1
|
Sharangi S, Chakraborty B, Jha RK, Mandal S, Koner AL, Kumar S. Regio- and diastereoselective synthesis of cyclobutylated phenothiazines via [2 + 2] photocycloaddition: demonstrating wavelength-gated cycloreversion inside live cells. Chem Sci 2025; 16:709-720. [PMID: 39677936 PMCID: PMC11639539 DOI: 10.1039/d4sc07817a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
Herein, we unveiled a regio- and diastereoselective synthesis of cyclobutylated phenothiazines, a unique class of structural congeners of phenothiazines via visible-light-irradiated intermolecular [2 + 2]-cycloaddition reaction, from readily available naphthoquinones, 2-aminothiophenols, and styrenes, either in a two-step or three-component coupling process. By varying substitutions in all three coupling partners, a library of cyclobutylated phenothiazines, including late-stage derivatization with five commercial drugs, has been realized with up to 97% isolated yield. In contrast to the reported pathways, the developed [2 + 2]-photocycloaddition seems to proceed via a 'photoinduced-electron-transfer' (PET) mechanism, which is well corroborated with the experimental observations, Rehm-Weller equation, and computation studies. Delightfully, a wavelength-gated reversibility of the [2 + 2]-photocycloaddition reaction has been accomplished on the synthesized cyclobutylated phenothiazines. By monitoring the rate of the cycloreversion reactions for different derivatives, a structure-activity relationship has also been achieved. Interestingly, this phenomenon was further replicated inside living cells, which leads to turn-on emission and is applied for photoresponsive cell imaging. This marks the first report of a light-triggered [2 + 2]-cycloreversion phenomenon occurring inside a live cell, leading to cell imaging. Moreover, the synthesized drug derivatives were utilized for synchronous cell imaging as well as drug delivery through the developed [2 + 2]-photocycloreversion process, which demonstrated the potential applicability of this class of molecules.
Collapse
Affiliation(s)
- Sanhati Sharangi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Academic Building - 2, Bhopal By-pass Road, Bhauri Bhopal-462066 India
| | - Barsha Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Academic Building - 2, Bhopal By-pass Road, Bhauri Bhopal-462066 India
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Academic Building - 2, Bhopal By-pass Road, Bhauri Bhopal-462066 India
| | - Swarnadeep Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Academic Building - 2, Bhopal By-pass Road, Bhauri Bhopal-462066 India
| | - Apurba Lal Koner
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Academic Building - 2, Bhopal By-pass Road, Bhauri Bhopal-462066 India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Academic Building - 2, Bhopal By-pass Road, Bhauri Bhopal-462066 India
| |
Collapse
|
2
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
3
|
Zeng LY, Qu PZ, Tao M, Pu G, Jia J, Wang P, Shang M, Li X, He CY. Synthesis of Alkylated Polyfluorobenzenes through Decarboxylative Giese Addition of Aliphatic N-Hydroxyphthalimide Esters with Polyfluorostyrene. J Org Chem 2023; 88:14105-14114. [PMID: 37708081 DOI: 10.1021/acs.joc.3c01672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Polyfluoroaromatic compounds play crucial roles in medicinal and material science. However, the synthesis of alkylated polyfluoroarenes has been relatively underdeveloped. In this study, we devised a novel decarboxylative coupling reaction between aliphatic N-hydroxyphthalimide esters and polyfluorostyrene, leveraging the photochemical activity of electron donor-acceptor (EDA) complexes. This method offers simple reaction conditions, a broad substrate scope, and excellent functional group tolerance. Furthermore, we have demonstrated the practicality of this protocol through late-stage polyfluoroaryl modification of biologically active molecules using readily available carboxylic acids as starting materials, thus providing an important supplement to the current toolbox for accessing alkylated polyfluoroaryl motifs.
Collapse
Affiliation(s)
- Lin-Yuan Zeng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Pei-Zhen Qu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Maoling Tao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guoliang Pu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jia Jia
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Maocai Shang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xuefei Li
- Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai 201807, P.R. China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P.R. China
| |
Collapse
|
4
|
Liao MH, Zhang M, Hu DH, Zhang RH, Zhao Y, Liu SS, Li YX, Xiao WL, Tang E. Controlling the selectivity of an intramolecular Friedel-Crafts alkylation with alkenes using selenium under mild conditions. Org Biomol Chem 2020; 18:4034-4045. [PMID: 32191248 DOI: 10.1039/d0ob00257g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficiently divergent intramolecular Friedel-Crafts alkylation by unactivated alkenes with seleniranium ion-controlled Markovnikov/anti-Markovnikov specificities under mild conditions has been investigated. 2-Benzoxepin, isochroman, and isochromene can be produced in one-pot procedures from the same substrate in high yields and with high regio- and stereospecificity. The products are challenging to access via 7-endo-trig carbocyclizations and by 7-endo-trig carbocyclization/rearrangement/6-exo-trig oxycyclization and 6-exo-trig carbocyclization/deselenenylation reaction sequences, respectively. Mechanistic experiments indicated that in addition to the stereospecific anti-addition processes of the cyclization reactions, the formation of a stable carbocation after ring opening of the seleniranium ion leads to an NPSP-mediated 7-endo-trig carbocyclization; the steric hindrance of the seleniranium intermediate controls the regioselectivity when using TPSCA at 60 °C, which promotes 6-exo-trig carbocyclization. Two distinct catalytic cycles were proposed, and the structures of transition states and products were identified by ab initio calculations and X-ray analyses.
