1
|
Mezenov YA, Bachinin SV, Kenzhebayeva YA, Efimova AS, Alekseevskiy PV, Poloneeva D, Lubimova A, Povarov SA, Shirobokov V, Dunaevskiy MS, Falchevskaya AS, Potapov AS, Novikov A, Selyutin AA, Boulet P, Kulakova AN, Milichko VA. Transformation of 3D Metal-Organic Frameworks into Nanosheets with Enhanced Memristive Behavior for Electronic Data Processing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405989. [PMID: 40025848 PMCID: PMC12021068 DOI: 10.1002/advs.202405989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/16/2024] [Indexed: 03/04/2025]
Abstract
The transition from three-dimensional (3D) to two-dimensional (2D) semiconducting and insulating materials for micro- and opto-electronics is driven by an energy efficiency and device miniaturization. Herein, the simplicity of growth and stacking of 2D metal-organic framework (MOF) with such planar devices opens up new perspectives in controlling their efficiency and operating parameters. Here, the study reports on 3D to 2D MOF' structural transformation to achieve ultrathin nanosheets with enhanced insulating properties. Based on neutral N-donor ligands, the study designs and solvothermally synthesizes 3D MOFs followed by their thermal and solvent treatment to implement the transformation. A set of single crystal and powder X-ray diffraction, electron microscopy, Raman spectroscopy, numerical modeling, and mechanical exfoliation confirm the nature of the transformation. Compared with initial 3D MOF, its nanosheets demonstrate sufficient changes in electronic properties, expressed as tuning their absorption, photoluminescence, and resistivity. The latter allows to demonstrate the prototype of ultrathin memristive element based on a 4 to 32 nm MOF nanosheet with enhanced functionality (150 to 1400 ON/OFF ratio, retention time exceeding 7300 s, and 100 cycles of switching), thereby, extending the list of scalable and insulating 2D MOFs for micro- and opto-electronics.
Collapse
Affiliation(s)
- Yuri A. Mezenov
- Qingdao Innovation and Development CenterHarbin Engineering UniversityQingdaoShandong266000China
| | - Semyon V. Bachinin
- School of Physics and EngineeringITMO UniversitySt. Petersburg197101Russia
| | | | | | | | - Daria Poloneeva
- Advanced Catalytic Materials (ACM)KAUST Catalysis Center (KCC)Division of Physical Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Anastasia Lubimova
- School of Physics and EngineeringITMO UniversitySt. Petersburg197101Russia
| | | | | | | | - Aleksandra S. Falchevskaya
- ITMO University“Solution Chemistry of Advanced Materials and Technologies” (SCAMT) International InstituteSaint Petersburg191002Russia
| | - Andrei S. Potapov
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of SciencesLaboratory of Metal‐Organic Coordination PolymersNovosibirsk630090Russia
| | - Alexander Novikov
- Saint Petersburg State UniversitySaint Petersburg199034Russia
- Рeoples’ Friendship University of RussiaMoscow117198Russia
| | | | - Pascal Boulet
- Institut Jean LamourUniversit de LorraineUMR CNRS 7198Nancy54011France
| | - Alena N. Kulakova
- School of Physics and EngineeringITMO UniversitySt. Petersburg197101Russia
| | - Valentin A. Milichko
- School of Physics and EngineeringITMO UniversitySt. Petersburg197101Russia
- Institut Jean LamourUniversit de LorraineUMR CNRS 7198Nancy54011France
| |
Collapse
|
2
|
Datta S, Vasini S, Miao X, Liu PQ. Surface-Enhanced Raman Scattering Sensors Employing a Nanoparticle-On-Liquid-Mirror (NPoLM) Architecture. SMALL METHODS 2024; 8:e2400119. [PMID: 38639023 PMCID: PMC11489319 DOI: 10.1002/smtd.202400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Surface-enhanced Raman scattering (SERS) sensors typically employ nanophotonic structures that support high-field confinement and enhancement in hotspots to increase the Raman scattering from target molecules by orders of magnitude. In general, high field and SERS enhancement can be achieved by reducing the critical dimensions and mode volumes of the hotspots to nanoscale. To this end, a multitude of SERS sensors employing photonic structures with nanometric hotspots have been demonstrated. However, delivering analyte molecules into nanometric hotspots is challenging, and the trade-off between field confinement/enhancement and analyte delivery efficiency is a critical limiting factor for the performance of many nanophotonic SERS sensors. Here, a new type of SERS sensor employing solid-metal nanoparticles and bulk liquid metal is demonstrated to form nanophotonic resonators with a nanoparticle-on-liquid-mirror (NPoLM) architecture, which effectively resolves this trade-off. In particular, this unconventional sensor architecture allows for the convenient formation of nanometric hotspots by introducing liquid metal after analyte molecules are efficiently delivered to the surface of gold nanoparticles. In addition, a cost-effective and reliable process is developed to produce gold nanoparticles on a substrate suitable for forming NPoLM structures. These NPoLM structures achieve two orders of magnitude higher SERS signals than the gold nanoparticles alone.
