1
|
Zhou WG, Xi LL, Zhang MR, Wang HR, An M, Li JH, Liu RR. Enantioselective Synthesis of Inherently Chiral Pillar[5]Arenes Through Copper-Catalyzed Azide-Alkyne Cycloaddition. Angew Chem Int Ed Engl 2025; 64:e202502381. [PMID: 40042805 DOI: 10.1002/anie.202502381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/12/2025]
Abstract
Pillar[n]arenes have been extensively investigated as carrier materials for applications in host-guest chemistry, nanoscience, information science, materials science, and other domains. Despite its success, the enantioselective synthesis of pillar[n]arenes is challenging and has not yet been achieved. Herein, a novel asymmetric extended side-arm strategy is presented for synthesizing chiral pillar[5]arenes through an iterative copper-catalyzed azide-alkyne cycloaddition reaction. An increase in the steric hindrance on both sides of the macrocyclic molecule efficiently produced a wide range of pillar[5]arenes in high yields with excellent enantioselectivities. Moreover, this principle enables iterative copper-catalyzed azide-alkyne cycloaddition to enantioselectively functionalized pillar[5]arenes with different triazoles using a one-pot process.
Collapse
Affiliation(s)
- Wen-Guang Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Long-Long Xi
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Mei-Ru Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Hao-Ran Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Mei An
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Jia-Hao Li
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
- College of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
- Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| |
Collapse
|
2
|
Zhong H, Lan K, Ming J, Zhang D, Cheng C. Stereoisomerism in Trimacrocyclic Structures Fused by a Pillar[6]arene and Two [8]Cycloparaphenylenes. Org Lett 2025; 27:4349-4354. [PMID: 40221917 DOI: 10.1021/acs.orglett.5c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Stereoisomerism in pillararenes, particularly chiral isomerism from atropisomers, has intrigued organic chemists. Herein, we report the synthesis and characterization of a trimacrocyclic system formed by fusing two [8]cycloparaphenylenes with a pillar[6]arene. This system exhibits unique stereoisomerism, yielding a racemic mixture and a meso compound. The isomers were characterized using NMR, HRMS, and single crystal X-ray diffraction. This study offers valuable insights into constructing chiral isomers in macrocycles and enriches our understanding of stereochemistry.
Collapse
Affiliation(s)
- Hanchi Zhong
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kai Lan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jiao Ming
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Dongmei Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chuyang Cheng
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Kim S, Kim T, Ju K, Bae JH, Park IH. SCSC Transformation of Heterobimetallic 2D MOF to Homometallic 2D MOF via Solvent-Assisted Removal of Second Metal Component: An Add-and-Remove Strategy. Inorg Chem 2025; 64:6544-6551. [PMID: 40139937 DOI: 10.1021/acs.inorgchem.4c05422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Constructing high-dimensional metal-organic framework (MOF) materials that cannot be reached by direct methods is demanding. We herein report the construction of a two-dimensional (2D) copper(I) iodide MOF via an add-and-remove strategy of a second metal component (HgI2). The networking reaction of an O2S2-macrocycle (L) with CuI via a bridging exocyclic coordination under the direct condition was unsatisfactory because of its one-dimensional (1D) product {[(μ4-Cu3I3)(L)2]·2CH3CN·CH2Cl2}n (1) with low yield. Alternatively, the self-assembly of L with a mixture of CuI and HgI2 allows the generation of a 2D heterobimetallic Cu(I)/Hg(II)-MOF {[Cu2(μ-Hg2I4)(L)2(CH3CN)2I2]·toluene}n (2, brick wall) cross-linked by μ-Hg2I4 square dimers via the bridging exocoordination mode. When the crystals of 2 were immersed in methanol, the crystals were converted to a desired 2D Cu(I)-MOF [(μ4-Cu2I2)(L)2]n (3, square grid) by the replacement of the cross-linker μ-Hg2I4 with μ4-Cu2I2 via the solvent-assisted etching. Interestingly, this 2D-[1D]*-2D conversion process that proceeds in an SCSC mode is completed by the dimerization of open coordinating site CuI* to form a μ4-Cu2I2 node (2CuI* → Cu2I2), preserving the 2D dimensionality. The conversion process is discussed based on PXRD, EDX, AFM, TGA, and NMR data.
Collapse
Affiliation(s)
- Seulgi Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
- Mineral Processing and Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, South Korea
| | - Taehun Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Kyunghye Ju
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Je Hyun Bae
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
4
|
Luan TR, Sun C, Tian YL, Jiang YK, Xi LL, Liu RR. Enantioselective construction of inherently chiral pillar[5]arenes via palladium-catalysed Suzuki-Miyaura cross-coupling. Nat Commun 2025; 16:2370. [PMID: 40064878 PMCID: PMC11893803 DOI: 10.1038/s41467-025-57461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Pillar[n]arenes have broad applications in biological medicine, materials science, and supramolecular gels. Notably, enantiopure pillar[5]arenes are valued for their roles in enantioselective host-guest recognition, chiral sensing, asymmetric catalysis, and related fields. Current methods for obtaining chiral pillar[n]arenes rely heavily on resolution agents or chiral HPLC resolution. However, the synthesis of these compounds via asymmetric catalysis remains challenging. In this study, we develop an asymmetric extended side-arm Suzuki-Miyaura cross-coupling strategy to construct inherently chiral pillar[5]arenes with excellent yields and high enantioselectivities using a palladium catalyst and a Sadphos ligand. The reaction scope extends beyond arylboronic acids to encompass 2-arylvinylboronic acids and other multi-OTf-substituted substrates, all efficiently producing the desired products. Further exploration of the synthetic applications, along with photophysical and chiroptical analyses, confirm the potential of these chiral pillar[5]arenes for diverse applications across multiple disciplines.
Collapse
Affiliation(s)
- Ting-Rui Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Che Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Yong-Le Tian
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Yu-Kun Jiang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Long-Long Xi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China.
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China.
- College of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
5
|
Pegu OA, Moral R, Das G. Anion Coordination Chemistry: An Expedition Towards Designing of Functional Materials. Chem Asian J 2025; 20:e202401236. [PMID: 39555649 DOI: 10.1002/asia.202401236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/19/2024]
Abstract
This review highlights important research on anion coordination chemistry for materials applications over the last decade. This field has numerous applications in various areas, such as the environment, industry, and medicine. Despite its enormous potential, real-world applicability is still pending. However, there has been a new trajectory in the field recently, with rapid advancement in designing sophisticated molecular systems for various materials applications. To keep track of this dynamic advancement, we have discussed some outstanding research work with enormous potential for materials applications soon.
