the potential to unfold G4 structures. Overall, our findings provide a mainstay for future therapeutic approaches targeting ApoE-G4s to regulate APOE expression, offering potential advancements in cancer and AD treatment.
Collapse
Affiliation(s)
- Valentina Pirota
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
- G4-INTERACT,
USERN, via Taramelli
10, I-27100 Pavia, Italy
| | - Angela Dello Stritto
- Istituto
di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Lisa Rita Magnaghi
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
- Unità
di Ricerca di Pavia, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Raffaela Biesuz
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
- Unità
di Ricerca di Pavia, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Filippo Doria
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
| | - Mariella Mella
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
| | - Mauro Freccero
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
| | - Emmanuele Crespan
- Istituto
di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
3
|
Pirota V, Rey F, Esposito L, Fantini V, Pandini C, Maghraby E, Di Gerlando R, Doria F, Mella M, Pansarasa O, Gandellini P, Freccero M, Carelli S, Cereda C. Effective lowering of α-synuclein expression by targeting G-quadruplex structures within the SNCA gene. Int J Biol Macromol 2024; 277:134417. [PMID: 39098688 DOI: 10.1016/j.ijbiomac.2024.134417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Alpha-synuclein, encoded by the SNCA gene, is a pivotal protein implicated in the pathogenesis of synucleinopathies, including Parkinson's disease. Current approaches for modulating alpha-synuclein levels involve antisense nucleotides, siRNAs, and small molecules targeting SNCA's 5'-UTR mRNA. Here, we propose a groundbreaking strategy targeting G-quadruplex structures to effectively modulate SNCA gene expression and lowering alpha-synuclein amount. Novel G-quadruplex sequences, identified on the SNCA gene's transcription starting site and 5'-UTR of SNCA mRNAs, were experimentally confirmed for their stability through biophysical assays and in vitro experiments on human genomic DNA. Biological validation in differentiated SH-SY5Y cells revealed that well-known G-quadruplex ligands remarkably stabilized these structures, inducing the modulation of SNCA mRNAs expression, and the effective decrease in alpha-synuclein amount. Besides, a novel peptide nucleic acid conjugate, designed to selectively disrupt of G-quadruplex within the SNCA gene promoter, caused a promising lowering of both SNCA mRNA and alpha-synuclein protein. Altogether our findings highlight G-quadruplexes' key role as intriguing biological targets in achieving a notable and successful reduction in alpha-synuclein expression, pointing to a novel approach against synucleinopathies.
Collapse
Affiliation(s)
- Valentina Pirota
- Department of Chemistry, University of Pavia, Pavia, Italy; G4-INTERACT, USERN, Pavia, Italy.
| | - Federica Rey
- G4-INTERACT, USERN, Pavia, Italy; Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy
| | - Valentina Fantini
- Laboratory of Neurobiology and Neurogenetic, Golgi-Cenci Foundation, Abbiategrasso, Italy
| | - Cecilia Pandini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Erika Maghraby
- Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy; Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy; Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Mariella Mella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Mauro Freccero
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy.
| | - Cristina Cereda
- Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy
| |
Collapse
|
4
|
Benassi A, Peñalver P, Pérez-Soto M, Pirota V, Freccero M, Morales JC, Doria F. Structure-Activity Study on Substituted, Core-Extended, and Dyad Naphthalene Diimide G-Quadruplex Ligands Leading to Potent Antitrypanosomal Agents. J Med Chem 2024; 67:10643-10654. [PMID: 38924701 DOI: 10.1021/acs.jmedchem.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Several G-quadruplex nucleic acid (G4s) ligands have been developed seeking target selectivity in the past decade. Naphthalene diimide (NDI)-based compounds are particularly promising due to their biological activity and red-fluorescence emission. Previously, we demonstrated the existence of G4s in the promoter region of parasite genomes, assessing the effectiveness of NDI-derivatives against them. Here, we explored the biological activity of a small library of G4-DNA ligands, exploiting the NDI pharmacophore, against both Trypanosoma brucei and Leishmania major parasites. Biophysical and biological assays were conducted. Among the various families analyzed, core-extended NDIs exhibited the most promising results concerning the selectivity and antiparasitic effects. NDI 16 emerged as the most potent, with an IC50 of 0.011 nM against T. brucei and remarkable selectivity vs MRC-5 cells (3454-fold). Fascinating, 16 is 480-fold more potent than the standard drug pentamidine (IC50 = 5.3 nM). Cellular uptake and parasite localization were verified by exploiting core-extended NDI red-fluorescent emission.
Collapse
Affiliation(s)
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Manuel Pérez-Soto
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Juan Carlos Morales
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Filippo Doria
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
Wang Y, Tang T, Yuan Y, Li N, Wang X, Guan J. Copper and Copper Complexes in Tumor Therapy. ChemMedChem 2024; 19:e202400060. [PMID: 38443744 DOI: 10.1002/cmdc.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Copper (Cu), a crucial trace element in physiological processes, has garnered significant interest for its involvement in cancer progression and potential therapeutic applications. The regulation of cellular copper levels is essential for maintaining copper homeostasis, as imbalances can lead to toxicity and cell death. The development of drugs that target copper homeostasis has emerged as a promising strategy for anticancer treatment, with a particular focus on copper chelators, copper ionophores, and novel copper complexes. Recent research has also investigated the potential of copper complexes in cancer therapy.