Collapse
Affiliation(s)
- Shreyan Datta
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shoaib Vasini
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Xianglong Miao
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Peter Q. Liu
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
3
|
Shoup DN, Fan S, Zapata-Herrera M, Schorr HC, Aizpurua J, Schultz ZD. Comparison of Gap-Enhanced Raman Tags and Nanoparticle Aggregates with Polarization Dependent Super-Resolution Spectral SERS Imaging. Anal Chem 2024; 96:11422-11429. [PMID: 38958534 DOI: 10.1021/acs.analchem.4c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Strongly confined electric fields resulting from nanogaps within nanoparticle aggregates give rise to significant enhancement of surface-enhanced Raman scattering (SERS). Nanometer differences in gap sizes lead to drastically different confined field strengths; so much attention has been focused on the development and understanding of nanostructures with controlled gap sizes. In this work, we report a novel petal gap-enhanced Raman tag (GERT) consisting of a bipyramid core and a nitrothiophenol (NTP) spacer to support the growth of hundreds of small petals and compare its SERS emission and localization to a traditional bipyramid aggregate. To do this, we use super resolution spectral SERS imaging that simultaneously captures the SERS images and spectra while varying the incident laser polarization. Intensity fluctuations inherent of SERS enabled super resolution algorithms to be applied, which revealed subdiffraction limited differences in the localization with respect to polarization direction for both particles. Interestingly, however, only the traditional bipyramid aggregates experienced a strong polarization dependence in their SERS intensity and in the plasmon-induced conversion of NTP to dimercaptoazobenzene (DMAB), which was localized with nanometer precision to regions of intense electromagnetic fields. The lack of polarization dependence (validated through electromagnetic simulations) and surface reactions from the bipyramid-GERTs suggests that the emissions arising from the bipyramid-GERTs are less influenced by confined fields.
Collapse
Affiliation(s)
- Deben N Shoup
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sanjun Fan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mario Zapata-Herrera
- Center for Materials Physics in San Sebastián (CSIC-UPV/EHU), Donostia-San Sebastián 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián 20018, Spain
| | - Hannah C Schorr
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Javier Aizpurua
- Donostia International Physics Center, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Electricity and Electronics, University of the Basque Country UPV/EHU, ESP, 48940 Leioa, Spain
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Solov’yov AV, Verkhovtsev AV, Mason NJ, Amos RA, Bald I, Baldacchino G, Dromey B, Falk M, Fedor J, Gerhards L, Hausmann M, Hildenbrand G, Hrabovský M, Kadlec S, Kočišek J, Lépine F, Ming S, Nisbet A, Ricketts K, Sala L, Schlathölter T, Wheatley AEH, Solov’yov IA. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chem Rev 2024; 124:8014-8129. [PMID: 38842266 PMCID: PMC11240271 DOI: 10.1021/acs.chemrev.3c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.