Collapse
Affiliation(s)
- Oiyao Appun Pegu
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Rubi Moral
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
6
|
Yu J, Yu H, Qiu Y, Zhang HY, Xu X, Liu Y. Biofuel-Driven Stepping Chiral Supramolecular Transfer Container. Angew Chem Int Ed Engl 2025; 64:e202418938. [PMID: 39513650 DOI: 10.1002/anie.202418938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
Herein, we reported a biofuel-driven recyclable chiral supramolecular transfer container based on hexacationic triphenylamine cage and nucleotides. Possessing rotatable paddle rigid backbones, the artificial receptor effectively encapsulated nucleotides with a high binding constant up to 5.37×105 M-1 in water, displaying guest-induced efficient fluorescence enhancement with quantum yield increased from 6.5 % to 16.6 %. Especially, the achiral cage could effectively bind with adenosine triphosphate to activate chirality transfer from substrates to the single molecular container, giving circularly polarized luminescence at 575 nm and positive Cotton effect peaks with significant asymmetric factor (gabs=+6.4×10-4). Meanwhile, the adaptive chiral supramolecule not only has reversible thermal responsiveness but also could stepwise regulate chirality transfer by the catalysis of hexokinase and apyrase in tandem, showing recovery adaptive chirality after refueled, achieving dynamically regulated programmable multistate chiral luminescent supramolecules. Therefore, the biofuel-driven chiral supramolecular transfer container could be successfully applied in chiral logic gates and multilevel information encryption, providing new insight into intelligent chiral materials.
Collapse
Affiliation(s)
- Jie Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Huijia Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yugui Qiu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Heng-Yi Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
7
|
Zhou XH, Zhang X, Song YR, Li X, Bao LT, Xu WT, Wang XQ, Yang HB, Wang W. Catalytic Enantioselective Synthesis of Planar Chiral Pillar[5]arenes via Asymmetric Sonogashira Coupling. Angew Chem Int Ed Engl 2025; 64:e202415190. [PMID: 39258396 DOI: 10.1002/anie.202415190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
As a novel type of macrocycles with attractive planar chirality, pillar[5]arenes have gained increasing research interest over the past decades, enabling their widespread applications in diverse fields such as porous materials, molecular machines, and chiral luminescence materials. However, the catalytic methodology towards the enantioselective synthesis of planar chiral pillar[5]arenes remains elusive. Here we report a novel method for the enantioselective synthesis of planar chiral pillar[5]arenes via asymmetric Sonogashira coupling, giving access to a wide range of highly functionalized planar chiral pillar[5]arenes, including both homo- and hetero-rimmed ones, with excellent enantioselectivities. Attractively, the resultant planar chiral pillar[5]arenes show great potential for widespread use in many areas such as chiral luminescent materials. This work not only enables the successful synthesis of planar chiral pillar[5]arenes with abundant structural and functional diversity as key building blocks for practical applications but also enriches the asymmetric cross-coupling methodologies in organic synthetic chemistry.
Collapse
Affiliation(s)
- Xiao-Hua Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Yi-Ru Song
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xue Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Lin-Tao Bao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
8
|
Shi A, Wang H, Yang G, Gu C, Xiang C, Qian L, Lam JWY, Zhang T, Tang BZ. Multiple Chirality Switching of a Dye-Grafted Helical Polymer Film Driven by Acid & Base. Angew Chem Int Ed Engl 2024; 63:e202409782. [PMID: 38888844 DOI: 10.1002/anie.202409782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
A stimuli-responsive multiple chirality switching material, which can regulate opposed chiral absorption characteristics, has great application value in the fields of optical modulation, information storage and encryption, etc. However, due to the rareness of effective functional systems and the complexity of material structures, developing this type of material remains an insurmountable challenge. Herein, a smart polymer film with multiple chirality inversion properties was fabricated efficiently based on a newly-designed acid & base-sensitive dye-grafted helical polymer. Benefited from the cooperative effects of various weak interactions (hydrogen bonds, electrostatic interaction, etc.) under the aggregated state, this polymer film exhibited a promising acid & base-driven multiple chirality inversion property containing record switchable chiral states (up to five while the solution showed three-state switching) and good reversibility. The creative exploration of such a multiple chirality switching material can not only promote the application progress of current chiroptical regulation technology, but also provide a significant guidance for the design and synthesis of future smart chiroptical switching materials and devices.
Collapse
Affiliation(s)
- Aiyan Shi
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Haoran Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Guojian Yang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Chang Gu
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Lei Qian
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Ting Zhang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), 518172, P. R. China
| |
Collapse
|
9
|
Wu HL, Zhang MY, Zhou T, Zhang LP, Qi QY, Yang GY, Yang B, Li ZT. Six-Cyclic Crown Ether-Type Pillar[5]Arene: Enhanced Binding Ability to Bispyridinium Derivatives. Chem Asian J 2024; 19:e202400554. [PMID: 38956446 DOI: 10.1002/asia.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
A six-cyclic crown ether-type pillar[5]arene was synthesized, and the five ethylene oxide loops were located outside the cavity and not affected by temperature changes which was confirmed by variable-temperature NMR experiment in DMSO-d6 and CDCl3 and 2D 1H-1H NOESY experiment in CDCl3. The six-cyclic pillar[5]-crown also showed greater binding ability of host-guest with bis(pyridinium) derivatives than conventional alkoxy pillar[5]arenes that illustrated through 1H NMR titration spectroscopic experiment in acetone-d6/CDCl3 (1 : 1) and UV-vis titration experiments in CHCl3 at room temperature. The five benzocrown ethers at the periphery were able to bind metal cations by 1H NMR titration spectroscopic experiment in CD2Cl2/methanol-d4(9 : 1).
Collapse
Affiliation(s)
- Huai-Li Wu
- College of Chemistry, Zhengzhou University Department, 100 Kexue Street, Zhengzhou, 450001, China
| | - Meng-Yang Zhang
- College of Chemistry, Zhengzhou University Department, 100 Kexue Street, Zhengzhou, 450001, China
| | - Ting Zhou
- College of Chemistry, Zhengzhou University Department, 100 Kexue Street, Zhengzhou, 450001, China
| | - Le-Ping Zhang
- College of Chemistry, Zhengzhou University Department, 100 Kexue Street, Zhengzhou, 450001, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Guan-Yu Yang
- College of Chemistry, Zhengzhou University Department, 100 Kexue Street, Zhengzhou, 450001, China
| | - Bo Yang
- College of Chemistry, Zhengzhou University Department, 100 Kexue Street, Zhengzhou, 450001, China
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
10
|
Liu Y, Hao A, Xing P. A photoactivated chiral molecular clamp rotated by selective anion binding. Chem Sci 2024:d4sc04216f. [PMID: 39268215 PMCID: PMC11388084 DOI: 10.1039/d4sc04216f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Developing chiral molecular platforms that respond to external fields provides opportunities for designing smart chiroptical materials. Herein, we introduce a molecular clamp whose chiral properties can be turned on by photoactivation. Selective anion binding achieves rational tuning of the conformations and chiroptical properties of the clamp, including circular dichroism and circularly polarized luminescence. Cyanostilbene segments were conjugated to chiral amines with a rotatable axis. Negligible chiroptical signals were significantly enhanced through a light illumination-induced isomerization. Binding with halide ions (F-, Cl- and Br-) enables chiroptical inversion and subsequent amplification of the resulting opposite handedness state by photo treatment. In contrast, the larger I- and NO3 - ions failed to achieve chiroptical inversion. Also the handedness inversion was hampered in conformationally locked amines. Density-functional theory-based computational studies and experimental results reveal a structural transformation that proceeds from a butterfly-like open geometry to a closed V-shaped state initiated by four hydrogen bonds and the rotatable axis. This work illustrates design protocols for use in smart chiroptical molecular platforms mediated by photo treatment and anion binding.
