1
|
Hooker LV, Bandar JS. Capturing Unstable Carbanionic Intermediates via Halogen Transfer: Base-Promoted Oxidative Coupling Reactions of α,α-Difluoromethylarenes. Angew Chem Int Ed Engl 2025; 64:e202502894. [PMID: 40098196 DOI: 10.1002/anie.202502894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
We describe how the merger of deprotonation, halogenation, and substitution into compatible processes enables the productive functionalization of traditionally unstable carbanionic intermediates. This strategy enables the first oxidative coupling protocol of α,α-difluorobenzylic C─H bonds with heteronucleophiles. Here, transiently generated α,α-difluorobenzylic carbanionic intermediates undergo halogen transfer from 2-bromothiophenes to form electrophilic ArCF2Br compounds for in situ nucleophilic substitution, thereby avoiding α-fluoride elimination pathways that typically plague α-fluorocarbanions. This method streamlines the modular synthesis of α,α-difluorobenzyl(thio)ethers and led to the broader realization that halogen transfer to unstable carbanions is an enabling principle across diverse C(sp2)─H and C(sp3)─H systems.
Collapse
Affiliation(s)
- Leidy V Hooker
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
2
|
Chakrabarti K, Sunil C, Farris BM, Berritt S, Cassaidy K, Lee J, Szymczak NK. Diversifying fluoroalkanes: light-driven fluoroalkyl transfer via vinylboronate esters. Chem Sci 2025; 16:6975-6981. [PMID: 40134657 PMCID: PMC11931429 DOI: 10.1039/d5sc01776a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025] Open
Abstract
We outline a new synthetic strategy to prepare tertiary difluoromethylene-containing molecules from fluoroalkane precursors and vinyl-pinacol boronic ester (vinyl-BPin) reagents. Under irradiation, fluoroalkyl(vinyl)pinacol boronate esters [vinyl-BPin-CF2R]- undergo a conjugate radical addition process to form new C-C bonds, which does not require air-free conditions and tolerates oxygen and nitrogen-containing heterocycles as well as many classical functional groups. We demonstrate the versatility of this method through a one-pot synthetic protocol using RCF2H precursors and vinyl-BPin reagents in the presence of a Brønsted base. Widely available fluoroalkanes (HFC-23 and HFC-32) and difluoromethyl heteroarenes are used in this protocol, representing distinct strategies to generate tertiary -CF2H, -CF3 and -CF2-heteroarene molecules. Experimental and theoretical mechanistic investigations reveal a reaction sequence involving radical initiation followed by an ionic 1,2-boronate rearrangement.
Collapse
Affiliation(s)
- Kaushik Chakrabarti
- Department of Chemistry, University of Michigan 930N. University Ann Arbor Michigan 48109 USA
| | - Chandana Sunil
- Department of Chemistry, University of Michigan 930N. University Ann Arbor Michigan 48109 USA
| | - Benjamin M Farris
- Department of Chemistry, University of Michigan 930N. University Ann Arbor Michigan 48109 USA
| | - Simon Berritt
- Medicine Design, Pfizer Inc. Eastern Point Rd. Groton CT 06340 USA
| | - Kyle Cassaidy
- Chemical Research and Development, Pfizer Inc. Eastern Point Rd. Groton CT 06340 USA
| | - Jisun Lee
- Medicine Design, Pfizer Inc. Eastern Point Rd. Groton CT 06340 USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan 930N. University Ann Arbor Michigan 48109 USA
| |
Collapse
|
3
|
Sun Z, Zhang XS, Bian SW, Zhang C, Han YP, Liang YM. New synthetic approaches for the construction of difluoromethylated architectures. Org Biomol Chem 2025; 23:3029-3075. [PMID: 40013736 DOI: 10.1039/d4ob02000f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Fluorinated compounds play a vital role in the fields of agrochemicals, pharmaceuticals, and materials science because of their unique lipophilicity, permeability, and metabolic stability. Among all such appealing fluorine-containing functional groups, the difluoromethyl group has attracted considerable attention owing to its outstanding chemical and physical properties. It has been used as a lipophilic hydrogen bond donor and a bioisostere of thiol, hydroxy, or amino groups. The excellent properties of the CF2H group have motivated many chemists to develop effective strategies for the selective incorporation of the CF2H group into target molecules. Over the past decades, a variety of efficient, atom-economical, and facile methods have been discovered for the difluoromethylation of organic substrates. This review summarizes the developments in different types of difluoromethylations, which could be classified into the following categories: radical difluoromethylation, transition metal-catalyzed difluoromethylation, and nucleophilic and electrophilic difluoromethylation.
Collapse
Affiliation(s)
- Zhou Sun
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, China
| | - Xue-Song Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shao-Wei Bian
- Tianjin Eco-Environmental Monitoring Center, Tianjin, China
| | - Chun Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Kim HE, Choi JH, Chung WJ. Monodefluorinative Halogenation of Perfluoroalkyl Ketones via Organophosphorus-Mediated Selective C-F Activation. JACS AU 2025; 5:1007-1015. [PMID: 40017785 PMCID: PMC11863160 DOI: 10.1021/jacsau.4c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/01/2025]
Abstract
Through the prosperity of organofluorine chemistry in modern organic synthesis, perfluorinated organic compounds are now abundant and widely available. Consequently, these substances become attractive starting materials for the production of complex, multifunctional fluorinated molecules. However, the inherent challenges associated with the activation and discrimination of the C-F bonds typically lead to overdefluorination as well as functional group incompatibility. To address these problems, our group utilized a rationally designed organophosphorus reagent that promoted mild and selective manipulation of a single C-F bond in trifluoromethyl and pentafluoroethyl ketones via an interrupted Perkow-type reaction, which allowed the replacement of fluorine with more labile and synthetically versatile congeners such as chlorine, bromine, and iodine. The resulting α-haloperfluoroketones have two reactive units with orthogonal properties that would be suitable for the subsequent structural diversification. DFT calculations identified the favorable P-F interaction as the crucial factor from both thermodynamic and kinetic viewpoints.