Collapse
Affiliation(s)
| | | | - Nigel J. Mason
- School
of Physics and Astronomy, University of
Kent, Canterbury CT2 7NH, United
Kingdom
| | - Richard A. Amos
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Gérard Baldacchino
- Université
Paris-Saclay, CEA, LIDYL, 91191 Gif-sur-Yvette, France
- CY Cergy Paris Université,
CEA, LIDYL, 91191 Gif-sur-Yvette, France
| | - Brendan Dromey
- Centre
for Light Matter Interactions, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Martin Falk
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Juraj Fedor
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Luca Gerhards
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Faculty
of Engineering, University of Applied Sciences
Aschaffenburg, Würzburger
Str. 45, 63743 Aschaffenburg, Germany
| | | | - Stanislav Kadlec
- Eaton European
Innovation Center, Bořivojova
2380, 25263 Roztoky, Czech Republic
| | - Jaroslav Kočišek
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Franck Lépine
- Université
Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, F-69622, Villeurbanne, France
| | - Siyi Ming
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Kate Ricketts
- Department
of Targeted Intervention, University College
London, Gower Street, London WC1E 6BT, United Kingdom
| | - Leo Sala
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Thomas Schlathölter
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
- University
College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands
| | - Andrew E. H. Wheatley
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Yunusa U, Warren N, Schauer D, Srivastava P, Sprague-Klein E. Plasmon resonance dynamics and enhancement effects in tris(2,2'-bipyridine)ruthenium(II) gold nanosphere oligomers. NANOSCALE 2024. [PMID: 38411615 DOI: 10.1039/d3nr06129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Ruthenium-based metal complexes are one of the most widely studied dyes because of their rich photochemistry and light-harvesting properties. Significant attention has been paid to the energy and charge transfer dynamics of these dyes on semiconductor substrates. However, studies on photophysical and photochemical properties of these dyes in plasmonic environments are rare. In this study, we report a plasmon-mediated resonance energy transfer in an optimized oligomer system that enhances the photoexcited population of the well known dye, tris(2,2'-bipyridine)ruthenium(II), [Ru(BPY)3]2+ adsorbed on gold nanosphere surfaces with a defluorescenced Raman signal. Structural and chemical information is collected using a range of techniques that include in situ time-resolved UV/VIS, DLS, SERS, and TA. The findings have great potential to impact nanoscience broadly with special emphasis on surface photocatalysis, redox chemistry, and solar energy harvesting.
Collapse
Affiliation(s)
- Umar Yunusa
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Natalie Warren
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - David Schauer
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
- ETH Zurich, Department of Chemistry and Applied Biosciences, LPC, Vladimir-Prelog-Weg 2, 8049 Zürich, Switzerland
| | | | - Emily Sprague-Klein
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
6
|
Warkentin CL, Frontiera RR. Quantifying the ultrafast and steady-state molecular reduction potential of a plasmonic photocatalyst. Proc Natl Acad Sci U S A 2023; 120:e2305932120. [PMID: 37874859 PMCID: PMC10623017 DOI: 10.1073/pnas.2305932120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Plasmonic materials are promising photocatalysts as they are well suited to convert light into hot carriers and heat. Hot electron transfer is suggested as the driving force in many plasmon-driven reactions. However, to date, there are no direct molecular measures of the rate and yield of plasmon-to-molecule electron transfer or energy of these electrons on the timescale of plasmon decay. Here, we use ultrafast and spectroelectrochemical surface-enhanced Raman spectroscopy to quantify electron transfer from a plasmonic substrate to adsorbed methyl viologen molecules. We observe a reduction yield of 2.4 to 3.5% on the picosecond timescale, with plasmon-induced potentials ranging from [Formula: see text]3.1 to [Formula: see text]4.5 mV. Excitingly, some of these reduced species are stabilized and persist for tens of minutes. This work provides concrete metrics toward optimizing material-molecule interactions for efficient plasmon-driven photocatalysis.