Collapse
Affiliation(s)
- Yiping Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| |
Collapse
|
11
|
Yan H, Yin X, Wang D, Han T, Tang BZ. Synergistically Boosting the Circularly Polarized Luminescence of Functionalized Pillar[5]arenes by Polymerization and Aggregation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305149. [PMID: 37867209 PMCID: PMC10724438 DOI: 10.1002/advs.202305149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Indexed: 10/24/2023]
Abstract
Supramolecular polymers based on chiral macrocycles have attracted increasing attention in the field of circularly polarized luminescence (CPL) owing to their unique properties. However, the construction of macrocyclic supramolecular polymers with highly efficient CPL properties in aggregate states still remains challenging. Herein, w e constructed a class of macrocycle-based coordination polymers by combining the planar chiral properties of pillar[5]arene with the excellent fluorescence properties of aggregation-induced emission luminogens. The formation of polymers enhances both the fluorescence and chiral properties, resulting in chiral supramolecular polymers with remarkable CPL properties. Increasing the aggregation degree of the polymers can further improve their CPL properties, as evidenced by a 21-fold increase in the dissymmetry factor and an over 25-fold increase in the fluorescence quantum yield in the aggregate state compared to the solution state. Such a synergistic effect of polymerization- and aggregation-enhanced CPL can be explained by the restriction of intramolecular motions and aggregation-induced conformation confinement. This work provides a promising method for developing highly efficient CPL supramolecular polymers.
Collapse
Affiliation(s)
- Hewei Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xiaojun Yin
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhen (CUHK‐Shenzhen)Guangdong518172China
| |
Collapse
|
12
|
Kato K, Fa S, Ogoshi T. Alignment and Dynamic Inversion of Planar Chirality in Pillar[n]arenes. Angew Chem Int Ed Engl 2023; 62:e202308316. [PMID: 37518814 DOI: 10.1002/anie.202308316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Pillar[n]arenes are symmetrical macrocyclic compounds composed of benzene panels with para-methylene linkages. Each panel usually exhibits planar chirality and prefers chirality-aligned states. Because of this feature, pillar[n]arenes are attractive scaffolds for chiroptical materials that are easy to prepare and optically resolve and show intense circular dichroism (CD) signals. In addition, rotation of the panels endows the chirality of pillar[n]arenes with a dynamic nature. The chirality in tubular oligomers and supramolecular assemblies sometimes show time- and procedure-dependent alignment phenomena. Furthermore, the CD signals of some pillar[n]arenes respond to the addition of chiral guests when their dynamic chirality is coupled with host-guest properties. By using diastereomeric pillar[n]arenes with additional chiral structures, the response can also be caused by achiral guests and changes of the environment, providing molecular sensors.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shixin Fa
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi, 710072, P. R. China
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- WPI Nano Life Science Institute, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
13
|
Ikbal SA, Zhao P, Ehara M, Akine S. Acceleration and deceleration of chirality inversion speeds in a dynamic helical metallocryptand by alkali metal ion binding. SCIENCE ADVANCES 2023; 9:eadj5536. [PMID: 37922347 PMCID: PMC10624348 DOI: 10.1126/sciadv.adj5536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2023]
Abstract
We report that the chirality inversion kinetics of a trinickel(II) cryptand can be controlled by guest recognition in the cryptand cavity. When the guest was absent, the nickel(II) cryptand underwent a dynamic interconversion between the P and M forms in solution, preferring the M form, with a half-life of t1/2 = 4.99 min. The P/M equilibrium is reversed to P-favored by binding with an alkali metal ion in the cryptand cavity. The timescale of this M→P inversion kinetics was both notably accelerated and decelerated by the guest binding (t1/2 = 0.182 min for K+ complex; 186 min for Cs+ complex); thus, the equilibration rate constants differed by up to 1000-fold depending on the guest metal ions. This acceleration/deceleration can be explained in terms of the virtual binding constants at the transition state of the P/M chirality inversion; K+ binding more stabilizes the transition state rather than the P and M forms to result in the acceleration.
Collapse
Affiliation(s)
- Sk Asif Ikbal
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Shigehisa Akine
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
14
|
Zhao T, Wu W, Yang C. Chiroptical regulation of macrocyclic arenes with flipping-induced inversion of planar chirality. Chem Commun (Camb) 2023; 59:11469-11483. [PMID: 37691554 DOI: 10.1039/d3cc03829g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Studies on various macrocyclic arenes have received increasing attention due to their straightforward syntheses, convenient derivatization, and unique complexation properties. Represented by pillar[n]arenes, several distinctive macrocyclic arenes have recently emerged with the following characteristics: they possess a pair of enantiomeric planar chiral conformations, and interconversion between these enantiomeric conformations can be achieved through the flipping of ring units. Complexation of a chiral guest with these macrocyclic arenes will lead to a shift of the equilibrium between the Rp and Sp conformers, leading to intriguing possibilities for chiral induction and sensing. By the introduction of bulky substituents on the rims, employing rotaxanation or pseudocatenation, planar chirality could be locked, enabling the enantiomeric separation of the chiral structures. The induced or separated chiral conformers/compounds exhibit significant chiroptical properties. These macrocyclic arenes, with flipping-induced inversion of planar chirality, demonstrated intriguing chiral induction dynamics and kinetics. In this featured review, we systematically summarize the progress in chiroptical induction/regulation of these macrocyclic arenes, particularly in the fields of chiral sensing, molecular machines, molecular recognition, and assembly.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| |
Collapse
|
15
|
Sun Y, Liu L, Jiang L, Chen Y, Zhang H, Xu X, Liu Y. Unimolecular Chiral Stepping Inversion Machine. J Am Chem Soc 2023. [PMID: 37486147 DOI: 10.1021/jacs.3c04430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Intelligent molecular machines that are driven by light, electricity, and temperature have attracted considerable interest in the fields of chemistry, materials, and biology. Herein, a unimolecular chiral stepping inversion molecular machine (SIMM) was constructed by a coupling reaction between dibromo pillar[5]arene and a tetrathiafulvalene (TTF) derivative (PT3 and PT5). Compared with the longer aliphatic linker PT5, PT3 with a shorter aliphatic linker shows chiral stepping inversion, achieving chiral inversion under a two-electron redox potential. Benefiting from the successive reversible two-electron redox potential of TTF, the self-exclusion and self-inclusion conformational transformations of SIMM can proceed in two steps under redox, leading to the chirality step inversion in the pillar[5]arene core. Electrochemical experiments and circular dichroism (CD) spectra show that the redox processes can cause SIMM CD signaling to reversibly switch. More importantly, as the oxidant Fe(ClO4)3 was increased from 0.1 to 1 equiv, the CD spectral signal of SIMM disappeared at 1 equiv, and further addition of Fe(ClO4)3 resulted in the CD signal reversed from positive to negative at 309 nm, indicating that the chirality was reversed after chemical oxidation and reached a negative maximum with the addition of 2 equiv Fe(ClO4)3; thus, redox-triggered chiral stepping inversion was achieved. Furthermore, the chiral inversion can be restored to its original state after the addition of 2 equiv of reducing agent, sodium ascorbate. This work demonstrates unimolecular chiral stepping inversion, providing a new perspective on stimulus-responsive chirality in molecular machines.