Collapse
Affiliation(s)
- Yingqiao Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingxi Tang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Guan
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Nadai M, Doria F, Frasson I, Perrone R, Pirota V, Bergamaschi G, Freccero M, Richter SN. Naphthalene Diimide-Tetraazacycloalkane Conjugates Are G-Quadruplex-Based HIV-1 Inhibitors with a Dual Mode of Action. ACS Infect Dis 2024; 10:489-499. [PMID: 38175706 PMCID: PMC10862543 DOI: 10.1021/acsinfecdis.3c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Human immunodeficiency virus 1 (HIV-1) therapeutic regimens consist of three or more drugs targeting different steps of the viral life cycle to limit the emergence of viral resistance. In line with the multitargeting strategy, here we conjugated a naphthalene diimide (NDI) moiety with a tetraazacycloalkane to obtain novel naphthalene diimide (NDI)-tetraazacycloalkane conjugates. The NDI inhibits the HIV-1 promoter activity by binding to LTR G-quadruplexes, and the tetraazacycloalkane mimics AMD3100, which blocks HIV entry into cells by interfering with the CXCR4 coreceptor. We synthesized, purified, and tested the metal-free NDI-tetraazacycloalkane conjugate and the two derived metal-organic complexes (MOCs) that incorporate Cu2+ and Zn2+. The NDI-MOCs showed enhanced binding to LTR G4s as assessed by FRET and CD assays in vitro. They also showed enhanced activity in cells where they dose-dependently reduced LTR promoter activity and inhibited viral entry only of the HIV-1 strain that exploited the CXCR4 coreceptor. The time of addition assay confirmed the dual targeting at the different HIV-1 steps. Our results indicate that the NDI-MOC conjugates can simultaneously inhibit viral entry, by targeting the CXCR4 coreceptor, and LTR promoter activity, by stabilizing the LTR G-quadruplexes. The approach of combining multiple targets in a single compound may streamline treatment regimens and improve the overall patient outcomes.
Collapse
Affiliation(s)
- Matteo Nadai
- Department
of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Filippo Doria
- Department
of Chemistry, University of Pavia, V.le Taramelli 10, 27100 Pavia, Italy
| | - Ilaria Frasson
- Department
of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Rosalba Perrone
- Buck
Institute for Research on Aging, Novato, California 94945, United States
| | - Valentina Pirota
- Department
of Chemistry, University of Pavia, V.le Taramelli 10, 27100 Pavia, Italy
| | - Greta Bergamaschi
- National
Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche
“Giulio Natta” (SCITEC–CNR), Via Mario Bianco 9, 20131 Milano, Italy
| | - Mauro Freccero
- Department
of Chemistry, University of Pavia, V.le Taramelli 10, 27100 Pavia, Italy
| | - Sara N. Richter
- Department
of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
- Microbiology
and Virology Unit, Padua University Hospital, 35121 Padua, Italy
| |
Collapse
|
7
|
Deiana M, Andrés Castán J, Josse P, Kahsay A, Sánchez D, Morice K, Gillet N, Ravindranath R, Patel A, Sengupta P, Obi I, Rodriguez-Marquez E, Khrouz L, Dumont E, Abad Galán L, Allain M, Walker B, Ahn HS, Maury O, Blanchard P, Le Bahers T, Öhlund D, von Hofsten J, Monnereau C, Cabanetos C, Sabouri N. A new G-quadruplex-specific photosensitizer inducing genome instability in cancer cells by triggering oxidative DNA damage and impeding replication fork progression. Nucleic Acids Res 2023; 51:6264-6285. [PMID: 37191066 PMCID: PMC10325911 DOI: 10.1093/nar/gkad365] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Photodynamic therapy (PDT) ideally relies on the administration, selective accumulation and photoactivation of a photosensitizer (PS) into diseased tissues. In this context, we report a new heavy-atom-free fluorescent G-quadruplex (G4) DNA-binding PS, named DBI. We reveal by fluorescence microscopy that DBI preferentially localizes in intraluminal vesicles (ILVs), precursors of exosomes, which are key components of cancer cell proliferation. Moreover, purified exosomal DNA was recognized by a G4-specific antibody, thus highlighting the presence of such G4-forming sequences in the vesicles. Despite the absence of fluorescence signal from DBI in nuclei, light-irradiated DBI-treated cells generated reactive oxygen species (ROS), triggering a 3-fold increase of nuclear G4 foci, slowing fork progression and elevated levels of both DNA base damage, 8-oxoguanine, and double-stranded DNA breaks. Consequently, DBI was found to exert significant phototoxic effects (at nanomolar scale) toward cancer cell lines and tumor organoids. Furthermore, in vivo testing reveals that photoactivation of DBI induces not only G4 formation and DNA damage but also apoptosis in zebrafish, specifically in the area where DBI had accumulated. Collectively, this approach shows significant promise for image-guided PDT.
Collapse
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | | | - Pierre Josse
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Abraha Kahsay
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | | | - Korentin Morice
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Natacha Gillet
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Ranjitha Ravindranath
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
- Indian Institute for Science Education and Research (IISER), Tirupati-517507, India
| | - Ankit Kumar Patel
- Department of Radiation Sciences/Oncology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-901 87, Umeå, Sweden
| | - Pallabi Sengupta
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | | | - Lhoussain Khrouz
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Elise Dumont
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
- Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| | - Laura Abad Galán
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Bright Walker
- Department of Chemistry, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyun Seo Ahn
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Olivier Maury
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | | | - Tangui Le Bahers
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
- Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| | - Daniel Öhlund
- Department of Radiation Sciences/Oncology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-901 87, Umeå, Sweden
| | - Jonas von Hofsten
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Cyrille Monnereau
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Clément Cabanetos
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, South Korea
- Building Blocks for FUture Electronics Laboratory (2BFUEL), IRL CNRS 2002, Yonsei University, Seoul, South Korea
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
8
|
Biswas S, Basak S, Samui S, Pasadi S, Muniyappa K, Naskar J. Co‐Assembly of Peptide with G‐Quadruplex DNA: A Strategic Approach to Develop Anticancer Therapeutics. ChemistrySelect 2023. [DOI: 10.1002/slct.202203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Soumi Biswas
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| | - Shubhanwita Basak
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| | - Satyabrata Samui
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| | - Sanjeev Pasadi
- Department of Biochemistry Indian Institute of Science Bangalore Karnataka 560 012 India
| | - K. Muniyappa
- Department of Biochemistry Indian Institute of Science Bangalore Karnataka 560 012 India
| | - Jishu Naskar
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| |
Collapse
|
9
|
Weynand J, Episkopou H, Le Berre G, Gillard M, Dejeu J, Decottignies A, Defrancq E, Elias B. Photo-induced telomeric DNA damage in human cancer cells. RSC Chem Biol 2022; 3:1375-1379. [PMID: 36544575 PMCID: PMC9709782 DOI: 10.1039/d2cb00192f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Herein we report on the study of novel dinuclear ruthenium(ii) complexes designed to target and to photo-react with G-quadruplex telomeric DNA. Upon irradiation, complexes efficiently generate guanine radical cation sites as photo-oxidation products. The compounds also display efficient cell penetration with localization to the nucleus and show strong photocytotoxicity toward osteosarcoma cells. Thanks to a microscopic-based telomere dysfunction assay, which allows the direct visualization of DNA damage in cells, we brought the first evidence of forming photo-oxidative damage at telomeres in cellulo. This emphasizes interesting prospects for the development of future cancer phototherapies.