Collapse
|
7
|
Kumar N, Maiti N, Thomas S. Insights into Plasmon-Induced Dimerization of Rhodanine-A Surface-Enhanced Raman Scattering Study. J Phys Chem A 2023; 127:4429-4439. [PMID: 37184576 DOI: 10.1021/acs.jpca.3c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Plasmon-mediated chemical reactions (PMCRs) have attracted considerable interest in recent times. The PMCR initiated by hot carriers is known to be influenced by the type of metals and the excitation wavelength. Herein, we have carried out the surface-enhanced Raman scattering (SERS) investigation of rhodanine (Rd), an important pharmacologically active heterocyclic compound, adsorbed on silver and gold nanoparticles (AgNP and AuNP) using 514.5 and 632.8 nm lasers. The prominent Raman band at 1566 cm-1 observed in the SERS spectra is attributed to the characteristic ν(C═C) stretching vibration of the Rd dimer and not of Rd tautomers. The chemical transformation of Rd to Rd dimer on metal surfaces is plausibly triggered by the indirect transfer of energetic hot electrons generated during the non-radiative decay of plasmon. The mechanism involved in the dimerization of Rd via the indirect transfer of hot electrons is also presented. The effect of wavelength on the dimerization of Rd is also observed on the AgNP surface, which indicates that the dimerization occurs more efficiently on the AgNP surface with excitation at 514.5 nm wavelength.
Collapse
Affiliation(s)
- Naveen Kumar
- Infrared Laser Spectroscopy Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Nandita Maiti
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Susy Thomas
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
8
|
Kumar P, Kuramochi H, Takeuchi S, Tahara T. Photoexcited Plasmon-Driven Ultrafast Dynamics of the Adsorbate Probed by Femtosecond Time-Resolved Surface-Enhanced Time-Domain Raman Spectroscopy. J Phys Chem Lett 2023; 14:2845-2853. [PMID: 36916655 PMCID: PMC10042161 DOI: 10.1021/acs.jpclett.2c03813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Metal nanoparticles have high potential in light-harvesting applications by transferring absorbed photon energy to the adsorbates. However, photoexcited plasmon-driven ultrafast dynamics of the adsorbate on metal nanoparticles have not been clearly understood. We studied ultrafast plasmon-driven processes of trans-1,2-bis(4-pyridyl)ethylene (BPE) adsorbed on gold nanoparticle assemblies (GNAs) using time-resolved surface-enhanced impulsive stimulated Raman spectroscopy (TR-SE-ISRS). After photoexciting the localized surface plasmon resonance (LSPR) band of the GNAs, we measured femtosecond time-resolved surface-enhanced Raman spectra of the adsorbate, which exhibited transient bleach in the Raman signal and following biphasic recovery that proceeds on the time scale of a few tens of picoseconds. The TR-SE-ISRS data were analyzed with singular value decomposition, and the obtained species-associated Raman spectra indicated that photoexcitation of the LSPR band alters chemical interaction between BPE and the GNAs on an ultrafast time scale; initial steady-state BPE is recovered through a precursor state that has weaker interaction with the GNAs.
Collapse
Affiliation(s)
- Pardeep Kumar
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hikaru Kuramochi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Satoshi Takeuchi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
9
|
Zoltowski CM, Shoup DN, Schultz ZD. Investigation of SERS Frequency Fluctuations Relevant to Sensing and Catalysis. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:14547-14557. [PMID: 37425396 PMCID: PMC10327581 DOI: 10.1021/acs.jpcc.2c03150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The excitation of plasmon resonances on nanoparticles generates locally enhanced electric fields commonly used for sensing applications and energetic charge carriers can drive chemical transformations as photocatalysts. The surface-enhanced Raman scattering (SERS) spectra from mercaptobenzoic acid (MBA) adsorbed to gold nanoparticles (AuNP) and silica encapsulated gold nanoparticles (AuNP@silica) can be used to assess the impact of energetic charge carriers on the observed signal. Measurements were recorded using a traditional point focused Raman spectroscopy and a wide-field spectral imaging approach to assess changes in the spectra of the different particles at increasing power density. The wide-field approach provides an increase in sampling statistics and shows evidence of SERS frequency fluctuations from MBA at low power densities, where it is commonly difficult to record spectra from a point focused spot. The increased spectral resolution of the point spectroscopy measurement provides improved peak identification and the ability to correlate the frequency fluctuations to charged intermediate species. Interestingly, our work suggests that isolated nanoparticles may undergo frequency fluctuations more readily than aggregates.