Collapse
Affiliation(s)
- Ha Eun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Won-jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
5
|
Roy S, Besset T. New Opportunities to Access Fluorinated Molecules Using Organophotoredox Catalysis via C(sp 3)-F Bond Cleavage. JACS AU 2025; 5:466-485. [PMID: 40017776 PMCID: PMC11862972 DOI: 10.1021/jacsau.4c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 03/01/2025]
Abstract
Fluorinated molecules are of paramount importance because of their unique properties. As a result, the search for innovative approaches to the synthesis of this class of compounds has been relentless over the years. Among these, the combination of photocatalysis and organofluorine chemistry turned out to be an effective partnership to access unattainable fluorinated molecules. This Perspective provides an overview of the recent advances in synthesizing fluorinated molecules via an organophotoredox-catalyzed defluorination process from trifluoromethylated compounds. It encompasses the preparation of difluoromethylated (hetero)arenes, amides, and esters as well as gem-difluoroalkene derivatives using C(sp3)-F bond activation or β-fragmentation. This Perspective will highlight remaining challenges and discuss future research opportunities.
Collapse
Affiliation(s)
- Sourav Roy
- INSA
Rouen Normandie, Univ Rouen Normandie, CNRS,
Normandie Univ, COBRA UMR 6014, F-76000 Rouen, France
| | - Tatiana Besset
- INSA
Rouen Normandie, Univ Rouen Normandie, CNRS,
Normandie Univ, COBRA UMR 6014, F-76000 Rouen, France
| |
Collapse
|
6
|
Pang Y, Yan J, Al-Maharik N, Zhang Q, Fang Z, Li D. Visible-light-promoted radical cyclisation of unactivated alkenes in benzimidazoles: synthesis of difluoromethyl- and aryldifluoromethyl-substituted polycyclic imidazoles. Beilstein J Org Chem 2025; 21:234-241. [PMID: 39901875 PMCID: PMC11789676 DOI: 10.3762/bjoc.21.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
An efficient and eco-friendly approach for synthesizing difluoromethyl- and aryldifluoromethyl-substituted polycyclic imidazoles was established via a visible-light-promoted radical cyclization reaction. This method employed the readily accessible and inexpensive CF2HCO2H or PhCF2COOH, along with benzimidazoles bearing unactivated alkenes and PhI(OAc)2 as substrates, and proceeded without the need of any base, metal catalyst, photocatalyst or additive. In total, 24 examples were examined, and all of them successfully underwent cyclization reaction to produce the target products in good to excellent yields. Mechanistic studies revealed that the reaction proceeds via a radical pathway.
Collapse
Affiliation(s)
- Yujun Pang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, 430068 Wuhan, China
| | - Jinglan Yan
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, 430068 Wuhan, China
| | - Nawaf Al-Maharik
- Department of chemistry, Faculty of Science, An Najah National University, Nablus, Palestine
| | - Qian Zhang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, 430068 Wuhan, China
| | - Zeguo Fang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, 430068 Wuhan, China
| | - Dong Li
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, 430068 Wuhan, China
| |
Collapse
|
7
|
Zhang J, Zhang Z, Su M, Xu X, Gao R, Yu B, Yan X. Cyclometalated N-Difluoromethylbenzimidazolylidene Platinum(II) Complexes with Built-in Secondary Coordination Spheres: Photophysical Properties and Bioimaging. Inorg Chem 2024. [PMID: 39546802 DOI: 10.1021/acs.inorgchem.4c03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Bidentate Pt(II) complexes with cyclometalated N-heteroarene or N-heterocyclic carbene (NHC) ligands have been extensively studied as phosphorescent emitters over the past two decades. Herein, we introduce a difluoromethyl group (CF2H) into the wingtip of NHCs, where CF2H acts as a lipophilic hydrogen bond (HB) donor. Their cyclometalated Pt(II) complexes show excellent PLQYs (up to 93%) and phosphorescence lifetimes mainly due to the rigid structure with hydrogen bonding between the CF2H group and the adjacent O atom at the β-diketonate ligand. Bioimaging studies demonstrate high cellular uptake efficiency and deep tumor penetration capability of complex 7 in HeLa cells and multicellular tumor spheroids, highlighting their potential as bioimaging probes.
Collapse
Affiliation(s)
- Jingli Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Mengrui Su
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyu Xu
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, Shanxi, China
| | - Rongyao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Bingran Yu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
8
|
Liang H, Wang Q, Zhou X, Zhang R, Zhou M, Wei J, Ni C, Hu J. N-Heteroaromatic Fluoroalkylation through Ligand Coupling Reaction of Sulfones. Angew Chem Int Ed Engl 2024; 63:e202401091. [PMID: 38489249 DOI: 10.1002/anie.202401091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Ligand coupling on hypervalent main group elements has emerged as a pivotal methodology for the synthesis of functionalized N-heteroaromatic compounds in recent years due to the avoidance of transition metals and the mildness of the reaction conditions. In this direction, the reaction of N-heteroaryl sulfur(IV) and N-heteroaryl phosphorus(V) compounds has been well studied. However, the ligand coupling of sulfur(VI) is still underdeveloped and the reaction of alkyl N-heteroarylsulfones is still elusive, which does not match the high status of sulfones as the chemical chameleons in organic synthesis. Here we present a ligand coupling-enabled formal SO2 extrusion of fluoroalkyl 2-azaheteroarylsulfones under the promotion of Grignard reagents, which not only enriches the chemistry of sulfones, but also provides a novel and practical synthetic tool towards N-heteroaromatic fluoroalkylation.
Collapse
Affiliation(s)
- Huamin Liang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Qian Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xin Zhou
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Rongyi Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Min Zhou
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jun Wei
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Chuanfa Ni
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| |
Collapse
|
9
|
Chakrabarti K, Wade Wolfe MM, Guo S, Tucker JW, Lee J, Szymczak NK. A metal-free strategy to construct fluoroalkyl-olefin linkages using fluoroalkanes. Chem Sci 2024; 15:1752-1757. [PMID: 38303957 PMCID: PMC10829021 DOI: 10.1039/d3sc05616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
We present a metal-free strategy to access fluoroalkyl-olefin linkages from fluoroalkane precursors and vinyl-pinacol boronic ester (BPin) reagents. This reaction sequence is templated by the boron reagent, which induces C-C bond formation upon oxidation. We developed this strategy into a one-pot synthetic protocol using RCF2H precursors directly with vinyl-BPin reagents in the presence of a Brønsted base, which tolerated oxygen- and nitrogen-containing heterocycles, and aryl halogens. We also found that HCF3 (HCF-23; a byproduct of the Teflon industry) and CH2F2 (HCF-32; a low-cost refrigerant) are amenable to this protocol, representing distinct strategies to generate RCF2H and RCF3 molecules. Finally, we demonstrate that the vinyldifluoromethylene products can be readily derivatized, representing an avenue for late-stage modification after installing the fluoroalkyl unit.