Collapse
Affiliation(s)
- Yonghui Sun
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lijuan Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Linnan Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hengyue Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
16
|
Cation controlled rotation in anionic pillar[5]arenes and its application for fluorescence switch. Nat Commun 2023; 14:590. [PMID: 36737437 PMCID: PMC9898256 DOI: 10.1038/s41467-023-36131-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Controlling molecular motion is one of hot topics in the field of chemistry. Molecular rotors have wide applications in building nanomachines and functional materials, due to their controllable rotations. Hence, the development of novel rotor systems, controlled by external stimuli, is desirable. Pillar[n]arenes, a class of macrocycles, have a unique planar chirality, in which two stable conformational isomers pR and pS would interconvert by oxygen-through-the-annulus rotations of their hydroquinone rings. We observe the differential kinetic traits of planar chirality transformation in sodium carboxylate pillar[5]arene (WP5-Na) and ammonium carboxylate pillar[5]arene (WP5-NH4), which inspire us to construct a promising rotary platform in anionic pillar[5]arenes (WP5) skeletons. Herein, we demonstrate the non-negligible effect of counter cations on rotational barriers of hydroquinone rings in WP5, which enables a cation grease/brake rotor system. Applications of this tunable rotor system as fluorescence switch and anti-counterfeiting ink are further explored.
Collapse
|
17
|
Chen JF, Gao QX, Liu L, Chen P, Wei TB. A pillar[5]arene-based planar chiral charge-transfer dye with enhanced circularly polarized luminescence and multiple responsive chiroptical changes. Chem Sci 2023; 14:987-993. [PMID: 36755718 PMCID: PMC9890741 DOI: 10.1039/d2sc06000k] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
The fabrication of circularly polarized luminescent (CPL) organic dyes based on macrocyclic architecture has become an importantly studied topic in recent years because it is of great importance to both chiral science and supramolecular chemistry, where pillar[n]arenes are emerging as a promising class of planar chiral macrocyclic hosts for CPL. We herein synthesized an unusual planar chiral charge-transfer dye (P5BB) by covalent coupling of triarylborane (Ar3B) as an electron acceptor to parent pillar[5]arene as an electron donor. The intramolecular charge transfer (ICT) nature of P5BB not only caused a thermally responsive emission but also boosted the luminescence dissymmetry factor (g lum). Interestingly, the specific binding of fluoride ions changed the photophysical properties of P5BB, including absorption, fluorescence, circular dichroism (CD), and CPL, which could be exploited as an optical probe for multi-channel detection of fluoride ions. Furthermore, the chiroptical changes were observed upon addition of 1,4-dibromobutane as an achiral guest.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China +86 9317973191 +86 9317973191
| | - Qing-Xiu Gao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China +86 9317973191 +86 9317973191
| | - Lijie Liu
- College of Science, Henan Agricultural University Zhengzhou Henan 450002 P. R. China
| | - Pangkuan Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China +86 9317973191 +86 9317973191
| |
Collapse
|
18
|
Abdeljaber NO, Vinodh M, Al-Azemi TF. Host-guest properties of pagoda[4]arene with α,ω-dibromoalkanes and their self-assembled linear supramolecular polymer driven by guest halogen–halogen interactions. Tetrahedron 2023. [DOI: 10.1016/j.tet.2022.133240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Fa S, Shi TH, Akama S, Adachi K, Wada K, Tanaka S, Oyama N, Kato K, Ohtani S, Nagata Y, Akine S, Ogoshi T. Real-time chirality transfer monitoring from statistically random to discrete homochiral nanotubes. Nat Commun 2022; 13:7378. [PMID: 36450720 PMCID: PMC9712533 DOI: 10.1038/s41467-022-34827-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Real time monitoring of chirality transfer processes is necessary to better understand their kinetic properties. Herein, we monitor an ideal chirality transfer process from a statistically random distribution to a diastereomerically pure assembly in real time. The chirality transfer is based on discrete trimeric tubular assemblies of planar chiral pillar[5]arenes, achieving the construction of diastereomerically pure trimers of pillar[5]arenes through synergistic effect of ion pairing between a racemic rim-differentiated pillar[5]arene pentaacid bearing five benzoic acids on one rim and five alkyl chains on the other, and an optically resolved pillar[5]arene decaamine bearing ten amines. When the decaamine is mixed with the pentaacid, the decaamine is sandwiched by two pentaacids through ten ion pairs, initially producing a statistically random mixture of a homochiral trimer and two heterochiral trimers. The heterochiral trimers gradually dissociate and reassemble into the homochiral trimers after unit flipping of the pentaacid, leading to chirality transfer from the decaamine and producing diastereomerically pure trimers.