Collapse
Affiliation(s)
| | | | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Zhang Y, Yan L, Guan M, Chen D, Xu Z, Guo H, Hu S, Zhang S, Liu X, Guo Z, Li S, Meng S. Indirect to Direct Charge Transfer Transition in Plasmon-Enabled CO 2 Photoreduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102978. [PMID: 34766740 PMCID: PMC8805563 DOI: 10.1002/advs.202102978] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/11/2021] [Indexed: 05/25/2023]
Abstract
Understanding hot carrier dynamics between plasmonic nanomaterials and its adsorbate is of great importance for plasmon-enhanced photoelectronic processes such as photocatalysis, optical sensing and spectroscopic analysis. However, it is often challenging to identify specific dominant mechanisms for a given process because of the complex pathways and ultrafast interactive dynamics of the photoelectrons. Here, using CO2 reduction as an example, the underlying mechanisms of plasmon-driven catalysis at the single-molecule level using time-dependent density functional theory calculations is clearly probed. The CO2 molecule adsorbed on two typical nanoclusters, Ag20 and Ag147 , is photoreduced by optically excited plasmon, accompanied by the excitation of asymmetric stretching and bending modes of CO2 . A nonlinear relationship has been identified between laser intensity and reaction rate, demonstrating a synergic interplay and transition from indirect hot-electron transfer to direct charge transfer, enacted by strong localized surface plasmons. These findings offer new insights for CO2 photoreduction and for the design of effective pathways toward highly efficient plasmon-mediated photocatalysis.
Collapse
Affiliation(s)
- Yimin Zhang
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190P. R. China
| | - Lei Yan
- School of Physics and Information TechnologyShaanxi Normal UniversityXi'an710119P. R. China
| | - Mengxue Guan
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190P. R. China
| | - Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190P. R. China
| | - Zhe Xu
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Haizhong Guo
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Shiqi Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190P. R. China
| | - Shengjie Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190P. R. China
| | - Xinbao Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190P. R. China
| | - Zhengxiao Guo
- Departments of Chemistry and Mechanical EngineeringThe University of Hong KongHong Kong999077P. R. China
- HKU Zhejiang Institute of Research and InnovationThe University of Hong KongHangzhou311305P. R. China
| | - Shunfang Li
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190P. R. China
| |
Collapse
|
11
|
de Albuquerque CDL, Zoltowski CM, Scarpitti BT, Shoup DN, Schultz ZD. Spectrally Resolved Surface-Enhanced Raman Scattering Imaging Reveals Plasmon-Mediated Chemical Transformations. ACS NANOSCIENCE AU 2021; 1:38-46. [PMID: 34966910 PMCID: PMC8700175 DOI: 10.1021/acsnanoscienceau.1c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
![]()
Challenges investigating
molecules on plasmonic nanostructures
have limited understanding of these interactions. However, the chemically
specific information in the surface-enhanced Raman scattering (SERS)
spectrum can identify perturbations in the adsorbed molecules to provide
insight relevant to applications in sensing, catalysis, and energy
conversion. Here, we demonstrate spectrally resolved SERS imaging,
to simultaneously image and collect the SERS spectra from molecules
adsorbed on individual nanoparticles. We observe intensity and frequency
fluctuations in the SERS signal on the time scale of tens of milliseconds
from n-mercaptobenzoic acid (MBA) adsorbed to gold
nanoparticles. The SERS signal fluctuations correlate with density
functional theory calculations of radicals generated by the interaction
between MBA and plasmon-generated hot electrons. Applying localization
microscopy to the data provides a super-resolution spectrally resolved
map that indicates the plasmonic-induced molecular charging occurs
on the extremities of the nanoparticles, where the localized electromagnetic
field is reported to be most intense.