Collapse
Affiliation(s)
- Kaushik Chakrabarti
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Michael M Wade Wolfe
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P.R. China
| | - Joseph W Tucker
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Jisun Lee
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| |
Collapse
|
10
|
Li CY, Zhang Z, Yan X. Ir-Catalyzed Ortho-Selective C-H Borylation of Difluoromethyl Arenes. Org Lett 2023; 25:7278-7282. [PMID: 37782225 DOI: 10.1021/acs.orglett.3c02308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The difluoromethyl group (CF2H) has received great attention due to its distinct properties in recent years. Herein, we report a new strategy for postmodification of difluoromethyl compounds. Ortho-selective C-H borylation of difluoromethyl arenes is achieved by a cyclometalated mesoionic carbene-Ir complex. The regioselectivity is controlled by a hydrogen bond between CF2H and the boryl group via the outer-sphere direction.
Collapse
Affiliation(s)
- Chen-Yuan Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
11
|
Zhou Y, Doi R, Ogoshi S. Difluoromethylene insertion into fluoroalkyl copper complexes. Chem Commun (Camb) 2023; 59:11504-11507. [PMID: 37675966 DOI: 10.1039/d3cc03481j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Herein, we report the insertion of a difluoromethylene into 1,1,2,2-tetrafluoro-2-arylethyl copper complexes to synthesize extended perfluoroalkyl-bridged compounds that have various functional groups on each edge (ArCF2CF2(CF2)nR, R = arenes, halogens, alkyl, alkenyl, and benzyloxycarbonyl). Further, the one-pot syntheses of perfluoroalkyl-bridged compounds from aryl boronic acid esters were carried out.
Collapse
Affiliation(s)
- Yuyang Zhou
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, 565-0871, Osaka, Japan.
| | - Ryohei Doi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, 565-0871, Osaka, Japan.
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
12
|
Thibeault O, Ouellet-Du Berger MR, Gonay M, Paquin JF. Room temperature deoxofluorination of aromatic aldehydes with XtalFluor-E under highly concentrated conditions. Org Biomol Chem 2023; 21:6115-6119. [PMID: 37462469 DOI: 10.1039/d3ob00859b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The synthesis of difluoromethyl-containing compounds exploiting the deoxofluorination reaction of aromatic aldehydes using XtalFluor-E is described. This transformation occurs at room temperature under highly concentrated conditions, i.e., with no added solvent. A wide range of difluoromethyl-containing compounds was obtained in 21 to 87% isolated yields.
Collapse
Affiliation(s)
- Olivier Thibeault
- CCVC, PROTEO, Département Université Laval, 1045 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.
| | | | - Marie Gonay
- CCVC, PROTEO, Département Université Laval, 1045 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.
| | - Jean-François Paquin
- CCVC, PROTEO, Département Université Laval, 1045 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
13
|
Zhao JQ, Wang WJ, Zhou S, Xiao QL, Xue XS, Zhang YP, You Y, Wang ZH, Yuan WC. 3-Nitroindoles Serving as N-Centered Nucleophiles for Aza-1,6-Michael Addition to para-Quinone Methides. Molecules 2023; 28:5529. [PMID: 37513401 PMCID: PMC10384903 DOI: 10.3390/molecules28145529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
An unprecedented N-alkylation of 3-nitroindoles with para-quinone methides was developed for the first time. Using potassium carbonate as the base, a wide range of structurally diverse N-diarylmethylindole derivatives were obtained with moderated to good yields via the protection group migration/aza-1,6-Michael addition sequences. The reaction process was also demonstrated by control experiments. Different from the previous advances where 3-nitrodoles served as electrophiles trapping by various nucleophiles, the reaction herein is featured that 3-nitrodoles is defined with latent N-centered nucleophiles to react with ortho-hydrophenyl p-QMs for construction of various N-diarylmethylindoles.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen-Jie Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qi-Lin Xiao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xi-Sha Xue
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
14
|
Guo S, Sun W, Tucker JW, Hesp KD, Szymczak NK. Preparation and Functionalization of Mono- and Polyfluoroepoxides via Fluoroalkylation of Carbonyl Electrophiles. Chemistry 2023; 29:e202203578. [PMID: 36478306 DOI: 10.1002/chem.202203578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
We outline a new synthetic method to prepare mono- and polyfluoroepoxides from a diverse pool of electrophiles (ketones, acyl chlorides, esters) and fluoroalkyl anion equivalents. The initially formed α-fluoro alkoxides undergo subsequent intramolecular ring closure when heated. We demonstrated the versatility of the method through the isolation of 16 mono- and polyfluoroepoxide products. These compounds provide unique entry points for further diversification via either fluoride migration coupled with ring opening, or defluorinative functionalization reactions, the latter of which can be used as a late-stage method to install select bioactive moieties. The reaction sequences described herein provide a pathway to functionalize the commonly observed products formed from 1,2-addition into carbonyl electrophiles.