Collapse
Affiliation(s)
- Justin Weynand
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST)Place Louis Pasteur 1, bte L4.01.02B-1348 Louvain-la-NeuveBelgium,Université Grenoble-Alpes (UGA), Département de Chimie Moléculaire, UMR CNRS 5250, CS 4070038058 GrenobleFrance
| | - Harikleia Episkopou
- Université catholique de Louvain (UCLouvain), Genetic and Epigenetic Alterations of Genomes, de Duve InstituteAvenue Hippocrate 751200 BrusselsBelgium
| | - Gabriel Le Berre
- Université catholique de Louvain (UCLouvain), Genetic and Epigenetic Alterations of Genomes, de Duve InstituteAvenue Hippocrate 751200 BrusselsBelgium
| | - Martin Gillard
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST)Place Louis Pasteur 1, bte L4.01.02B-1348 Louvain-la-NeuveBelgium
| | - Jérôme Dejeu
- Université Grenoble-Alpes (UGA), Département de Chimie Moléculaire, UMR CNRS 5250, CS 4070038058 GrenobleFrance
| | - Anabelle Decottignies
- Université catholique de Louvain (UCLouvain), Genetic and Epigenetic Alterations of Genomes, de Duve InstituteAvenue Hippocrate 751200 BrusselsBelgium
| | - Eric Defrancq
- Université Grenoble-Alpes (UGA), Département de Chimie Moléculaire, UMR CNRS 5250, CS 4070038058 GrenobleFrance
| | - Benjamin Elias
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST)Place Louis Pasteur 1, bte L4.01.02B-1348 Louvain-la-NeuveBelgium
| |
Collapse
|
10
|
Sakai N, Assies L, Matile S. G‐Quartets, 4‐Way Junctions and Triple Helices but Not DNA Duplexes: Planarization of Twisted Push‐Pull Flipper Probes by Surface Recognition Rather Than Physical Compression. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naomi Sakai
- University of Geneva: Universite de Geneve Department of Organic Chemistry SWITZERLAND
| | - Lea Assies
- University of Geneva: Universite de Geneve Department of Organic Chemistry SWITZERLAND
| | - Stefan Matile
- University of Geneva Department of Organic Chemistry Quai Ernest-Ansermet 30 CH-1211 Geneva SWITZERLAND
| |
Collapse
|
11
|
Castelli M, Doria F, Freccero M, Colombo G, Moroni E. Studying the Dynamics of a Complex G-Quadruplex System: Insights into the Comparison of MD and NMR Data. J Chem Theory Comput 2022; 18:4515-4528. [PMID: 35666124 PMCID: PMC9281369 DOI: 10.1021/acs.jctc.2c00291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Molecular dynamics
(MD) simulations are coming of age in the study
of nucleic acids, including specific tertiary structures such as G-quadruplexes.
While being precious for providing structural and dynamic information
inaccessible to experiments at the atomistic level of resolution,
MD simulations in this field may still be limited by several factors.
These include the force fields used, different models for ion parameters,
ionic strengths, and water models. We address various aspects of this
problem by analyzing and comparing microsecond-long atomistic simulations
of the G-quadruplex structure formed by the human immunodeficiency
virus long terminal repeat (HIV LTR)-III sequence for which nuclear
magnetic resonance (NMR) structures are available. The system is studied
in different conditions, systematically varying the ionic strengths,
ion numbers, and water models. We comparatively analyze the dynamic
behavior of the G-quadruplex motif in various conditions and assess
the ability of each simulation to satisfy the nuclear magnetic resonance
(NMR)-derived experimental constraints and structural parameters.
The conditions taking into account K+-ions to neutralize
the system charge, mimicking the intracellular ionic strength, and
using the four-atom water model are found to be the best in reproducing
the experimental NMR constraints and data. Our analysis also reveals
that in all of the simulated environments residues belonging to the
duplex moiety of HIV LTR-III exhibit the highest flexibility.