Collapse
Affiliation(s)
| | - Chelsea M Zoltowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Brian T Scarpitti
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Deben N Shoup
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Huang J, Grys DB, Griffiths J, de Nijs B, Kamp M, Lin Q, Baumberg JJ. Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy. SCIENCE ADVANCES 2021; 7:eabg1790. [PMID: 34088670 PMCID: PMC8177700 DOI: 10.1126/sciadv.abg1790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/21/2021] [Indexed: 05/06/2023]
Abstract
Understanding single-molecule chemical dynamics of surface ligands is of critical importance to reveal their individual pathways and, hence, roles in catalysis, which ensemble measurements cannot see. Here, we use a cascaded nano-optics approach that provides sufficient enhancement to enable direct tracking of chemical trajectories of single surface-bound molecules via vibrational spectroscopy. Atomic protrusions are laser-induced within plasmonic nanojunctions to concentrate light to atomic length scales, optically isolating individual molecules. By stabilizing these atomic sites, we unveil single-molecule deprotonation and binding dynamics under ambient conditions. High-speed field-enhanced spectroscopy allows us to monitor chemical switching of a single carboxylic group between three discrete states. Combining this with theoretical calculation identifies reversible proton transfer dynamics (yielding effective single-molecule pH) and switching between molecule-metal coordination states, where the exact chemical pathway depends on the intitial protonation state. These findings open new domains to explore interfacial single-molecule mechanisms and optical manipulation of their reaction pathways.
Collapse
Affiliation(s)
- Junyang Huang
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - David-Benjamin Grys
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - Jack Griffiths
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - Bart de Nijs
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK.
| | - Marlous Kamp
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - Qianqi Lin
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK.
| |
Collapse
|
13
|
Qi Y, Brasiliense V, Ueltschi TW, Park JE, Wasielewski MR, Schatz GC, Van Duyne RP. Plasmon-Driven Chemistry in Ferri-/Ferrocyanide Gold Nanoparticle Oligomers: A SERS Study. J Am Chem Soc 2020; 142:13120-13129. [DOI: 10.1021/jacs.0c05031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yue Qi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Vitor Brasiliense
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tyler W. Ueltschi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ji Eun Park
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Richard P. Van Duyne
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Abstract
Plasmonic nanostructures can focus light far below the diffraction limit, and the nearly thousandfold field enhancements obtained routinely enable few- and single-molecule detection. However, for processes happening on the molecular scale to be tracked with any relevant time resolution, the emission strengths need to be well beyond what current plasmonic devices provide. Here, we develop hybrid nanostructures incorporating both refractive and plasmonic optics, by creating SiO2 nanospheres fused to plasmonic nanojunctions. Drastic improvements in Raman efficiencies are consistently achieved, with (single-wavelength) emissions reaching 107 counts⋅mW-1⋅s-1 and 5 × 105 counts∙mW-1∙s-1∙molecule-1, for enhancement factors >1011 We demonstrate that such high efficiencies indeed enable tracking of single gold atoms and molecules with 17-µs time resolution, more than a thousandfold improvement over conventional high-performance plasmonic devices. Moreover, the obtained (integrated) megahertz count rates rival (even exceed) those of luminescent sources such as single-dye molecules and quantum dots, without bleaching or blinking.
