1
|
Yang YC, Li WS, Wu HL. Rhodium(I)-Catalyzed Asymmetric Cascade Reactions. CHEM REC 2025; 25:e202400231. [PMID: 40051168 DOI: 10.1002/tcr.202400231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/12/2025] [Indexed: 04/13/2025]
Abstract
Rhodium(I)-catalyzed asymmetric cascade reactions have emerged as powerful tools in contemporary organic synthesis, enabling efficient construction of complex molecular architectures. These transformations proceed through organorhodium intermediates, which undergo additions to reactive π-bonds, subsequently triggering cascade reactions with neighboring functional groups to effectively forge multiple carbon-carbon bonds and stereogenic centers in a single step under mild conditions. This article reviews the pioneering developments and recent breakthroughs from 2002 to 2024, highlighting the attractive advantages of rhodium(I)-catalyzed asymmetric cascade reactions and their profound impacts on synthetic organic chemistry.
Collapse
Affiliation(s)
- Yu-Chu Yang
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| | - Wei-Sian Li
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| |
Collapse
|
2
|
Yu S, Zhou L, Ye S, Tong X. Domino Sequences Involving Stereoselective Hydrazone-Type Heck Reaction and Denitrogenative [1,5]-Sigmatropic Rearrangement. J Am Chem Soc 2023; 145:7621-7627. [PMID: 36972519 DOI: 10.1021/jacs.3c01075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Although the Heck reactions of alkene partners with various electrophiles have achieved great success, the variant focused on carbon═heteroatom counterparts still remains elusive. Herein, we report a Pd(0)-catalyzed asymmetric intramolecular hydrazone-type Heck reaction of N-[(Z)-3-iodoallyl]-aminoacetaldehyde and hydrazine hydrate (NH2NH2-H2O), wherein the required hydrazone is in situ generated via an acid-promoted condensation. A key strategic advantage of this Heck paradigm is that the resultant Heck product allylic diazene rapidly undergoes stereospecific denitrogenative [1,5]-sigmatropic rearrangement, eventually furnishing a domino sequence toward 3-substituted tetrahydropyridine (THP) with high enantioselectivity. The substrate-induced diastereoselective version has also been realized, exclusively giving cis-2,5-disubstituted THPs. The utility of this sequence is demonstrated by the formal synthesis of multiple valuable bioactive targets, including 3-ethylindoloquinolizine, preclamol, and niraparib.
Collapse
Affiliation(s)
- Shuling Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Lijin Zhou
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Sihan Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000, China
| |
Collapse
|
3
|
Maurya RK, Bhukta S, Kishor K, Chatterjee R, Burra AG, Khatravath M, Dandela R. Recent progress towards transition-metal-catalyzed arylative cyclization/annulation reactions with boronic acids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Abstract
Asymmetric catalysis has emerged as a general and powerful approach for constructing chiral compounds in an enantioselective manner. Hence, developing novel chiral ligands and catalysts that can effectively induce asymmetry in reactions is crucial in modern chemical synthesis. Among such chiral ligands and catalysts, chiral dienes and their metal complexes have received increased attention, and a great progress has been made over the past two decades. This review provides comprehensive and critical information on the essential aspects of chiral diene ligands and their importance in asymmetric catalysis. The literature covered ranges from August 2003 (when the first effective chiral diene ligand for asymmetric catalysis was reported) to October 2021. This review is divided into two parts. In the first part, the chiral diene ligands are categorized according to their structures, and their preparation methods are summarized. In the second part, their applications in asymmetric transformations are presented according to the reaction types.
Collapse
Affiliation(s)
- Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tamio Hayashi
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
5
|
Gillbard SM, Lam HW. Nickel-Catalyzed Arylative Cyclizations of Alkyne- and Allene-Tethered Electrophiles using Arylboron Reagents. Chemistry 2022; 28:e202104230. [PMID: 34986277 PMCID: PMC9302687 DOI: 10.1002/chem.202104230] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/14/2022]
Abstract
The use of arylboron reagents in metal‐catalyzed domino addition–cyclization reactions is a well‐established strategy for the preparation of diverse, highly functionalized carbo‐ and heterocyclic products. Although rhodium‐ and palladium‐based catalysts have been commonly used for these reactions, more recent work has demonstrated nickel catalysis is also highly effective, in many cases offering unique reactivity and access to products that might otherwise not be readily available. This review gives an overview of nickel‐catalyzed arylative cyclizations of alkyne‐ and allene‐tethered electrophiles using arylboron reagents. The scope of the reactions is discussed in detail, and general mechanistic concepts underpinning the processes are described.