Collapse
Affiliation(s)
- Matteo Castelli
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy.,Institute of Chemical Sciences and Technologies SCITEC-CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| | - Elisabetta Moroni
- Institute of Chemical Sciences and Technologies SCITEC-CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| |
Collapse
|
12
|
Anjomshoa M, Amirheidari B. Nuclease-like metalloscissors: Biomimetic candidates for cancer and bacterial and viral infections therapy. Coord Chem Rev 2022; 458:214417. [PMID: 35153301 PMCID: PMC8816526 DOI: 10.1016/j.ccr.2022.214417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
Despite the extensive and rapid discovery of modern drugs for treatment of cancer, microbial infections, and viral illnesses; these diseases are still among major global health concerns. To take inspiration from natural nucleases and also the therapeutic potential of metallopeptide antibiotics such as the bleomycin family, artificial metallonucleases with the ability of promoting DNA/RNA cleavage and eventually affecting cellular biological processes can be introduced as a new class of therapeutic candidates. Metal complexes can be considered as one of the main categories of artificial metalloscissors, which can prompt nucleic acid strand scission. Accordingly, biologists, inorganic chemists, and medicinal inorganic chemists worldwide have been designing, synthesizing and evaluating the biological properties of metal complexes as artificial metalloscissors. In this review, we try to highlight the recent studies conducted on the nuclease-like metalloscissors and their potential therapeutic applications. Under the light of the concurrent Covid-19 pandemic, the human need for new therapeutics was highlighted much more than ever before. The nuclease-like metalloscissors with the potential of RNA cleavage of invading viral pathogens hence deserve prime attention.
Collapse
|
13
|
Xu L, Sai J, Xue D, Zhou L, Pei R, Liu A. Amplified Peroxidase-like Activity of Co 2+ Using 8-Hydroxyquinoline and Its Application for Ultrasensitive Colorimetric Detection of Clioquinol. Chem Asian J 2021; 16:3957-3962. [PMID: 34605211 DOI: 10.1002/asia.202100997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/21/2021] [Indexed: 01/25/2023]
Abstract
8-Hydroxyquinoline (8HQ) and its derivatives display diverse bioactivities and therapeutic potentials. In this study, we unveiled that 8HQ can boost the peroxidase-like activity of Co2+ in the presence of bicarbonate (HCO3 - ) in neutral pH at room temperature. With 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonate) (ABTS) as the substrate, the formed Co2+ /8HQ/HCO3 - complex shows robust catalytic activity with the turnover number (kcat ) tens to hundreds of times higher than that of Co3 O4 and other Co2+ complexes in terms of per cobalt ion. This system was used to design colorimetric sensors for ultrasensitive detection of 8HQ-based drugs by activating the activity of Co2+ . Take detecting clioquinol as an example, a detection limit of 2.4 nM clioquinol with a linear range from 0.01 to 0.2 μM was obtained. This work not only revealed a new kind of ligand that activated the activity of Co2+ , but also provided a facile, low-cost, ultrasensitive, easy-to-use, and universal strategy for sensing various 8HQ-based drugs. Further development of this catalytic system might be beneficial to overcome drug resistance by combined medication.
Collapse
Affiliation(s)
- Lijun Xu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Jialin Sai
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Dongguo Xue
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Lu Zhou
- Department of Medical Mycology, Shanghai Dermatology Hospital Affiliated to Tongji University, Shanghai, 200443, P. R. China
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| |
Collapse
|
14
|
Zhang J, Li H, Lin B, Luo X, Yin P, Yi T, Xue B, Zhang XL, Zhu H, Nie Z. Development of Near-Infrared Nucleic Acid Mimics of Fluorescent Proteins for In Vivo Imaging of Viral RNA with Turn-On Fluorescence. J Am Chem Soc 2021; 143:19317-19329. [PMID: 34762804 DOI: 10.1021/jacs.1c04577] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
GFP-like fluorescent proteins and their molecular mimics have revolutionized bioimaging research, but their emissions are largely limited in the visible to far-red region, hampering the in vivo applications in intact animals. Herein, we structurally modulate GFP-like chromophores using a donor-acceptor-acceptor (D-A-A') molecular configuration to discover a set of novel fluorogenic derivatives with infrared-shifted spectra. These chromophores can be fluorescently elicited by their specific interaction with G-quadruplex (G4), a unique noncanonical nucleic acid secondary structure, via inhibition of the chromophores' twisted-intramolecular charge transfer. This feature allows us to create, for the first time, FP mimics with tunable emission in the near-infrared (NIR) region (Emmax = 664-705 nm), namely, infrared G-quadruplex mimics of FPs (igMFP). Compared with their FP counterparts, igMFPs exhibit remarkably higher quantum yields, larger Stokes shift, and better photostability. In a proof-of-concept application using pathogen-related G4s as the target, we exploited igMFPs to directly visualize native hepatitis C virus (HCV) RNA genome in living cells via their in situ formation by the chromophore-bound viral G4 structure in the HCV core gene. Furthermore, igMFPs are capable of high contrast HCV RNA imaging in living mice bearing a HCV RNA-presenting mini-organ, providing the first application of FP mimics in whole-animal imaging.
Collapse
Affiliation(s)
- Jiaheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, People's Republic of China
| | - Bin Lin
- Pharmaceutical Engineering & Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xingyu Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Peng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Ting Yi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Binbin Xue
- Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, People's Republic of China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, School of Medicine, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, People's Republic of China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
15
|
Scalabrin M, Nadai M, Tassinari M, Lago S, Doria F, Frasson I, Freccero M, Richter SN. Selective Recognition of a Single HIV-1 G-Quadruplex by Ultrafast Small-Molecule Screening. Anal Chem 2021; 93:15243-15252. [PMID: 34762806 PMCID: PMC8613737 DOI: 10.1021/acs.analchem.0c04106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/18/2021] [Indexed: 12/05/2022]
Abstract
G-quadruplexes (G4s) are implicated in pathological processes such as cancer and infective diseases. Their targeting with G4-ligands has shown therapeutic capacity. Most of the current G4-ligands are planar molecules, do not discriminate among G4s, and have poor druglike properties. The available methods to identify compounds selective for one single G4 are often time-consuming. Here, we describe the development, validation, and application of an affinity-selection mass spectrometry method that employs unlabeled G4 oligonucleotides as targets and allows testing of up to 320 unmodified small molecules in a single tube. As a proof of concept, this method was applied to screen a library of 40 000 druglike molecules against two G4s, transcriptional regulators of the HIV-1 LTR promoter. We identified nonplanar pyrazolopyrimidines that selectively recognize and stabilize the major HIV-1 LTR G4 possibly by fitting and binding through H-bonding in its unique binding pocket. The compounds inhibit LTR promoter activity and HIV-1 replication. We propose this method to prompt the fast development of new G4-based therapeutics.