Collapse
Affiliation(s)
- Shuo Guo
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| | - Wei Sun
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| | - Joseph W Tucker
- Medicine Design, Pfizer Inc.: Eastern Point Rd., Groton, CT., 06340, USA
| | - Kevin D Hesp
- Medicine Design, Pfizer Inc.: Eastern Point Rd., Groton, CT., 06340, USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Zhang J, Shao Y, Zheng H, Xue XS. Transition State Stabilization by SCF 2 -H⋅⋅⋅O Bifurcated Hydrogen Bond. Chem Asian J 2023; 18:e202201244. [PMID: 36635229 DOI: 10.1002/asia.202201244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
The difluoromethylthio group (SCF2 H), which is generally considered a highly lipophilic weak hydrogen bonding donor, has attracted special interest from the pharmaceutical and agrochemical industry. Remarkably, there have been relatively few literature investigations of SCF2 H hydrogen bonding interactions. Here, we report the determination of the hydrogen bond acidity parameter A of the SCF2 H in the most popularly used electrophilic difluoromethylthiolating reagent. We present kinetic and computational evidence of the RSCF2 -H⋅⋅⋅O2 bifurcated hydrogen bond for stabilizing the SCF2 H-transferring transition state, which could cause a reversal of apparent electrophilic reactivity of difluoromethylthiolating and trifluoromethylthiolating reagents. Solvent effects on the RSCF2 -H⋅⋅⋅O2 bifurcated hydrogen bonds will also be discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yingbo Shao
- College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hanliang Zheng
- College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiao-Song Xue
- College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
16
|
Louis-Goff T, Trinh HV, Chen E, Rheingold AL, Hyvl J. Synthesis of Chiral Hypervalent Trifluoromethyl Organobismuth Complexes and Enantioselective Olefin Difluorocarbenation Screenings. Chempluschem 2023; 88:e202200450. [PMID: 36782373 DOI: 10.1002/cplu.202200450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Two hypervalent trifluoromethyl organobismuth complexes were prepared from commercially available chiral amines, (R)-1-cyclohexylethylamine and (1R, 2R, 3R, 5S)-(-)-isopinocampheylamine; however, only the complex from the latter amine was prepared as a single stereoisomer. Both organobismuth complexes were fully characterized by NMR spectroscopy and single-crystal X-ray crystallography, revealing that the structures were similar to previously reported complexes with a hypervalent Bi-N bond. The complexes were catalytically active in olefin difluorocarbenation with Ruppert-Prakash reagent (TMS-CF3 ) used as a terminal source of CF2 . The catalyst derived from isopinocampheylamine was screened with three prochiral olefins of various reactivity in DCM and toluene. All reactions afforded the 1,1-difluorocyclopropanes in good yields, but no enantiomeric excess was observed.
Collapse
Affiliation(s)
- Thomas Louis-Goff
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii, 96822, USA
| | - Huu Vinh Trinh
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii, 96822, USA.,Present Address: Chemical Engineering in Advanced Materials and Renewable Energy Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Eileen Chen
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii, 96822, USA.,Present Address: John A. Burns School of Medicine, 651 Ilalo St, Honolulu, HI, 96813, USA
| | - Arnold L Rheingold
- Department of Chemistry, University of California, San Diego La Jolla, California, 92093, USA
| | - Jakub Hyvl
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii, 96822, USA
| |
Collapse
|
17
|
Box JR, Avanthay ME, Poole DL, Lennox AJJ. Electronically Ambivalent Hydrodefluorination of Aryl‐CF 3 groups enabled by Electrochemical Deep‐Reduction on a Ni Cathode. Angew Chem Int Ed Engl 2023; 62:e202218195. [PMID: 36705627 PMCID: PMC10946569 DOI: 10.1002/anie.202218195] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
We report a general procedure for the direct mono- and di-hydrodefluorination of ArCF3 compounds. Exploiting the tunability of electrochemistry and the selectivity enabled by a Ni cathode, the deep reduction garners high selectivity with good to excellent yields up to gram scale. The late-stage peripheral editing of CF3 feedstocks to construct fluoromethyl moieties will aid the rapid diversification of lead-compounds and compound libraries.
Collapse
Affiliation(s)
- John R. Box
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Darren L. Poole
- Discovery High-Throughput ChemistryMedicinal ChemistryGSK Medicines Research CentreStevenageSG1 2NYUK
| | | |
Collapse
|
18
|
Newton JJ, Engüdar G, Brooke AJ, Nodwell MB, Horngren-Rhodes H, Martin RE, Schaffer P, Britton R, Friesen CM. Rapid 18 F- and 19 F-Difluoromethylation through Desulfurative Fluorination of Transient N-, O-, and C-Linked Dithioles. Chemistry 2023; 29:e202202862. [PMID: 36318597 DOI: 10.1002/chem.202202862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022]
Abstract
The difluoromethyl group plays an important role in modern medicinal and agrochemistry. While several difluoromethylation reagents have been reported, these typically rely on difluoromethyl carbenes or anions, or target specific processes. Here, we describe a conceptually unique and general process for O-H, N-H and C-H difluoromethylation that involves the formation of a transient dithiole followed by facile desulfurative fluorination using silver(I) fluoride. We also introduce the 5,6-dimethoxy-1,3-benzodithiole (DMBDT) function, which undergoes sufficiently rapid desulfurative fluorination to additionally support 18 F-difluoromethylation. This new process is compatible with the wide range of functional groups typically encountered in medicinal chemistry campaigns, and the use of Ag18 F is demonstrated in the production of 18 F-labeled derivatives of testosterone, perphenazine, and melatonin, 58.0±2.2, 20.4±0.3 and 32.2±3.6 MBq μmol-1 , respectively. We expect that the DMBDT group and this 18 F/19 F-difluoromethylation process will inspire and support new efforts in medicinal chemistry, agrochemistry and radiotracer production.