Collapse
Affiliation(s)
- Shixin Fa
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan ,grid.440588.50000 0001 0307 1240School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 P.R. China
| | - Tan-hao Shi
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
| | - Suzu Akama
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
| | - Keisuke Adachi
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
| | - Keisuke Wada
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
| | - Seigo Tanaka
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
| | - Naoki Oyama
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
| | - Kenichi Kato
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
| | - Shunsuke Ohtani
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
| | - Yuuya Nagata
- grid.39158.360000 0001 2173 7691WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 060-0810 Japan
| | - Shigehisa Akine
- grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan ,grid.9707.90000 0001 2308 3329Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Tomoki Ogoshi
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan ,grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| |
Collapse
|
20
|
Shang W, Zhu X, Jiang Y, Cui J, Liu K, Li T, Liu M. Self‐Assembly of Macrocyclic Triangles into Helicity‐Opposite Nanotwists by Competitive Planar over Point Chirality. Angew Chem Int Ed Engl 2022; 61:e202210604. [DOI: 10.1002/anie.202210604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Weili Shang
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
| | - Jie Cui
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Kaiang Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Minghua Liu
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
21
|
Stimuli-responsive chirality inversion of metallohelices and related dynamic metal complexes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214582] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Shang W, Zhu X, Jiang Y, Cui J, Liu K, Li T, Liu M. Self‐Assembly of Macrocyclic Triangles into Helicity‐Opposite Nanotwists by Competitive Planar over Point Chirality. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weili Shang
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Xuefeng Zhu
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics CHINA
| | - Yuqian Jiang
- National Center for Nanoscience and Nanotechnology: National Center for Nanoscience and Technology Key laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Jie Cui
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) CHINA
| | - Kaiang Liu
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) CHINA
| | - Tiesheng Li
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Minghua Liu
- Institute of Chemistry, CAS Laboratory of Colloid and Interface Scie Zhong Guancun 100080 Beijing CHINA
| |
Collapse
|
23
|
Luo Y, Zhang W, Zhao J, Yang MX, Ren Q, Redshaw C, Tao Z, Xiao X. A novel pillar[5]arene-cucurbit[10]uril based host-guest complex: Synthesis, characterization and detection of paraquat. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Gao F, Yu X, Liu L, Chen J, Lv Y, Zhao T, Ji J, Yao J, Wu W, Yang C. Chiroptical switching of molecular universal joint triggered by complexation/release of a cation: A stepwise synergistic complexation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Kim S, Park IH, Lee E, Jung JH, Lee SS. Metallosupramolecules of Pillar[5]arene with Two Flexible Thiopyridyl Arms: A Heterochiral Cyclic Dimer and Organic Guest-Assisted Homochiral Poly-Pseudo-Rotaxanes. Inorg Chem 2022; 61:7069-7074. [PMID: 35482519 DOI: 10.1021/acs.inorgchem.2c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of a cyclic dimer complex (1) and a poly-pseudo-rotaxane (2) of a racemic A1/A2-thiopyridyl pillar[5]arene (rac-L) with different chirality is reported. A one-pot reaction of rac-L with HgCl2 afforded a heterochiral cyclic dimer complex, [Hg2(pR-L)(pS-L)Cl4]·8CH2Cl2 (1), in which two Hg2+ atoms and one (pR-L)/(pS-L) enantiomeric pair form a [2:2] metallacycle via a metal coordination-based cyclization. Interestingly, the same reaction in the presence of the linear dinitrile guest, CN(CH2)8CN (G), yielded a one-dimensional poly-pseudo-rotaxane, {[Hg(G@pR-L)Cl2][Hg(G@pS-L)Cl2]}n (2), probably due to the rigidified ligand structure resulting from the dinitrile guest (G) threading. In 2, pR-L and pS-L generate two separated homochiral poly-pseudo-rotaxanes in a crystal. Both products are new members of the pillararene-derivative family. This study improves our understanding of self-assembly in nature and leads to this approach being an engineering tool for the construction of mechanically interlocked supramolecules.
Collapse
Affiliation(s)
- Seulgi Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Eunji Lee
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| |
Collapse
|
26
|
Kato K, Fa S, Ohtani S, Shi TH, Brouwer AM, Ogoshi T. Noncovalently bound and mechanically interlocked systems using pillar[ n]arenes. Chem Soc Rev 2022; 51:3648-3687. [PMID: 35445234 DOI: 10.1039/d2cs00169a] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pillar[n]arenes are pillar-shaped macrocyclic compounds owing to the methylene bridges linking the para-positions of the units. Owing to their unique pillar-shaped structures, these compounds exhibit various excellent properties compared with other cyclic host molecules, such as versatile functionality using various organic synthesis techniques, substituent-dependent solubility, cavity-size-dependent host-guest properties in organic media, and unit rotation along with planar chiral inversion. These advantages have enabled the high-yield synthesis and rational design of pillar[n]arene-based mechanically interlocked molecules (MIMs). In particular, new types of pillar[n]arene-based MIMs that can dynamically convert between interlocked and unlocked states through unit rotation have been produced. The highly symmetrical pillar-shaped structures of pillar[n]arenes result in simple NMR spectra, which are useful for studying the motion of pillar[n]arene wheels in MIMs and creating sophisticated MIMs with higher-order structures. The creation and application of polymeric MIMs based on pillar[n]arenes is also discussed.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
27
|
Chen JF, Tian G, Liu K, Zhang N, Wang N, Yin X, Chen P. Pillar[5]arene-based Neutral Radicals with Doublet Red Emissions and Stable Chiroptical Properties. Org Lett 2022; 24:1935-1940. [PMID: 35243861 DOI: 10.1021/acs.orglett.2c00313] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stable organic radicals with unique luminescence show great importance in photoelectromagnetic materials. We herein report two unusual radical-based systems (P5N-TTM and P5B-TTM) using the concerted effects of planar chiral pillar[5]arenes and tris(2,4,6-trichlorophenyl)methyl (TTM) radicals. The steric effect and electronic doublet-spin character of these radicals allowed the optical resolution and the first red emissions (∼650 nm) for pillar[5]arene derivatives. Notably, cross-coupling with macrocyclic pillar[5]arene, in turn, considerably enhanced the configurational stability of TTM radicals.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Guoqing Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kanglei Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology of China, Beijing 102488, China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| |
Collapse
|
28
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra‐functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Zeng
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Peiren Liu
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hao Xing
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|
29
|
Wang J, Wang D, Cen M, Jing D, Bei J, Huang Y, Zhang J, Lu B, Wang Y, Yao Y. GOx-assisted synthesis of pillar[5]arene based supramolecular polymeric nanoparticles for targeted/synergistic chemo-chemodynamic cancer therapy. J Nanobiotechnology 2022; 20:33. [PMID: 35016673 PMCID: PMC8753913 DOI: 10.1186/s12951-021-01237-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background Cancer is the most serious world's health problems on the global level and various strategies have been developed for cancer therapy. Pillar[5]arene-based supramolecular therapeutic nano-platform (SP/GOx NPs) was constructed successfully via orthogonal dynamic covalent bonds and intermolecular H-bonds with the assistance of glucose oxidase (GOx) and exhibited efficient targeted/synergistic chemo-chemodynamic cancer therapy. Methods The morphology of SP/GOx NPs was characterized by DLS, TEM, SEM and EDS mapping. The cancer therapy efficinecy was investigated both in vivo and in vitro. Results SP/GOx NPs can load drug molecules (Dox) and modify target molecule (FA-Py) on its surface conveniently. When the resultant FA-Py/SP/GOx/Dox NPs enters blood circulation, FA-Py will target it to cancer cells efficiently, where GOx can catalyst the overexpressed glucose to generate H2O2. Subsequently, the generated H2O2 in cancer cells catalyzed by ferrocene unit to form •OH, which can kill cancer cells. Furthermore, the loaded Dox molecules released under acid microenvironment, which can further achieve chemo-therapy. Conclusion All the experiments showed that the excellent antitumor performance of FA-Py/SP/GOx/Dox NPs, which provided an new method for pillar[5]arene-based supramolecular polymer for biomedical applications. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01237-0.