Collapse
Affiliation(s)
- Matteo Scalabrin
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Matteo Nadai
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Martina Tassinari
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Sara Lago
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Filippo Doria
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Frasson
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Mauro Freccero
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Sara N. Richter
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| |
Collapse
|
16
|
Selective Binding and Redox-Activity on Parallel G-Quadruplexes by Pegylated Naphthalene Diimide-Copper Complexes. Molecules 2021; 26:molecules26165025. [PMID: 34443620 PMCID: PMC8397950 DOI: 10.3390/molecules26165025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
G-quadruplexes (G4s) are higher-order supramolecular structures, biologically important in the regulation of many key processes. Among all, the recent discoveries relating to RNA-G4s, including their potential involvement as antiviral targets against COVID-19, have triggered the ever-increasing need to develop selective molecules able to interact with parallel G4s. Naphthalene diimides (NDIs) are widely exploited as G4 ligands, being able to induce and strongly stabilize these structures. Sometimes, a reversible NDI-G4 interaction is also associated with an irreversible one, due to the cleavage and/or modification of G4s by functional-NDIs. This is the case of NDI-Cu-DETA, a copper(II) complex able to cleave G4s in the closest proximity to the target binding site. Herein, we present two original Cu(II)-NDI complexes, inspired by NDI-Cu-DETA, differently functionalized with 2-(2-aminoethoxy)ethanol side-chains, to selectively drive redox-catalyzed activity towards parallel G4s. The selective interaction toward parallel G4 topology, controlled by the presence of 2-(2-aminoethoxy)ethanol side chains, was already firmly demonstrated by us using core-extended NDIs. In the present study, the presence of protonable moieties and the copper(II) cavity, increases the binding affinity and specificity of these two NDIs for a telomeric RNA-G4. Once defined the copper coordination relationship and binding constants by competition titrations, ability in G4 stabilization, and ROS-induced cleavage were analyzed. The propensity in the stabilization of parallel topology was highlighted for both of the new compounds HP2Cu and PE2Cu. The results obtained are particularly promising, paving the way for the development of new selective functional ligands for binding and destructuring parallel G4s.
Collapse
|
17
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
18
|
Palma E, Carvalho J, Cruz C, Paulo A. Metal-Based G-Quadruplex Binders for Cancer Theranostics. Pharmaceuticals (Basel) 2021; 14:605. [PMID: 34201682 PMCID: PMC8308583 DOI: 10.3390/ph14070605] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
The ability of fluorescent small molecules, such as metal complexes, to selectively recognize G-quadruplex (G4) structures has opened a route to develop new probes for the visualization of these DNA structures in cells. The main goal of this review is to update the most recent research efforts towards the development of novel cancer theranostic agents using this type of metal-based probes that specifically recognize G4 structures. This encompassed a comprehensive overview of the most significant progress in the field, namely based on complexes with Cu, Pt, and Ru that are among the most studied metals to obtain this class of molecules. It is also discussed the potential interest of obtaining G4-binders with medical radiometals (e.g., 99mTc, 111In, 64Cu, 195mPt) suitable for diagnostic and/or therapeutic applications within nuclear medicine modalities, in order to enable their theranostic potential.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal;
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal;
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
19
|
Wang Y, Li C, Hao X, Wang L, Ma X, Jin R, Kang C, Gao L. Hydrogen-bond-driven dimers of naphthyridine derivatives for selective identification of DNA G-quadruplexes. Org Biomol Chem 2021; 19:4768-4774. [PMID: 33978052 DOI: 10.1039/d1ob00651g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-quadruplex (GQ) ligands as potential anti-cancer drugs have received extensive attention. Large aromatic systems are usually considered in the design of the ligands to improve the binding with GQs, which are typically constructed by the combination of small modules with covalent bonds. In this study, we presented a non-covalent bond approach to construct GQ ligands with an extended planar structure. The ligands were stable dimers assembled through quadruplex intermolecular hydrogen bonds between two molecules of naphthyridine derivatives. Spectroscopic analyses showed that dimeric ligands could stabilize GQs with an increase of the melting temperature up to 12 °C and induced conformational conversion of hybrid GQs. Confocal fluorescence microscopy confirmed the enrichment of naphthyridine ligands in the nucleus. The ligands showed moderate cytotoxicity against HeLa cells with an IC50 value of 7.5 μg mL-1 and effectively induced growth inhibition and apoptosis in HeLa cells. These results confirmed the feasibility of the quick building of GQ ligands through intermolecular interactions of simple molecules that are easily obtained during synthesis, which is helpful for GQ ligand design and quick establishment of a ligand library through the self-assembly of easily available molecular components.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei 230026, China
| | - Chunjie Li
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xueyu Hao
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei 230026, China
| | - Liangpeng Wang
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xiaoye Ma
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Rizhe Jin
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Chuanqing Kang
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei 230026, China
| | - Lianxun Gao
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
20
|