Collapse
Affiliation(s)
- Josiah J Newton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.,Neufeld Science Centre, Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, British Columbia, V2Y 1Y1, Canada
| | - Gökçe Engüdar
- Life Sciences Division, TRIUMF Vancouver, British Columbia, V6T 2A3(Canada), Department of Radiology, 775 Laurel Street, 11th floor, Vancouver, BC V5Z 1M9, Canada
| | - Alan J Brooke
- Neufeld Science Centre, Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, British Columbia, V2Y 1Y1, Canada
| | - Matthew B Nodwell
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Holly Horngren-Rhodes
- Neufeld Science Centre, Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, British Columbia, V2Y 1Y1, Canada
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Paul Schaffer
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.,Life Sciences Division, TRIUMF Vancouver, British Columbia, V6T 2A3(Canada), Department of Radiology, 775 Laurel Street, 11th floor, Vancouver, BC V5Z 1M9, Canada
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Chadron M Friesen
- Neufeld Science Centre, Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, British Columbia, V2Y 1Y1, Canada
| |
Collapse
|
19
|
Choi K, Mormino MG, Kalkman ED, Park J, Hartwig JF. Palladium-Catalyzed Aryldifluoromethylation of Aryl Halides with Aryldifluoromethyl Trimethylsilanes. Angew Chem Int Ed Engl 2022; 61:e202208204. [PMID: 35960816 PMCID: PMC9530024 DOI: 10.1002/anie.202208204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 11/12/2022]
Abstract
Diaryl difluoromethanes are valuable targets for medicinal chemistry because they are bioisosteres of diaryl ethers and can function as replacements for diaryl methane, ketone, and sulfone groups. However, methods to prepare diaryl difluoromethanes are scarce, especially methods starting from abundant aryl halides. We report the Pd-catalyzed aryldifluoromethylation of aryl halides with aryldifluoromethyl trimethylsilanes (TMSCF2 Ar). The reaction occurs when the catalyst contains a simple, but unusual, dialkylaryl phosphine ligand that promotes transmetallation of the silane. Computational studies show that reductive elimination following transmetallation occurs with a low barrier, despite the fluorine atoms on the α-carbon, due to coordination of the difluorobenzyl π-system to palladium. The co-development of a cobalt-catalyzed synthesis of the silanes broadened the scope of the process including several applications to the synthesis biologically relevant diaryl difluoromethanes.
Collapse
Affiliation(s)
- Kyoungmin Choi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michael G. Mormino
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric D. Kalkman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John Park
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Choi K, Mormino MG, Kalkman ED, Park J, Hartwig JF. Palladium‐Catalyzed Aryldifluoromethylation of Aryl Halides with Aryldifluoromethyl Trimethylsilanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kyoungmin Choi
- University of California Berkeley Chemistry UNITED STATES
| | | | | | - John Park
- University of California Berkeley Chemistry UNITED STATES
| | - John F. Hartwig
- University of California Department of Chemistry 718 LATIMER HALL #1460 94720-1460 Berkeley UNITED STATES
| |
Collapse
|
21
|
Vinayagam V, Karre SK, Kasu SR, Srinath R, Naveen Babu Bathula HS, Sadhukhan SK. AlCl 3-Mediated CHF 2 Transfer and Cyclocondensation of Difluoromethoxy Functionalized o-Phenylenediamines to Access N-Substituted Benzimidazoles. Org Lett 2022; 24:6142-6147. [PMID: 35938941 DOI: 10.1021/acs.orglett.2c02231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report for the first time a transition-metal-free frustrated Lewis pair (FLP) catalyzed CHF2 group migration from an oxygen atom to the neighboring nitrogen atom, which led to the synthesis of N-substituted benzimidazoles at room temperature with excellent yields, broad functional group tolerance, and a short reaction time. The oxygen-attached difluoromethane acted as a C1 source in the synthesis of N-substituted benzimidazoles in the presence of AlCl3 by cleaving one C-O bond and two C-F bonds, resulting in formation of two new C-N bonds.
Collapse
Affiliation(s)
- Vinothkumar Vinayagam
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Satish Kumar Karre
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Sreenivasa Reddy Kasu
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Ravuri Srinath
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Hema Sundar Naveen Babu Bathula
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Subir Kumar Sadhukhan
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| |
Collapse
|
22
|
Wright SE, Bandar JS. A Base-Promoted Reductive Coupling Platform for the Divergent Defluorofunctionalization of Trifluoromethylarenes. J Am Chem Soc 2022; 144:13032-13038. [PMID: 35833781 PMCID: PMC9817215 DOI: 10.1021/jacs.2c05044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report a trifluoromethylarene reductive coupling method that dramatically expands the scope of difluorobenzylic substructures accessible via C-F bond functionalization. Catalytic quantities of a Lewis base, combined with a disilane reagent in formamide solvent, promotes the replacement of a single trifluoromethyl fluorine atom with a silylated hemiaminal functional group. The reaction proceeds through a difluorobenzyl silane intermediate that can also be isolated. Together, these defluorinated products are shown to provide rapid access to over 20 unique difluoroalkylarene scaffolds.
Collapse
Affiliation(s)
- Shawn E. Wright
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S. Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
23
|
Granados A, Dhungana RK, Sharique M, Majhi J, Molander GA. From Styrenes to Fluorinated Benzyl Bromides: A Photoinduced Difunctionalization via Atom Transfer Radical Addition. Org Lett 2022; 24:4750-4755. [PMID: 35766376 PMCID: PMC10412001 DOI: 10.1021/acs.orglett.2c01699] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An operationally simple and practical method is disclosed to achieve the difunctionalization of styrenes, generating fluorinated benzyl bromides via a photoinduced atom transfer radical addition process. The developed method is mild, atom-economical, cost-effective, employs very low photocatalyst loading (1000 ppm), and is highly compatible with a broad range of functional groups on styrene. The versatility of the fluorinated benzyl bromides is demonstrated through their derivatization to a variety of valuable compounds.