Collapse
Affiliation(s)
- Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Di Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Moupan Cen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Danni Jing
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Jiali Bei
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Youyou Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Jiannan Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China.
| |
Collapse
|
30
|
Al-Azemi TF, Vinodh M. External-stimulus-triggered conformational inversion of mechanically self-locked pseudo[1]catenane and gemini-catenanes based on A1/A2-alkyne-azide-difunctionalized pillar[5]arenes. RSC Adv 2022; 12:1797-1806. [PMID: 35425178 PMCID: PMC8979204 DOI: 10.1039/d1ra09043g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a methodology for constructing mechanically self-locked molecules (MSMs) through the efficient intramolecular copper(i)-catalyzed alkyne–azide cycloaddition (CuAAC) of self-threaded A1/A2-azido-propargyl-difunctionalized pillar[5]arenes. The obtained monomeric “pseudo[1]catenane” and dimeric “gemini-catenane” were isolated and fully characterized using mass spectrometry, nuclear magnetic resonance (NMR) spectroscopy, and X-ray crystallography. Upon investigation by 1H NMR spectroscopy in chloroform, the observed motion for the threaded ring in the pseudo[1]catenane was reversibly controlled by the temperature, as demonstrated by variable-temperature 1H NMR studies. Two gemini-catenane stereoisomers were also isolated in which the two pillar[5]arene moieties threaded by two decyl chains were aligned in different topologies. Furthermore, the conformational inversion of pseudo[1]catenane and the gemini-catenanes triggered by solvents and guests was investigated and probed using 1H NMR spectroscopy, isothermal titration calorimetry, and single-crystal X-ray analysis. Mechanically self-locked molecules (MSMs) through the efficient intramolecular copper(i)-catalyzed alkyne–azide cycloaddition (CuAAC) of self-threaded A1/A2-azido-propargyl-difunctionalized pillar[5]arenes.![]()
Collapse
Affiliation(s)
- Talal F Al-Azemi
- Chemistry Department, Kuwait University P.O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| | - Mickey Vinodh
- Chemistry Department, Kuwait University P.O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| |
Collapse
|
31
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra-functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2021; 61:e202115823. [PMID: 34962061 DOI: 10.1002/anie.202115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/07/2022]
Abstract
Due to the highly symmetrical structures generated from one-pot syntheses, the partial functionalization of macrocycles is usually beset with low yields and onerous purifications of the target multifunctional macrocycles. To improve this circumstance, taking pillar[6]arenes as an example, a two-step fragment coupling method is developed for synthesizing symmetrically tetra-functionalized pillar[6]arenes, namely X-pillar[6]arenes. This method is simple and versatile, which makes hetero-fragment coupling and pre-functionalization available. Nine new macrocycles and a pillar[6]arene-based cage are prepared. In addition, one of the newly synthesized macrocycles, COOEtEtXP[6] , exhibits a strong cyan luminescence in the solid state under irradiation by 365 nm UV light. This emission originates from intramolecular through-space conjugation. Meanwhile, formation of a supramolecular polymer by multiple non-covalent intra/intermolecular interactions help rigidify the structure and make COOEtEtXP[6] an efficient solid-state emitter. It is believed that this fragment coupling can also be used to realize the multi-functionalization of other macrocycles.
Collapse
Affiliation(s)
- Hong Zeng
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Peiren Liu
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Hao Xing
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Feihe Huang
- Zhejiang University, Department of Chemistry, Faculty of Sciences, 310027, Hangzhou, CHINA
| |
Collapse
|
32
|
Shi C, Li H, Shi X, Zhao L, Qiu H. Chiral pillar[n]arenes: Conformation inversion, material preparation and applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Chen Y, Sun B, Wang R, Shi C, Cheng M, Jiang J, Lin C, Wang L. Redox-Driven Chiral Inversion of Water-Soluble Pillar[5]arene with l-Cystine Derivative in the Aqueous Medium. Org Lett 2021; 23:7423-7427. [PMID: 34523339 DOI: 10.1021/acs.orglett.1c02620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the aqueous solution, l-CySS-OMe induced pS-WP5 from racemic WP5. Upon the addition of dithiothreitol as a reducing reagent to the above system, pS-WP5 was then converted to pR-WP5 for the reason that l-CySS-OMe was reduced to l-Cys-OMe. Followed by the addition of H2O2 as an oxidation reagent, pR-WP5 was converted back to pS-WP5. The chiral conformational transferring process between pR-WP5 and pS-WP5 can be easily and visually observed by reading the CD signal.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Baobao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ranran Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Conghao Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Juli Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Lin
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Leyong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
Sahoo D, Benny R, Ks NK, De S. Stimuli-Responsive Chiroptical Switching. Chempluschem 2021; 87:e202100322. [PMID: 34694736 DOI: 10.1002/cplu.202100322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/23/2021] [Indexed: 12/16/2022]
Abstract
"Chirality" governs many fundamental properties in chemistry and biochemistry. While early investigations on stereochemistry are primarily dedicated to static chirality, there is an increasing interest in the field of dynamic chirality (chiral switches). These chiral switches are essential in controlling the directionality in molecular motors. Dynamic chiralities are equally crucial in switchable stereoselectivity, switchable asymmetric catalysis and enantioselective separation. Herein, we limit our discussion to recent advances on stimuli-induced chiroptical switching of axial, helical, and planar chirality in response to external stimuli. We also discuss a few examples of applications of the switchable chirality.