Collapse
Affiliation(s)
- Simone M Gillbard
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, NG7 2TU, Nottingham, UK.,School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, NG7 2TU, Nottingham, UK.,School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
6
|
Kim H, Choi K, Jang D, Um HS, Kim Y, Lee C. Rhodium‐Catalyzed Tandem Addition‐Cyclization of 1,5‐Enynes with Organoboronic Acids for the Synthesis of Alkylidene‐Cyclobutanes. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyeji Kim
- Seoul National University Department of Chemistry KOREA, REPUBLIC OF
| | - Kyoungmin Choi
- Seoul National University Department of Chemistry KOREA, REPUBLIC OF
| | - Dongseok Jang
- Seoul National University Department of Chemistry KOREA, REPUBLIC OF
| | - Hyun-Suk Um
- Seoul National University Department of Chemistry KOREA, REPUBLIC OF
| | - Yeehwan Kim
- Seoul National University Department of Chemistry KOREA, REPUBLIC OF
| | - Chulbom Lee
- Seoul National University Department of Chemistry 1 Gwanak-ro, Gwanak-gu 08826 Seoul KOREA, REPUBLIC OF
| |
Collapse
|
7
|
Xu W, Brown LE, Porco JA. Divergent, C-C Bond Forming Macrocyclizations Using Modular Sulfonylhydrazone and Derived Substrates. J Org Chem 2021; 86:16485-16510. [PMID: 34730970 PMCID: PMC8783553 DOI: 10.1021/acs.joc.1c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A divergent approach to C-C bond forming macrocycle construction is described. Modular sulfonylhydrazone and derived pyridotriazole substrates with three key building blocks have been constructed and cyclized to afford diverse macrocyclic frameworks. Broad substrate scope and functional group tolerance have been demonstrated. In addition, site-selective postfunctionalization allowed for further diversification of macrocyclic cores.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
8
|
Yuan SY, Yan QQ, Wang D, Dan TT, He L, He CY, Chu WD, Liu QZ. Asymmetric Synthesis of 3-Methyleneindolines via Rhodium(I)-Catalyzed Alkynylative Cyclization of N-( o-Alkynylaryl)imines. Org Lett 2021; 23:4823-4827. [PMID: 34080868 DOI: 10.1021/acs.orglett.1c01518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first asymmetric synthesis of 3-methyleneindolines from alkynyl imines has been developed via a rhodium-catalyzed tandem process: regioselective alkynylation of the internal alkynes and subsequent intramolecular addition to the imines. The reaction proceeded with unconventional chemoselectivity and provided 3-methyleneindolines with good yields (up to 82% yield) and high enantioselectivities (up to 97% ee). Moreover, this transformation also features mild reaction conditions, perfect atom economy, and a broad substrate scope.
Collapse
Affiliation(s)
- Shi-Yi Yuan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Qi-Qi Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Dan Wang
- Chengdu Institute of Product Quality Inspection Co., Ltd., Chengdu 610000,China
| | - Ting-Ting Dan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Long He
- College of Chemistry and Materials Engineering, Guiyang University, Guiyang 550005, China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| |
Collapse
|
9
|
Corpas J, Mauleón P, Arrayás RG, Carretero JC. Transition-Metal-Catalyzed Functionalization of Alkynes with Organoboron Reagents: New Trends, Mechanistic Insights, and Applications. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01421] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Pablo Mauleón
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Juan C. Carretero
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Gómez‐Martínez M, del Carmen Pérez‐Aguilar M, Piekarski DG, Daniliuc CG, García Mancheño O. N,N-Dialkylhydrazones as Versatile Umpolung Reagents in Enantioselective Anion-Binding Catalysis. Angew Chem Int Ed Engl 2021; 60:5102-5107. [PMID: 33306858 PMCID: PMC7986925 DOI: 10.1002/anie.202013380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Indexed: 12/31/2022]
Abstract
An enantioselective anion-binding organocatalytic approach with versatile N,N-dialkylhydrazones (DAHs) as polarity-reversed (umpolung) nucleophiles is presented. For the application of this concept, a highly ordered hydrogen-bond (HB) network between a carefully selected CF3 -substituted triazole-based multidentate HB-donor catalyst, the ionic substrate and the hydrazone in a supramolecular chiral ion-pair complex was envisioned. The formation of such a network was further supported by both experimental and computational studies, which showed the crucial role of the anion as a template unit. The asymmetric Reissert-type reaction of quinolines as a model test reaction chemoselectively delivered highly enantiomerically enriched hydrazones (up 95:5 e.r.) that could be further derivatized to value-added compounds with up to three stereocenters.