Yu Z, Hendricks AL, Cowan JA. G-quadruplex targeting chemical nucleases as a nonperturbative tool for analysis of cellular G-quadruplex DNA. iScience 2021; 24:102661. [PMID: 34189433 PMCID: PMC8215219 DOI: 10.1016/j.isci.2021.102661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/04/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022] Open
Abstract
G-quadruplex structures are associated with various biological activities, while in vivo evidence is essential to confirm the formation of G-quadruplexes inside cells. Most conventional agents that recognize G-quadruplex, including antibodies and small-molecule G-quadruplex ligands, either stabilize the G-quadruplex or prevent G-quadruplex unfolding by helicase, thereby artificially increasing the G-quadruplex levels in cells. Unambiguous study of G-quadruplexes at natural cellular levels requires agents that do not enhance the stability of G-quadruplex. Herein, we report the first example of nonperturbative chemical nucleases that do not influence the stability of G-quadruplex telomeric DNA but can selectively cleave G-quadruplex DNA over duplex DNA. These chemical nucleases can be readily taken up by cells and promote selective cleavage of telomeric DNA with low levels of nonselective DNA cleavage of other regions of the genome. The cleavage of G-quadruplex telomeric DNA by nonperturbative chemical nucleases confirms the formation of G-quadruplex telomeric DNA in live cells. Novel chemical nucleases exhibit no effect on G-quadruplex telomeric DNA stability Selective nucleases cleave G-quadruplex DNA over duplex DNA Cleavage of G-quadruplex telomeric DNA motifs confirms their existence in cells
Collapse
Affiliation(s)
- Zhen Yu
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Amber L. Hendricks
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - James A. Cowan
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Corresponding author
| |
Collapse
|
21
|
Paul R, Dutta D, Das T, Debnath M, Dash J. G4 Sensing Pyridyl-Thiazole Polyamide Represses c-KIT Expression in Leukemia Cells. Chemistry 2021; 27:8590-8599. [PMID: 33851760 DOI: 10.1002/chem.202100907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 12/27/2022]
Abstract
Specific sensing and functional tuning of nucleic acid secondary structures remain less explored to date. Herein, we report a thiazole polyamide TPW that binds specifically to c-KIT1 G-quadruplex (G4) with sub-micromolar affinity and ∼1 : 1 stoichiometry and represses c-KIT proto-oncogene expression. TPW shows up to 10-fold increase in fluorescence upon binding with c-KIT1 G4, but shows weak or no quantifiable binding to other G4s and ds26 DNA. TPW can increase the number of G4-specific antibody (BG4) foci and mark G4 structures in cancer cells. Cell-based assays reveal that TPW can efficiently repress c-KIT expression in leukemia cells via a G4-dependent process. Thus, the polyamide can serve as a promising probe for G-quadruplex recognition with the ability to specifically alter c-KIT oncogene expression.
Collapse
Affiliation(s)
- Raj Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Debasish Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Tania Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Manish Debnath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| |
Collapse
|
22
|
Frasson I, Soldà P, Nadai M, Lago S, Richter SN. Parallel G-quadruplexes recruit the HSV-1 transcription factor ICP4 to promote viral transcription in herpes virus-infected human cells. Commun Biol 2021; 4:510. [PMID: 33931711 PMCID: PMC8087788 DOI: 10.1038/s42003-021-02035-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023] Open
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid structures abundant at gene promoters. They can adopt several distinctive conformations. G4s have been shown to form in the herpes simplex virus-1 (HSV-1) genome during its viral cycle. Here by cross-linking/pull-down assay we identified ICP4, the major HSV-1 transcription factor, as the protein that most efficiently interacts with viral G4s during infection. ICP4 specific and direct binding and unfolding of parallel G4s, including those present in HSV-1 immediate early gene promoters, induced transcription in vitro and in infected cells. This mechanism was also exploited by ICP4 to promote its own transcription. Proximity ligation assay allowed visualization of G4-protein interaction at the single selected G4 in cells. G4 ligands inhibited ICP4 binding to G4s. Our results indicate the existence of a well-defined G4-viral protein network that regulates the productive HSV-1 cycle. They also point to G4s as elements that recruit transcription factors to activate transcription in cells.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Paola Soldà
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sara Lago
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
23
|
Maiti BK, Govil N, Kundu T, Moura JJ. Designed Metal-ATCUN Derivatives: Redox- and Non-redox-Based Applications Relevant for Chemistry, Biology, and Medicine. iScience 2020; 23:101792. [PMID: 33294799 PMCID: PMC7701195 DOI: 10.1016/j.isci.2020.101792] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The designed "ATCUN" motif (amino-terminal copper and nickel binding site) is a replica of naturally occurring ATCUN site found in many proteins/peptides, and an attractive platform for multiple applications, which include nucleases, proteases, spectroscopic probes, imaging, and small molecule activation. ATCUN motifs are engineered at periphery by conjugation to recombinant proteins, peptides, fluorophores, or recognition domains through chemically or genetically, fulfilling the needs of various biological relevance and a wide range of practical usages. This chemistry has witnessed significant growth over the last few decades and several interesting ATCUN derivatives have been described. The redox role of the ATCUN moieties is also an important aspect to be considered. The redox potential of designed M-ATCUN derivatives is modulated by judicious choice of amino acid (including stereochemistry, charge, and position) that ultimately leads to the catalytic efficiency. In this context, a wide range of M-ATCUN derivatives have been designed purposefully for various redox- and non-redox-based applications, including spectroscopic probes, target-based catalytic metallodrugs, inhibition of amyloid-β toxicity, and telomere shortening, enzyme inactivation, biomolecules stitching or modification, next-generation antibiotic, and small molecule activation.