Collapse
Affiliation(s)
- Diptiprava Sahoo
- School of Chemistry, Indian Institute of Science Education and, Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Renitta Benny
- School of Chemistry, Indian Institute of Science Education and, Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Nithish Kumar Ks
- School of Chemistry, Indian Institute of Science Education and, Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Soumen De
- School of Chemistry, Indian Institute of Science Education and, Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| |
Collapse
|
35
|
Chen JF, Yin X, Zhang K, Zhao Z, Zhang S, Zhang N, Wang N, Chen P. Pillar[5]arene-Based Dual Chiral Organoboranes with Allowed Host-Guest Chemistry and Circularly Polarized Luminescence. J Org Chem 2021; 86:12654-12663. [PMID: 34449233 DOI: 10.1021/acs.joc.1c01175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We first describe two examples of highly luminescent organoboranes (NP5BN1 and NP5BN2) with dual chirality that were achieved by molecular functionalization of planar chiral pillar[5]arenes with naphthyls. Sufficiently strong steric effects are imposed by triarylamine (Ar3N) and triarylborane (Ar3B) moieties and further enhanced by the proximity of the chiral building blocks, leading to the isolation of multiple enantiomers via chiral high-performance liquid chromatography. The intramolecular charge transfer from N-donor to B-acceptor across both chiral subunits enabled the circularly polarized luminescence and thermally robust colorimetric responses in their emissions. Furthermore, their remarkable host-guest chemistry was allowed at no expense in the pursuit of advanced chiroptical properties using pillar[5]arene-based supramolecular scaffolds.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Zhenhui Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology of China, Beijing 102488, China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China.,College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
36
|
De Silva EH, Novak BM. Temperature induced helical contraction and expansion in branched polycarbodiimides and their solvent vapor sensing properties. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1978849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Enosha Harshani De Silva
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, USA
| | - Bruce M. Novak
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
37
|
Chen JF, Ding JD, Wei TB. Pillararenes: fascinating planar chiral macrocyclic arenes. Chem Commun (Camb) 2021; 57:9029-9039. [PMID: 34498646 DOI: 10.1039/d1cc03778a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chiral macrocycles possess significant value in chiral science and supramolecular chemistry. Pillararenes, as a class of relatively young supramolecular macrocyclic hosts, have been widely used for host-guest recognition and self-assembly. Since the position of substituents on the benzene rings breaks the molecular symmetry (symmetric plane and symmetric center), pillararenes possess planar chirality. However, it is a great challenge to synthesize stable and resolvable enantiomers because of the easy rotation of the phenylene group. In this review, we summarize the construction methods of resolvable chiral pillararenes. We also focus on their applications in enantioselective recognition, chiral switches, chirality sensing, asymmetric catalysis, circularly polarized luminescence, metal-organic frameworks, and highly permeable membranes. Finally, we discuss the future research perspectives in this field of pillararene-based planar chiral materials. We hope that this review will encourage more researchers to work in this exciting field.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Jin-Dong Ding
- Shaanxi Key Laboratory of National Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| |
Collapse
|
38
|
Affiliation(s)
- Arthur H. G. David
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310021 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
39
|
Kim S, Ju H, Park KM, Jung JH, Lee SS, Lee E. Influence of the Reaction Sequence on the Complexation of an NS 4-Macrocycle with Cd II and Cu I Salts Leading to the Formation of Supramolecular Isomers and an Endo/Exocyclic Cu I Complex. Inorg Chem 2021; 60:13637-13645. [PMID: 34374276 DOI: 10.1021/acs.inorgchem.1c01943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the construction of metallosupramolecules, the reaction sequence in a three-reactant system (one ligand plus two metal ions) could be one of the controlling factors influencing the outcome of the reaction. In this work, the formation of supramolecular isomers (1 and 2) and an endo/exocyclic Cu+ complex (4) of the NS4-macrocycle (L) via different sequential metal addition protocols (routes I-III) is reported. In one-pot reactions of L with Cu(CH3CN)4PF6 in the absence (route I) and presence (route II) of CdI2, a cyclic dimer CuI complex, [Cu2(L)2](PF6)2 (1), and a one-dimensional coordination polymer, [Cu2(L)2]n·n[CdI4] (2), were obtained, respectively. Interestingly, the complex cations in 1 and 2 are supramolecular isomers formed via cyclization and polymerization upon complexation, respectively, probably due to different geometric and electronic complementarities, via the C-H···X- hydrogen bonds, between L and the counterion. In the two-step reaction (route III), an endocyclic Cd2+ complex, [Cd(L)I2] (3), obtained in the first step was utilized in the following reaction with Cu(CH3CN)4PF6, giving rise to an endo/exocyclic tetranuclear Cu+ complex, [Cu4(L)2(CH3CN)6](PF6)4 (4), via Cd2+ → 2Cu+ substitution, which is not accessible by conventional procedures. Solution studies by comparative NMR and electrospray ionization mass spectroscopy also support metal substitution by showing the stronger binding affinity of Cu+ over Cd2+. These results demonstrate that the metal substitution protocol could be useful for reaching novel metallosupramolecules difficult to obtain by other methods.
Collapse
Affiliation(s)
- Seulgi Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Huiyeong Ju
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Ki-Min Park
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Eunji Lee
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| |
Collapse
|
40
|
Liu C, Yu Z, Yao J, Ji J, Zhao T, Wu W, Yang C. Solvent-Driven Chirality Switching of a Pillar[4]arene[1]quinone Having a Chiral Amine-Substituted Quinone Subunit. Front Chem 2021; 9:713305. [PMID: 34307304 PMCID: PMC8293272 DOI: 10.3389/fchem.2021.713305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 11/14/2022] Open
Abstract
Several new chiral pillar[4]arene[1]quinone derivatives were synthesized by reacting pillar[4]arene[1]quinone (EtP4Q1), containing four 1,4-diethoxybenzene units and one benzoquinone unit, with various chiral amines via Michael addition. Due to the direct introduction of chiral substituents on the rim of pillar[n]arene and the close location of the chiral center to the rim of EtP4Q1, the newly prepared compounds showed unique chiroptical properties without complicated chiral resolution processes, and unprecedented high anisotropy factor of up to −0.018 at the charge transfer absorption band was observed. Intriguingly, the benzene sidearm attached pillar[4]arene[1]quinone derivative 1a showed solvent- and complexation-driven chirality inversion. This work provides a promising potential for absolute asymmetric synthesis of pillararene-based derivatives.
Collapse
Affiliation(s)
- Chunhong Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Jiabin Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Jiecheng Ji
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Ting Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Shin M, Kim S, Lee E, Jung JH, Park IH, Lee SS. Pillar[5]- bis-trithiacrown: Influence of Host-Guest Interactions on the Formation of Coordination Networks. Inorg Chem 2021; 60:5804-5811. [PMID: 33797229 DOI: 10.1021/acs.inorgchem.1c00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A pillar[5]-bis-trithiacrown (L) capable of metal binding and organic guest threading simultaneously has been employed, and the influence of dinitrile guests [CN(CH2)nCN (n = 2-6: abbreviated C2-C6)] on the coordination behaviors has been investigated. When the ditopic ligand L was reacted with HgCl2 in the presence of the C2-C6 guests, the shorter guests C2 and C3 afforded a two-dimensional coordination polymer [Hg7Cl14(C2@L)2]n (1) and a one-dimensional coordination polymer [(Hg3Cl6)2(C3@L)2]n (2), respectively. In 1 and 2, each dinitrile guest threads into the pillararene cavity to form a C2@L or C3@L unit via the host-guest interaction. Further linking of these units by exocyclic Hg-S bonds and anion coordination lead to the formation of coordination products with different dimensionalities. While the use of the longer guests C4-C6 under the same reactions yielded a discrete dimercury(II) complex 3, [Hg2Cl4(CH3CN@L)] which contains one acetonitrile solvent molecule because the longer dinitriles do not serve as effective guests. In the NMR and UV-vis studies, the association constants (log K1:1) for the host-guest interactions of L with the dinitrile guests are C2 (4.75) > C3 (4.17) ≫ C4 (2.85) > C5 (2.45) > C6 (too small), indicating that the shorter guests C2 or C3 interact more strongly than longer ones due to the confined interior space of L. Taken collectively, the C2 and C3 guests with proper size-matching promote the formation of coordination polymers and vice versa, suggesting that the guest size could be a controlling factor.