Collapse
Affiliation(s)
| | | | - Dariusz G. Piekarski
- Organic Chemistry InstituteMünster UniversityCorrensstrasse 36MünsterGermany
- Current affiliation: Institute of Physical ChemistryPolish Academy of SciencesKasprzaka 44/52, 01-224WarsawPoland
| | | | | |
Collapse
|
11
|
Gómez‐Martínez M, Carmen Pérez‐Aguilar M, Piekarski DG, Daniliuc CG, García Mancheño O. N
,
N
‐Dialkylhydrazones as Versatile Umpolung Reagents in Enantioselective Anion‐Binding Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | - Dariusz G. Piekarski
- Organic Chemistry Institute Münster University Corrensstrasse 36 Münster Germany
- Current affiliation: Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw Poland
| | | | - Olga García Mancheño
- Organic Chemistry Institute Münster University Corrensstrasse 36 Münster Germany
| |
Collapse
|
12
|
Kirchhof M, Gugeler K, Fischer FR, Nowakowski M, Bauer A, Alvarez-Barcia S, Abitaev K, Schnierle M, Qawasmi Y, Frey W, Baro A, Estes DP, Sottmann T, Ringenberg MR, Plietker B, Bauer M, Kästner J, Laschat S. Experimental and Theoretical Study on the Role of Monomeric vs Dimeric Rhodium Oxazolidinone Norbornadiene Complexes in Catalytic Asymmetric 1,2- and 1,4-Additions. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Manuel Kirchhof
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Katrin Gugeler
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Felix Richard Fischer
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Michal Nowakowski
- Department Chemie und Center for Sustainable Systems Design (CSSD), Universität Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Alina Bauer
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Sonia Alvarez-Barcia
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Karina Abitaev
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Marc Schnierle
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Yaseen Qawasmi
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Wolfgang Frey
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Angelika Baro
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Deven P. Estes
- Institut für Technische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Thomas Sottmann
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Mark R. Ringenberg
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Bernd Plietker
- Technische Universität Dresden, Professur für Organische Chemie I, Bergstraße 66, D-01069 Dresden, Germany
| | - Matthias Bauer
- Department Chemie und Center for Sustainable Systems Design (CSSD), Universität Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Johannes Kästner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
13
|
Wang HR, Huang EH, Luo C, Luo WF, Xu Y, Qian PC, Zhou JM, Ye LW. Copper-catalyzed tandem cis-carbometallation/cyclization of imine-ynamides with arylboronic acids. Chem Commun (Camb) 2020; 56:4832-4835. [PMID: 32236203 DOI: 10.1039/d0cc01424a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An efficient copper-catalyzed tandem regioselective cis-carbometallation/cyclization of imine-ynamides with arylboronic acids has been developed. This method leads to a facile and practical synthesis of valuable 2,3-disubstituted indolines in moderate to excellent yields and features a broad substrate scope and wide functional group tolerance. Other significant features of this protocol include the use of readily available starting materials, high flexibility, simple procedure and mild reaction conditions.
Collapse
Affiliation(s)
- Hao-Ran Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Yang X, Kalita SJ, Maheshuni S, Huang YY. Recent advances on transition-metal-catalyzed asymmetric tandem reactions with organoboron reagents. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Activation, Deactivation and Reversibility Phenomena in Homogeneous Catalysis: A Showcase based on the Chemistry of Rhodium/Phosphine Catalysts. Catalysts 2019. [DOI: 10.3390/catal9070582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the present work, the rich chemistry of rhodium/phosphine complexes, which are applied as homogeneous catalysts to promote a wide range of chemical transformations, has been used to showcase how the in situ generation of precatalysts, the conversion of precatalysts into the actually active species, as well as the reaction of the catalyst itself with other components in the reaction medium (substrates, solvents, additives) can lead to a number of deactivation phenomena and thus impact the efficiency of a catalytic process. Such phenomena may go unnoticed or may be overlooked, thus preventing the full understanding of the catalytic process which is a prerequisite for its optimization. Based on recent findings both from others and the authors’ laboratory concerning the chemistry of rhodium/diphosphine complexes, some guidelines are provided for the optimal generation of the catalytic active species from a suitable rhodium precursor and the diphosphine of interest; for the choice of the best solvent to prevent aggregation of coordinatively unsaturated metal fragments and sequestration of the active metal through too strong metal–solvent interactions; for preventing catalyst poisoning due to irreversible reaction with the product of the catalytic process or impurities present in the substrate.
Collapse
|
17
|
Selmani A, Darses S. Access to chiral cyano-containing five-membered rings through enantioconvergent rhodium-catalyzed cascade cyclization of a diastereoisomeric E/Z mixture of 1,6-enynes. Org Chem Front 2019. [DOI: 10.1039/c9qo01264h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In contrast to the intermolecular rhodium-catalyzed asymmetric 1,4-addition of organometallic reagents to activated alkenes, the asymmetric arylative cyclization of a diastereoisomeric E/Z mixture of 1,6-enynes afforded only one major enantiomer.
Collapse
Affiliation(s)
- Aymane Selmani
- CNRS
- Institute of Chemistry for Life and Health Sciences (i-CLeHS)
- PSL Université Paris
- Chimie ParisTech
- Paris
| | - Sylvain Darses
- CNRS
- Institute of Chemistry for Life and Health Sciences (i-CLeHS)
- PSL Université Paris
- Chimie ParisTech
- Paris
| |
Collapse
|