Collapse
Affiliation(s)
| | | | | | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
24
|
Zhu YY, Liu S, Huang Y, Qing FL, Xu XH. Photoredox catalyzed difluoro(phenylthio)methylation of 2,3-allenoic acids with {difluoro(phenylthio)methyl}triphenylphosphonium triflate. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Nambo M, Crudden CM. Sequential Transformations of Organosulfones on the Basis of Properties of Sulfonyl Groups. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules, Nagoya University
| | | |
Collapse
|
26
|
Gillaizeau I, Dondasse I, Nicolas C, Mimoun L, Sukach V, Meudal H. Iridium‐Catalyzed β‐C(sp
2
)−H Borylation of Enamides – Access to 3,3‐Dihalogeno‐2‐methoxypiperidines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Isabelle Gillaizeau
- Institute of Organic and Analytical Chemistry (ICOA), UMR 7311 CNRS Université d'Orléans, Pôle chimie Rue de Chartres 45100 Orléans France
| | - Ismaël Dondasse
- Institute of Organic and Analytical Chemistry (ICOA), UMR 7311 CNRS Université d'Orléans, Pôle chimie Rue de Chartres 45100 Orléans France
| | - Cyril Nicolas
- Institute of Organic and Analytical Chemistry (ICOA), UMR 7311 CNRS Université d'Orléans, Pôle chimie Rue de Chartres 45100 Orléans France
| | - Liliane Mimoun
- Institute of Organic and Analytical Chemistry (ICOA), UMR 7311 CNRS Université d'Orléans, Pôle chimie Rue de Chartres 45100 Orléans France
| | - Volodymyr Sukach
- Institute of Organic and Analytical Chemistry (ICOA), UMR 7311 CNRS Université d'Orléans, Pôle chimie Rue de Chartres 45100 Orléans France
| | - Hervé Meudal
- Center for Molecular Biophysics, CBM, UPR 4301 CNRS Rue Charles SADRON 45071 Orléans cedex 02 France
| |
Collapse
|
27
|
Wade Wolfe MM, Guo S, Yu LS, Vogel TR, Tucker JW, Szymczak NK. Nucleophilic strategies to construct –CF 2– linkages using borazine-CF 2Ar reagents. Chem Commun (Camb) 2022; 58:11705-11708. [DOI: 10.1039/d2cc01938h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using nucleophilic, boron-based –CF2Ar reagents, we demonstrate three methods to form C–CF bonds: (1) nucleophilic aromatic substitution, (2) palladium catalyzed cross-coupling, and (3) nucleophilic substitution.
Collapse
Affiliation(s)
| | - Shuo Guo
- University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109, USA
| | - Lucy S. Yu
- University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109, USA
| | - Trenton R. Vogel
- University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109, USA
| | - Joseph W. Tucker
- Medicine Design, Pfizer Inc., Eastern Point Rd., Groton, CT, 06340, USA
| | | |
Collapse
|
28
|
Deng Y, Li Y, Wang Y, Sun S, Ma S, Jia P, Li W, Wang K, Yan W. Efficient enantioselective synthesis of CF2H-containing dispiro[benzo[b]thiophene-oxindole-pyrrolidine]s via organocatalytic cycloaddition. Org Chem Front 2022. [DOI: 10.1039/d1qo01392k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel kind of CF2H-containing dispiro[benzo[b]thiophene-oxindole-pyrrolidine] has been achieved via an organocatalyzed 1,3-dipole reaction.
Collapse
Affiliation(s)
- Yabo Deng
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongzhen Li
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yalan Wang
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuo Sun
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sichao Ma
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pengfei Jia
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenguang Li
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kairong Wang
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenjin Yan
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
29
|
Zhang Y, Lai GW, Nie LJ, He Q, Lin MJ, Chi R, Lu DL, Fan X. Organocatalytic difluorobenzylation of 1,2-diketones via mild cleavage of carbon–carbon bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01645h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Difluoroacetophenones (DFAPs) are developed as a class of novel and practical reagents for organocatalytic difluorobenzylation reactions.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Guo-Wei Lai
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Long-Jun Nie
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Qifang He
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Mei-Juan Lin
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Rong Chi
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Dong-Liang Lu
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
30
|
Deng Y, Sun S, Wang Y, Jia P, Li W, Wang K, Yan W. Asymmetric Synthesis of Chiral
α
‐CF
2
H Spiro[Indoline‐3,3′‐Thiophene] via Phase‐Transfer Catalyzed Sulfa‐Michael/Michael Domino Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yabo Deng
- The Institute of Pharmacology School of Basic Medical Sciences Lanzhou University Lanzhou 730000 People's Republic of China
| | - Shuo Sun
- The Institute of Pharmacology School of Basic Medical Sciences Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yuqiang Wang
- School of Stomatology Lanzhou University Lanzhou 730000 People's Republic of China
| | - Pengfeng Jia
- The Institute of Pharmacology School of Basic Medical Sciences Lanzhou University Lanzhou 730000 People's Republic of China
| | - Wenguang Li
- The Institute of Pharmacology School of Basic Medical Sciences Lanzhou University Lanzhou 730000 People's Republic of China
| | - Kairong Wang
- The Institute of Pharmacology School of Basic Medical Sciences Lanzhou University Lanzhou 730000 People's Republic of China
| | - Wenjin Yan
- The Institute of Pharmacology School of Basic Medical Sciences Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
31
|
Yang RY, Gao X, Gong K, Wang J, Zeng X, Wang M, Han J, Xu B. Synthesis of ArCF 2X and [ 18F]Ar-CF 3 via Cleavage of the Trifluoromethylsulfonyl Group. Org Lett 2021; 24:164-168. [PMID: 34882424 DOI: 10.1021/acs.orglett.1c03803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A versatile synthesis of ArCF2X and [18F]Ar-CF3 type compounds from readily available ArCF2SO2CF3 has been developed. Diverse nucleophiles, including weak nucleophiles such as halides (18F-, Cl-, Br-, and I-), RSH, and ROH, could react with ArCF2SO2CF3 efficiently to give the corresponding difluoromethylene products. The control experiments and the Hammett plot indicated that the reaction might proceed through a difluorocarbocation intermediate generated from the steric hindrance-assisted cleavage of the trifluoromethylsulfonyl group.
Collapse
Affiliation(s)
- Ren-Yin Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, China
| | - Xinyan Gao
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 201620, China
| | - Kehao Gong
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 201620, China
| | - Juan Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, China
| | - Xiaojun Zeng
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Mingwei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai 200032, China
| | - Junbin Han
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 201620, China
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, China
| |
Collapse
|
32
|
Peng Q, Yan B, Li F, Lang M, Zhang B, Guo D, Bierer D, Wang J. Biomimetic enantioselective synthesis of β,β-difluoro-α-amino acid derivatives. Commun Chem 2021; 4:148. [PMID: 36697625 PMCID: PMC9814941 DOI: 10.1038/s42004-021-00586-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/06/2021] [Indexed: 01/28/2023] Open
Abstract
Although utilization of fluorine compounds has a long history, synthesis of chiral fluorinated amino acid derivatives with structural diversity and high stereoselectivity is still very appealing and challenging. Here, we report a biomimetic study of enantioselective [1,3]-proton shift of β,β-difluoro-α-imine amides catalyzed by chiral quinine derivatives. A wide range of corresponding β,β-difluoro-α-amino amides were achieved in good yields with high enantioselectivities. The optically pure β,β-difluoro-α-amino acid derivatives were further obtained, which have high application values in the synthesis of fluoro peptides, fluoro amino alcohols and other valuable fluorine-containing molecules.