Collapse
Affiliation(s)
- Biplab K. Maiti
- National Institute of Technology Sikkim, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India
| | - Nidhi Govil
- National Institute of Technology Sikkim, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India
| | - Taraknath Kundu
- National Institute of Technology Sikkim, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India
| | - José J.G. Moura
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
24
|
Sun Y, Zhao C, Cui T, Qin H, Niu J, Ren J, Qu X. Near-infrared-traceable DNA nano-hydrolase: specific eradication of telomeric G-overhang in vivo. Nucleic Acids Res 2020; 48:9986-9994. [PMID: 32853337 PMCID: PMC7515709 DOI: 10.1093/nar/gkaa693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023] Open
Abstract
Telomeric DNA, whose length homeostasis is closely correlated with immortality of cancer cells, is regarded as a molecular clock for cellular lifespan. Regarding the capacity in forming G-quadruplex, G-rich 3′-overhang (G-overhang) has been considered as an attractive anticancer target. However, it is still challenging to precisely target telomeric G-overhang with current ligands because of the polymorphism of G-quadruplexes in cells. Herein, we construct a telomeric G-overhang-specific near-infrared-traceable DNA nano-hydrolase, which is composed of four parts: (i) dexamethasone for targeting cell nuclei; (ii) complementary DNA for hybridizing with G-overhang; (iii) multinuclear Ce(IV) complexes for hydrolyzing G-overhang; and (iv) upconversion nanoparticles for real-time tracking. The multivalent targeted DNA nano-hydrolase can be traced to precisely digest telomeric G-overhang, which contributes to telomeric DNA shortening and thereby causes cell aging and apoptosis. The anticancer treatment is further proved by in vivo studies. In this way, this design provides a telomeric G-overhang-specific eradication strategy based on a non-G-quadruplex targeting manner.
Collapse
Affiliation(s)
- Yuhuan Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongshuang Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jingsheng Niu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
25
|
Zhirov AM, Kovalev DA, Ulshina DV, Pisarenko SV, Demidov OP, Borovlev IV. Diazapyrenes: interaction with nucleic acids and biological activity. Chem Heterocycl Compd (N Y) 2020; 56:674-693. [PMID: 32836316 PMCID: PMC7366485 DOI: 10.1007/s10593-020-02717-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
The review summarizes data on the practical aspects of the interaction of nucleic acids with diazapyrene derivatives. The information on biological activity is given and the probable mechanisms underlying the action of diazapyrenes are analyzed. It contains 119 references.
Collapse
Affiliation(s)
- Andrey M. Zhirov
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya St, Stavropol, 355035 Russia
| | - Dmitry A. Kovalev
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya St, Stavropol, 355035 Russia
| | - Diana V. Ulshina
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya St, Stavropol, 355035 Russia
| | - Sergey V. Pisarenko
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya St, Stavropol, 355035 Russia
| | - Oleg P. Demidov
- North Caucasus Federal University, 1a Pushkina St, Stavropol, 355017 Russia
| | - Ivan V. Borovlev
- North Caucasus Federal University, 1a Pushkina St, Stavropol, 355017 Russia
| |
Collapse
|
26
|
Affiliation(s)
- Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
27
|
Ruggiero E, Richter SN. Viral G-quadruplexes: New frontiers in virus pathogenesis and antiviral therapy. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020; 54:101-131. [PMID: 32427223 PMCID: PMC7233243 DOI: 10.1016/bs.armc.2020.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viruses are the most abundant organisms on our planet, affecting all living beings: some of them are responsible for massive epidemics that concern health, national economies and the overall welfare of societies. Although advances in antiviral research have led to successful therapies against several human viruses, still some of them cannot be eradicated from the host and most of them do not have any treatment available. Consequently, innovative antiviral therapies are urgently needed. In the past few years, research on G-quadruplexes (G4s) in viruses has boomed, providing powerful evidence for the regulatory role of G4s in key viral steps. Comprehensive bioinformatics analyses have traced putative G4-forming sequences in the genome of almost all human viruses, showing that their distribution is statistically significant and their presence highly conserved. Since the genomes of viruses are remarkably variable, high conservation rates strongly suggest a crucial role of G4s in the viral replication cycle and evolution, emphasizing the possibility of targeting viral G4s as a new pharmacological approach in antiviral therapy. Recent studies have demonstrated the formation and function of G4s in pathogens responsible for serious diseases, such as HIV-1, Hepatitis B and C, Ebola viruses, to cite a few. In this chapter, we present the state of the art on the structural and functional characterization of viral G4s in RNA viruses, DNA viruses and retroviruses. We also present the G4 ligands that provide further details on the viral G4 role and which, showing promising antiviral activity, which could be exploited for the development of innovative antiviral agents.
Collapse
Affiliation(s)
| | - Sara N. Richter
- Department of Molecular Medicine, University of Padua, Padua, Italy
| |
Collapse
|
28
|
Kench T, Vilar R. Metal complexes as G-quadruplex binders. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020. [DOI: 10.1016/bs.armc.2020.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Shukla J, Mukhopadhyay P. Synthesis of Functionalized Naphthalene Diimides and their Redox Properties. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901390] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jyoti Shukla
- School of Physical Sciences; Jawaharlal Nehru University; New Delhi India
| | | |
Collapse
|
30
|
Praikaew P, Maniam S, Charoenpanich A, Sirirak J, Promarak V, Langford SJ, Wanichacheva N. Water-soluble Cu2+-fluorescent sensor based on core-substituted naphthalene diimide and its application in drinking water analysis and live cell imaging. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
O'Hagan MP, Morales JC, Galan MC. Binding and Beyond: What Else Can G-Quadruplex Ligands Do? European J Org Chem 2019. [DOI: 10.1002/ejoc.201900692] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Juan C. Morales
- Instituto de Parasitología y Biomedicina “López Neyra”; Consejo Superior de Investigaciones Científicas (CSIC); PTS Granada; Avenida del Conocimiento 17 18016 Armilla, Granada Spain
| | - M. Carmen Galan
- School of Chemistry; University of Bristol; Cantock's Close BS8 1TS UK
| |
Collapse
|
32
|
Importance of Chiral Recognition in Designing Metal-Free Ligands for G-Quadruplex DNA. Molecules 2019; 24:molecules24081473. [PMID: 30991655 PMCID: PMC6514905 DOI: 10.3390/molecules24081473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/26/2023] Open
Abstract
Four pairs of amino acid-functionalized naphthalenediimide enantiomers (d- and l-lysine derived NDIs) were screened toward G-quadruplex forming sequences in telomeres (h-TELO) and oncogene promoters: c-KIT1, c-KIT2, k-RAS and BCL-2. This is the first study to address the effect of point chirality toward G-quadruplex DNA stabilization using purely small organic molecules. Enantioselective behavior toward the majority of ligands was observed, particularly in the case of parallel conformations of c-KIT2 and k-RAS. Additionally, Nε-Boc-l-Lys-NDI and Nε-Boc-d-Lys-NDI discriminate between quadruplexes with parallel and hybrid topologies, which has not previously been observed with enantiomeric ligands.