Collapse
Affiliation(s)
- Mingyeong Shin
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Seulgi Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Eunji Lee
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| |
Collapse
|
42
|
Chen Y, Fu L, Sun B, Qian C, Pangannaya S, Zhu H, Ma J, Jiang J, Ni Z, Wang R, Lu X, Wang L. Selection of Planar Chiral Conformations between Pillar[5,6]arenes Induced by Amino Acid Derivatives in Aqueous Media. Chemistry 2021; 27:5890-5896. [DOI: 10.1002/chem.202004003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yuan Chen
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Lulu Fu
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Baobao Sun
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Cheng Qian
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Srikala Pangannaya
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Hong Zhu
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Juli Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Zhigang Ni
- College of Materials Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Taipa Macau P. R. China
| | - Xiancai Lu
- School of Earth Science and Engineering Nanjing University Nanjing 210023 P. R. China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu, Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
- Advanced Materials Institute Qilu University of Technology, (Shandong Academy of Sciences) Jinan 250014 P. R. China
| |
Collapse
|
43
|
Fa S, Adachi K, Nagata Y, Egami K, Kato K, Ogoshi T. Pre-regulation of the planar chirality of pillar[5]arenes for preparing discrete chiral nanotubes. Chem Sci 2021; 12:3483-3488. [PMID: 34163621 PMCID: PMC8179476 DOI: 10.1039/d1sc00074h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Regulating the chirality of macrocyclic host molecules and supramolecular assemblies is crucial because chirality often plays a role in governing the properties of these systems. Herein, we describe pillar[5]arene-based chiral nanotube formation via pre-regulation of the building blocks' chirality, which is different from frequently used post-regulation strategies. The planar chirality of rim-differentiated pillar[5]arenes is initially regulated by chiral awakening and further induction/inversion through stepwise achiral external stimuli. The pre-regulated chiral information is well stored in discrete nanotubes by interacting with a per-alkylamino-substituted pillar[5]arene. Such pre-regulation is more efficient than post-regulating the chirality of nanotubes.
Collapse
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Keisuke Adachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery, Hokkaido University Kita 21 Nishi 10, Kita-ku Sapporo 001-0021 Japan
| | - Kouichi Egami
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
44
|
Yao J, Mizuno H, Xiao C, Wu W, Inoue Y, Yang C, Fukuhara G. Pressure-driven, solvation-directed planar chirality switching of cyclophano-pillar[5]arenes (molecular universal joints). Chem Sci 2021; 12:4361-4366. [PMID: 34168749 PMCID: PMC8179620 DOI: 10.1039/d0sc06988d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Planar chiral cyclophanopillar[5]arenes with a fused oligo(oxyethylene) or polymethylene subring (MUJs), existing as an equilibrium mixture of subring-included (in) and -excluded (out) conformers, respond to hydrostatic pressure to exhibit dynamic chiroptical property changes, leading to an unprecedented pressure-driven chirality inversion and the largest ever-reported leap of anisotropy (g) factor for the MUJ with a dodecamethylene subring. The pressure susceptivity of MUJs, assessed by the change in g per unit pressure, is a critical function of the size and nature of the subring incorporated and the solvent employed. Mechanistic elucidations reveal that the in-out equilibrium, as the origin of the MUJ's chiroptical property changes, is on a delicate balance of the competitive inclusion of subrings versus solvent molecules as well as the solvation of the excluded subring. The present results further encourage our use of pressure as a unique tool for dynamically manipulating various supramolecular devices/machines.
Collapse
Affiliation(s)
- Jiabin Yao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Hiroaki Mizuno
- Department of Chemistry, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Chao Xiao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Yoshihisa Inoue
- Department of Applied Chemistry, Osaka University Suita 565-0871 Japan
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
45
|
Liu Z, Zhang H, Han J. Crown ether-pillararene hybrid macrocyclic systems. Org Biomol Chem 2021; 19:3287-3302. [PMID: 33899894 DOI: 10.1039/d1ob00222h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A combination of Nobel macrocycle-crown ether and star macrocycle-pillararenes together in organic synthesis and material science is significant in obtaining hybrid systems, with rigid/flexible structural architecture, induced planar chirality, a negative cooperative effect and multiple fused cyclic hosts. In this review, we will discuss the synthesis/preparation of crown ether-pillararene hybrid macrocyclic systems by covalent bonds, supramolecular interactions and mechanical bonds, leading to hybrid compounds, supramolecular assemblies and mechanically interlocked molecules. The practical applications of crown ether-containing pillararenes will also be discussed in diverse areas, such as molecular recognition via fused multiple macrocycles and ion channels as well as external stimuli-responsive smart materials. We also call the attention of related researchers towards academic and technical issues about topological structures and applied functions in this fresh new fused macrocyclic field.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China.
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
46
|
Butkiewicz H, Sashuk V, Danylyuk O. Incorporation of carboxylated pillar[5]arene and strontium( ii) into supramolecular coordination complexes of different nuclearities. CrystEngComm 2021. [DOI: 10.1039/d1ce00334h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The nuclearity of the coordination complexes of carboxylated pillar[5]arene and strontium(ii) can be varied with the aid of phenanthroline as a coligand.
Collapse
Affiliation(s)
- Helena Butkiewicz
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Volodymyr Sashuk
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Oksana Danylyuk
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| |
Collapse
|
47
|
Multiple Stimuli-Responsive Conformational Exchanges of Biphen[3]arene Macrocycle. Molecules 2020; 25:molecules25245780. [PMID: 33302382 PMCID: PMC7762528 DOI: 10.3390/molecules25245780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
Conformational exchanges of synthetic macrocyclic acceptors are rather fast, which is rarely studied in the absence of guests. Here, we report multiple stimuli-responsive conformational exchanges between two preexisting conformations of 2,2',4,4'-tetramethoxyl biphen[3]arene (MeBP3) macrocycle. Structures of these two conformations are both observed in solid state, and characterized by 1H NMR, 13C NMR and 2D NMR in solution. In particular, conformational exchanges can respond to solvents, temperatures, guest binding and acid/base addition. The current system may have a role to play in the construction of molecular switches and other stimuli-responsive systems.
Collapse
|
48
|
Liang H, Hua B, Xu F, Gan LS, Shao L, Huang F. Acid/Base-Tunable Unimolecular Chirality Switching of a Pillar[5]azacrown Pseudo[1]Catenane. J Am Chem Soc 2020; 142:19772-19778. [DOI: 10.1021/jacs.0c10570] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Haozhong Liang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Bin Hua
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Fan Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Li-She Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People’s Republic of China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People’s Republic of China
| | - Li Shao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| |
Collapse
|
49
|
Taghavi Shahraki B, Maghsoudi S, Fatahi Y, Rabiee N, Bahadorikhalili S, Dinarvand R, Bagherzadeh M, Verpoort F. The flowering of Mechanically Interlocked Molecules: Novel approaches to the synthesis of rotaxanes and catenanes. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Zhu H, Li Q, Shi B, Xing H, Sun Y, Lu S, Shangguan L, Li X, Huang F, Stang PJ. Formation of Planar Chiral Platinum Triangles via Pillar[5]arene for Circularly Polarized Luminescence. J Am Chem Soc 2020; 142:17340-17345. [DOI: 10.1021/jacs.0c09598] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Qi Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Bingbing Shi
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hao Xing
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Liqing Shangguan
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|