Collapse
Affiliation(s)
- Qiupeng Peng
- School of Pharmaceutical Sciences, Department of Chemistry, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, 100084, Beijing, China
| | - Bingjia Yan
- School of Pharmaceutical Sciences, Department of Chemistry, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, 100084, Beijing, China
- Leibniz-Forchungsinstituts für Molekulare Pharmakologies (FMP), 13125, Berlin, Germany
| | - Fangyi Li
- School of Pharmaceutical Sciences, Department of Chemistry, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, 100084, Beijing, China
| | - Ming Lang
- School of Pharmaceutical Sciences, Department of Chemistry, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, 100084, Beijing, China
| | - Bei Zhang
- School of Pharmaceutical Sciences, Department of Chemistry, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, 100084, Beijing, China
| | - Donghui Guo
- School of Pharmaceutical Sciences, Department of Chemistry, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, 100084, Beijing, China
| | - Donald Bierer
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany.
| | - Jian Wang
- School of Pharmaceutical Sciences, Department of Chemistry, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
33
|
Nambo M, Crudden CM. Transition Metal-Catalyzed Cross-Couplings of Benzylic Sulfone Derivatives. CHEM REC 2021; 21:3978-3989. [PMID: 34523788 DOI: 10.1002/tcr.202100210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022]
Abstract
In recent years, the use of organosulfones as a new class of cross-coupling partner in transition-metal catalyzed reactions has undergone significant advancement. In this personal account, our recent investigations into desulfonylative cross-coupling reactions of benzylic sulfone derivatives catalyzed by Pd, Ni, and Cu catalysis is described. Combined with the facile α-functionalizations of sulfones, our methods can be used to form valuable multiply-arylated structures such as di-, tri-, and, tetraarylmethanes from readily available substrates. The reactivity of sulfones can be increased by introducing electron-withdrawing substituents such as 3,5-bis(trifluoromethyl)phenyl and trifluoromethyl groups, which enable more challenging cross-coupling reactions. Reactive intermediates including Cu-carbene complexes were identified as key intermediates in sulfone activation, representing new types of C-SO2 bond activation processes. These results indicate sulfones are powerful functional groups, enabling new catalytic desulfonylative transformations.
Collapse
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-860, Japan
| | - Cathleen M Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-860, Japan.,Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
34
|
Abstract
A diversity-oriented and C2-selective synthesis of difluoroalkyl-substituted heteroarenes from three fragments, N-methoxyazinium salts, difluorocarbene, and electrophilic or radical reagents, is described. The reaction proceeds via the addition of difluorinated phosphorus ylide to in situ methylated heteroarene N-oxides, leading to phosphonium salts, which can undergo further transformations under basic or photoinduced conditions.
Collapse
Affiliation(s)
- Alexey L Trifonov
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
35
|
Zhang Z, Li X, Shi D. Visible‐Light‐Promoted Oxy‐difluoroalkylation of Aryl Alkynes for the Synthesis of
β
‐Fluoroenones and
α
‐Difluoroalkyl Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
- Laboratory for Marine Biology and Biotechnology Pilot National Laboratory for Marine Science and Technology 168 Wenhai Road Qingdao 266237 Shandong People's Republic of China
| |
Collapse
|
36
|
Ito S, Takahashi F, Yorimitsu H. Defluorinative Diborasodiation of Benzotrifluorides with Bis(pinacolato)Diboron and Sodium. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shiori Ito
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Fumiya Takahashi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
37
|
Zheng Y, Xie ZZ, He XC, Chen YS, Cheng WS, Chen K, Xiang HY, Chen XQ, Yang H. Phosphonium Ylide-Mediated Programmable Fluorination to Access Mono- and Difluoromethylarenes. Org Lett 2021; 23:2538-2542. [DOI: 10.1021/acs.orglett.1c00457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yan-Shan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Wen-Shuo Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
38
|
Huang L, Liu W, Zhao LL, Zhang Z, Yan X. Base-Catalyzed H/D Exchange Reaction of Difluoromethylarenes. J Org Chem 2021; 86:3981-3988. [PMID: 33591190 DOI: 10.1021/acs.joc.0c02827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The budding deuteriodifluoromethyl group (CF2D) is a potentially significant functional group in medicinal chemistry. Herein, we investigated t-BuOK-catalyzed H/D exchange reaction of difluoromethylarenes in DMSO-d6 solution. The method provides excellent deuterium incorporation at the difluoromethyl group. Meanwhile, the effect of a trace amount of D2O in DMSO-d6 solution on the deuteration reaction was also investigated.
Collapse
Affiliation(s)
- Linwei Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Wei Liu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Liang-Liang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
39
|
Carvalho DR, Christian AH. Modern approaches towards the synthesis of geminal difluoroalkyl groups. Org Biomol Chem 2021; 19:947-964. [PMID: 33406177 DOI: 10.1039/d0ob02374d] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review will cover the importance of and most recent approaches toward geminal difluoroalkyl groups. Transition metal-mediated, photochemical, organocatalytic, and other methods as well as their mechanistic implications will be discussed, with special emphasis on applications to biologically-relevant compounds.
Collapse
Affiliation(s)
- Dayanne R Carvalho
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| | - Alec H Christian
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| |
Collapse
|
40
|
Radical coupling of arylthiodifluoroacetic acids and ethynylbenziodoxolone (EBX) reagents to access arylthiodifluoromethylated alkynes. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Xu X, Tao N, Fan WT, Tu G, Geng J, Zhang J, Zhao Y. Ruthenium-Catalyzed Meta-Selective C-H Difluoromethylation of Phenol Derivatives. J Org Chem 2020; 85:13868-13876. [PMID: 33113330 DOI: 10.1021/acs.joc.0c01909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
With pyrimidine as the directing group, we achieved the meta-selective difluoromethylation of phenol derivatives using ruthenium as a catalyst. This synthetic scheme provided an efficient method for the syntheses of fluorine-containing phenol derivatives. A wide variety of phenol derivatives were well-suited, affording the corresponding products in moderate-to-good yields.