Collapse
|
33
|
Downregulation of c-Myc and p21 expression and induction of S phase arrest by naphthalene diimide derivative in gastric adenocarcinoma cells. Chem Biol Interact 2019; 304:106-123. [PMID: 30840857 DOI: 10.1016/j.cbi.2019.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/23/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Naphthalene diimide (NDI) derivatives have been shown to exhibit promising antineoplastic properties. In the current study, we assessed the anticancer and anti-bacterial properties of di-substituted NDI derivative. The naphthalene-bis-hydrazimide, 1, negatively affected the cell viability of three cancer cell lines (AGS, HeLa and PC3) and induced S phase cell cycle arrest along with SubG0/G1 accumulation. Amongst three cell lines, gastric cancer cell line, AGS, showed the highest sensitivity towards the NDI derivative 1. Compound 1 induced extensive DNA double strand breaks causing p53 activation leading to transcription of p53 target gene p21 in AGS cells. Reduction in protein levels of p21 and BRCA1 suggested that 1 treated AGS cells underwent cell death due to accumulation of DNA damage as a result of impaired DNA damage repair. β-catenin downregulation and consequently decrease in levels of c-Myc may have led to 1 induced AGS cell proliferation inhibition.1 induced AGS cell S phase arrest was mediated through CylinA/CDK2 downregulation. The possible mechanisms involved in anticancer activity of 1 includes ROS upregulation, induction of DNA damage, disruption of mitochondrial membrane potential causing ATP depletion, inhibition of cell proliferation and downregulation of antiapoptotic factors ultimately leading to mitochondria mediated apoptosis. Further compound 1 also inhibited H. pylori proliferation as well as H. pylori induced morphological changes in AGS cells. These findings suggest that NDI derivative 1 exhibits two-pronged anticancer activity, one by directly inhibiting cancer cell growth and inducing apoptosis and the other by inhibiting H. pylori.
Collapse
|
34
|
Naphthalene Diimides as Multimodal G-Quadruplex-Selective Ligands. Molecules 2019; 24:molecules24030426. [PMID: 30682828 PMCID: PMC6384834 DOI: 10.3390/molecules24030426] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 02/03/2023] Open
Abstract
G-quadruplexes are four-stranded nucleic acids structures that can form in guanine-rich sequences. Following the observation that G-quadruplexes are particularly abundant in genomic regions related to cancer, such as telomeres and oncogenes promoters, several G-quadruplex-binding molecules have been developed for therapeutic purposes. Among them, naphthalene diimide derivatives have reported versatility, consistent selectivity and high affinity toward the G-quadruplex structures. In this review, we present the chemical features, synthesis and peculiar optoelectronic properties (absorption, emission, redox) that make naphtalene diimides so versatile for biomedical applications. We present the latest developments on naphthalene diimides as G-quadruplex ligands, focusing on their ability to bind G-quadruplexes at telomeres and oncogene promoters with consequent anticancer activity. Their different binding modes (reversible versus irreversible/covalent) towards G-quadruplexes and their additional use as antimicrobial agents are also presented and discussed.
Collapse
|
35
|
Butovskaya E, Heddi B, Bakalar B, Richter SN, Phan AT. Major G-Quadruplex Form of HIV-1 LTR Reveals a (3 + 1) Folding Topology Containing a Stem-Loop. J Am Chem Soc 2018; 140:13654-13662. [PMID: 30299955 PMCID: PMC6202629 DOI: 10.1021/jacs.8b05332] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Nucleic
acids can form noncanonical four-stranded structures called
G-quadruplexes. G-quadruplex-forming sequences are found in several
genomes including human and viruses. Previous studies showed that
the G-rich sequence located in the U3 promoter region of the HIV-1
long terminal repeat (LTR) folds into a set of dynamically interchangeable
G-quadruplex structures. G-quadruplexes formed in the LTR could act
as silencer elements to regulate viral transcription. Stabilization
of LTR G-quadruplexes by G-quadruplex-specific ligands resulted in
decreased viral production, suggesting the possibility of targeting
viral G-quadruplex structures for antiviral purposes. Among all the
G-quadruplexes formed in the LTR sequence, LTR-III was shown to be the major G-quadruplex conformation in vitro. Here we report the NMR structure of LTR-III in K+ solution, revealing the formation of a unique quadruplex–duplex
hybrid consisting of a three-layer (3 + 1) G-quadruplex scaffold,
a 12-nt diagonal loop containing a conserved duplex-stem, a 3-nt lateral
loop, a 1-nt propeller loop, and a V-shaped loop. Our structure showed
several distinct features including a quadruplex–duplex junction,
representing an attractive motif for drug targeting. The structure
solved in this study may be used as a promising target to selectively
impair the viral cycle.
Collapse
Affiliation(s)
- Elena Butovskaya
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore.,Department of Molecular Medicine , University of Padua , Padua 35121 , Italy
| | - Brahim Heddi
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore.,Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, École Normale Supérieure Paris-Saclay , Cachan 94235 , France
| | - Blaž Bakalar
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Sara N Richter
- Department of Molecular Medicine , University of Padua , Padua 35121 , Italy
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| |
Collapse
|