Collapse
Affiliation(s)
- Ming-Hong Liao
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 China.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hachem M, Schneider C, Hoarau C. Direct Stereoselective β-Arylation of Enol Ethers by a Decarboxylative Heck-Type Reaction. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mahmoud Hachem
- INSA Rouen, CNRS, COBRA (UMR 6014); Normandie Univ, UNIROUEN; 1 rue Tesnière 76 821 Mont-Saint-Aignan Cedex France
| | - Cédric Schneider
- INSA Rouen, CNRS, COBRA (UMR 6014); Normandie Univ, UNIROUEN; 1 rue Tesnière 76 821 Mont-Saint-Aignan Cedex France
| | - Christophe Hoarau
- INSA Rouen, CNRS, COBRA (UMR 6014); Normandie Univ, UNIROUEN; 1 rue Tesnière 76 821 Mont-Saint-Aignan Cedex France
| |
Collapse
|
6
|
Smith AJ, Dimitrova D, Arokianathar JN, Kolodziejczak K, Young A, Allison M, Poole DL, Leach SG, Parkinson JA, Tuttle T, Murphy JA. New reductive rearrangement of N-arylindoles triggered by the Grubbs-Stoltz reagent Et 3SiH/KO t Bu. Chem Sci 2020; 11:3719-3726. [PMID: 34094060 PMCID: PMC8152433 DOI: 10.1039/d0sc00361a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
N-Arylindoles are transformed into dihydroacridines in a new type of rearrangement, through heating with triethylsilane and potassium tert-butoxide. Studies indicate that the pathway involves (i) the formation of indole radical anions followed by fragmentation of the indole C2–N bond, and (ii) a ring-closing reaction that follows a potassium-ion dependent hydrogen atom transfer step. Unexpected behaviors of ‘radical-trap’ substrates prove very helpful in framing the proposed mechanism. N-Arylindoles are transformed into dihydroacridines in a new type of rearrangement, through heating with triethylsilane and potassium tert-butoxide.![]()
Collapse
Affiliation(s)
- Andrew J Smith
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Daniela Dimitrova
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Jude N Arokianathar
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Krystian Kolodziejczak
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Allan Young
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Mark Allison
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Darren L Poole
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road, Stevenage SG1 2NY UK
| | - Stuart G Leach
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road, Stevenage SG1 2NY UK
| | - John A Parkinson
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Tell Tuttle
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| |
Collapse
|
7
|
Jiang H, Seidler G, Studer A. Carboamination of Unactivated Alkenes through Three-Component Radical Conjugate Addition. Angew Chem Int Ed Engl 2019; 58:16528-16532. [PMID: 31529676 PMCID: PMC6900080 DOI: 10.1002/anie.201910926] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 01/24/2023]
Abstract
Two-component Giese type radical additions are highly practical and established reactions. Herein, three-component radical conjugate additions of unactivated alkenes to Michael acceptors are reported. Amidyl radicals, oxidatively generated from α-amido oxy acids using redox catalysis, act as the third reaction component which add to the unactivated alkenes. The adduct radicals engage in Giese type additions to Michael acceptors to provide, after reduction, the three-component products in an overall alkene carboamination reaction. Transformations which can be conducted under practical mild conditions feature high functional group tolerance and broad substrate scope.
Collapse
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraß 4048149MünsterGermany
| | - Gesa Seidler
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraß 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraß 4048149MünsterGermany
| |
Collapse
|
8
|
Jiang H, Seidler G, Studer A. Carboamination of Unactivated Alkenes through Three‐Component Radical Conjugate Addition. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Corrensstraß 40 48149 Münster Germany
| | - Gesa Seidler
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Corrensstraß 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Corrensstraß 40 48149 Münster Germany
| |
Collapse
|
9
|
Evano G, Theunissen C. Beyond Friedel and Crafts: Innate Alkylation of C−H Bonds in Arenes. Angew Chem Int Ed Engl 2019; 58:7558-7598. [DOI: 10.1002/anie.201806631] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
10
|
Fukui N. Organic Transformations by the Hydrosilane-Alkoxide System. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Jeong E, Heo J, Park S, Chang S. Alkoxide‐Promoted Selective Hydroboration ofN‐Heteroarenes: Pivotal Roles of in situ Generated BH3in the Dearomatization Process. Chemistry 2019; 25:6320-6325. [DOI: 10.1002/chem.201901214] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Eunchan Jeong
- Department of ChemistryKorea Advanced Institute of, Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Joon Heo
- Department of ChemistryKorea Advanced Institute of, Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sehoon Park
- Department of ChemistryKorea Advanced Institute of, Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Department of ChemistryKorea Advanced Institute of, Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
12
|
Evano G, Theunissen C. Jenseits von Friedel und Crafts: immanente Alkylierung von C‐H‐Bindungen in Arenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806631] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| |
Collapse
|
13
|
Kanno KI, Hirose S, Kyushin S. Synthesis, structures, and reactivity of 9,9-dialkoxy-9-silafluorenes. HETEROATOM CHEMISTRY 2019. [DOI: 10.1002/hc.21478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ken-ichiro Kanno
- Division of Molecular Science; Graduate School of Science and Technology; Gunma University; Kiryu Gunma Japan
| | - Satoshi Hirose
- Division of Molecular Science; Graduate School of Science and Technology; Gunma University; Kiryu Gunma Japan
| | - Soichiro Kyushin
- Division of Molecular Science; Graduate School of Science and Technology; Gunma University; Kiryu Gunma Japan
| |
Collapse
|