Collapse
Affiliation(s)
- Xu Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Na Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wei-Tai Fan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Guangliang Tu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jingyao Geng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jingyu Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
42
|
Santos L, Panossian A, Donnard M, Vors JP, Pazenok S, Bernier D, Leroux FR. Deprotonative Functionalization of the Difluoromethyl Group. Org Lett 2020; 22:8741-8745. [PMID: 33089999 DOI: 10.1021/acs.orglett.0c03380] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The functionalization of 3-(difluoromethyl)pyridine has been developed via direct deprotonation of -CHF2 with a lithiated base and subsequent trapping with various electrophiles in THF. In situ quenching gives access to 3-pyridyl-CF2-SiMe2Ph as a new silylated compound, which can be postfunctionalized with a fluoride source to obtain a larger library of 3-(difluoroalkyl)pyridines that could not be accessed via direct deprotonation.
Collapse
Affiliation(s)
- Laura Santos
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, Strasbourg 67087, France
| | - Armen Panossian
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, Strasbourg 67087, France
| | - Morgan Donnard
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, Strasbourg 67087, France
| | - Jean-Pierre Vors
- Bayer S.A.S., 14 Impasse Pierre Baizet, BP99163, 69263 Lyon Cedex 09, France
| | - Sergii Pazenok
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany
| | - David Bernier
- Bayer S.A.S., 14 Impasse Pierre Baizet, BP99163, 69263 Lyon Cedex 09, France
| | - Frédéric R Leroux
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, Strasbourg 67087, France
| |
Collapse
|
43
|
Rong MY, Li JS, Zhou Y, Zhang FG, Ma JA. Catalytic Enantioselective Synthesis of Difluoromethylated Tetrasubstituted Stereocenters in Isoindolones Enabled by a Multiple-Fluorine System. Org Lett 2020; 22:9010-9015. [DOI: 10.1021/acs.orglett.0c03406] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Meng-Yu Rong
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jin-Shan Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yin Zhou
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Fuzhou 350207, Binhai New City, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Fuzhou 350207, Binhai New City, P. R. China
| |
Collapse
|
44
|
Wade Wolfe MM, Shanahan JP, Kampf JW, Szymczak NK. Defluorinative Functionalization of Pd(II) Fluoroalkyl Complexes. J Am Chem Soc 2020; 142:18698-18705. [DOI: 10.1021/jacs.0c09505] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael M. Wade Wolfe
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | - James P. Shanahan
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Jeff W. Kampf
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
45
|
Xu Z, Zhang W, Lin J, Jin C, Xiao J. Pd‐Catalyzed
Transfer of Difluorocarbene for Three Component
Cross‐Coupling
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhi‐Wei Xu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi Hubei 435002 China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jin‐Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Chuan‐Ming Jin
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi Hubei 435002 China
| | - Ji‐Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
46
|
Levin MD, Ovian JM, Read JA, Sigman MS, Jacobsen EN. Catalytic Enantioselective Synthesis of Difluorinated Alkyl Bromides. J Am Chem Soc 2020; 142:14831-14837. [PMID: 32799536 DOI: 10.1021/jacs.0c07043] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report an iodoarene-catalyzed enantioselective synthesis of β,β-difluoroalkyl bromide building blocks. The transformation involves an oxidative rearrangement of α-bromostyrenes, utilizing HF-pyridine as the fluoride source and m-CPBA as the stoichiometric oxidant. A catalyst decomposition pathway was identified, which, in tandem with catalyst structure-activity relationship studies, facilitated the development of an improved catalyst providing higher enantioselectivity with lower catalyst loadings. The versatility of the difluoroalkyl bromide products was demonstrated via highly enantiospecific substitution reactions with suitably reactive nucleophiles. The origins of enantioselectivity were investigated using computed interaction energies of simplified catalyst and substrate structures, providing evidence for both CH-π and π-π transition state interactions as critical features.
Collapse
Affiliation(s)
- Mark D Levin
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - John M Ovian
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jacquelyne A Read
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States.,Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Eric N Jacobsen
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
47
|
Kallemeyn JM, Engstrom KM, Pelc MJ, Lukin KA, Morrill WH, Wei H, Towne TB, Henle J, Nere NK, Welch DS, Shekhar S, Ravn MM, Zhao G, Fickes MG, Ding C, Vinci JC, Marren J, Cink RD. Development of a Large-Scale Route to Glecaprevir: Synthesis of the Macrocycle via Intramolecular Etherification. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeffrey M. Kallemeyn
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Kenneth M. Engstrom
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Matthew J. Pelc
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Kirill A. Lukin
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Westin H. Morrill
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Haojuan Wei
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Timothy B. Towne
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Jeremy Henle
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Nandkishor K. Nere
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Dennie S. Welch
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Shashank Shekhar
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Matthew M. Ravn
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Gang Zhao
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Michael G. Fickes
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Chen Ding
- Analytical Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - John C. Vinci
- Analytical Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - James Marren
- Analytical Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Russell D. Cink
- Process Research & Development, AbbVie Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
48
|
Zhu XL, Huang Y, Xu XH, Qing FL. Silver-Catalyzed C–H Aryloxydifluoromethylation and Arylthiodifluoromethylation of Heteroarenes. Org Lett 2020; 22:5451-5455. [DOI: 10.1021/acs.orglett.0c01826] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiao-Lei Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Yangen Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
49
|
Selective addition reactions of difluoromethyltriazoles to ketones and aldehydes without the formation of difluorocarbene. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Hys VY, Shevchuk OI, Vashchenko BV, Karpenko OV, Gorlova AO, Grygorenko OO. Functionalization of 2-Trifluoromethyl-1H
-pyrrole: A Convenient Entry into Advanced Fluorinated Building Blocks Including all Isomeric 2-(Trifluoromethyl)prolines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Vasyl Yu. Hys
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | | | - Bohdan V. Vashchenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | | | - Alina O. Gorlova
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Institute of Organic Chemistry; National Academy of Sciences of Ukraine; Murmanska Street 5 02094 Kyiv Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| |
Collapse
|