Collapse
|
15
|
Li J, Wang W, Zhang H, Lu Z, Wu W, Shu M, Han H. Programmable DNA Tweezer-Actuated SERS Probe for the Sensitive Detection of AFB1. Anal Chem 2020; 92:4900-4907. [DOI: 10.1021/acs.analchem.9b04822] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jinjie Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Hao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Zhicheng Lu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Wenxin Wu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Mingbo Shu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| |
Collapse
|
16
|
Liu X, Liu X, Rong P, Liu D. Recent advances in background-free Raman scattering for bioanalysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115765] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1687] [Impact Index Per Article: 337.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
18
|
Kumar N, Thomas S, Rao R, Maiti N, Kshirsagar RJ. Plasmon-Induced Dimerization of Thiazolidine-2,4-dione on Silver Nanoparticles: Revealed by Surface-Enhanced Raman Scattering Study. J Phys Chem A 2019; 123:9770-9780. [PMID: 31633920 DOI: 10.1021/acs.jpca.9b07367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surface-enhanced Raman scattering (SERS) study carried on thiazolidine-2,4-dione (TZD), a pharmacologically active heterocyclic compound, points to the presence of TZD dimer formed by plasmon-induced dimerization reaction of TZD on the surface of silver nanoparticles (Ag NP) at TZD concentrations of 10-3 M and above. The evidence for the presence of dimer was obtained from the appearance of a prominent band at 1566 cm-1 corresponding to the ν(C═C) band (a characteristic vibrational band observed for the Knoevenagel condensation reaction products) which is absent in the normal Raman scattering (NRS) spectra of TZD solid/solution. The observed spectrum compares well with the calculated spectrum of dimer obtained using density functional theory (DFT) calculations. The dimerization reaction is plausibly induced by the transfer of hot electrons generated by the nonradiative plasmon decay of Ag NP, and the proposed reaction mechanism is discussed. However, at lower concentrations (10-4-10-6 M), the characteristic dimer peak (1566 cm-1) is absent and the SERS spectra resemble more the NRS spectrum of TZD with a few changes. The spectral analysis supported by DFT calculations showed that TZD molecules undergo deprotonation and get adsorbed on the Ag NP surface as enolate forms. The proximity of TZD molecules on the surface of Ag NP is a necessary factor for the dimerization to occur. At lower concentrations, most molecules lie apart and reactions between molecules become less feasible, and they remain as monomers on the surface, while at higher concentrations the molecules are closer to each other on the Ag NP surface favoring the dimerization reaction to take place, leading to the formation of the dimer.
Collapse
Affiliation(s)
- Naveen Kumar
- Homi Bhabha National Institute , Anushaktinagar, Mumbai , 400 094 , India
| | | | - Rekha Rao
- Homi Bhabha National Institute , Anushaktinagar, Mumbai , 400 094 , India
| | - N Maiti
- Homi Bhabha National Institute , Anushaktinagar, Mumbai , 400 094 , India
| | - R J Kshirsagar
- Homi Bhabha National Institute , Anushaktinagar, Mumbai , 400 094 , India
| |
Collapse
|
19
|
Hu W, Ye S, Zhang Y, Li T, Zhang G, Luo Y, Mukamel S, Jiang J. Machine Learning Protocol for Surface-Enhanced Raman Spectroscopy. J Phys Chem Lett 2019; 10:6026-6031. [PMID: 31538788 DOI: 10.1021/acs.jpclett.9b02517] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful technique that can capture the electronic-vibrational "fingerprint" of molecules on surfaces. Ab initio prediction of Raman response is a long-standing challenge because of the diversified interfacial structures. Here we show that a cost-effective machine learning (ML) random forest method can predict SERS signals of a trans-1,2-bis (4-pyridyl) ethylene (BPE) molecule adsorbed on a gold substrate. Using geometric descriptors extracted from quantum chemistry simulations of thousands of ab initio molecular dynamics conformations, the ML protocol predicts vibrational frequencies and Raman intensities. The resulting spectra agree with density functional theory calculations and experiment. Predicted SERS responses of the molecule on different surfaces, or under external fields of electric fields and solvent environment, demonstrate the good transferability of the protocol.
Collapse
Affiliation(s)
- Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering , Qilu University of Technology , Jinan , Shandong 250353 , P.R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Sheng Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Yujin Zhang
- School of Electronic and Information Engineering (Department of Physics) , Qilu University of Technology , Jinan , Shandong 250353 , P.R. China
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering , Qilu University of Technology , Jinan , Shandong 250353 , P.R. China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Shaul Mukamel
- Departments of Chemistry and Physics and Astronomy , University of California , Irvine , California 92697 , United States
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| |
Collapse
|
20
|
Zheng LQ, Yang S, Lan J, Gyr L, Goubert G, Qian H, Aprahamian I, Zenobi R. Solution Phase and Surface Photoisomerization of a Hydrazone Switch with a Long Thermal Half-Life. J Am Chem Soc 2019; 141:17637-17645. [DOI: 10.1021/jacs.9b07057] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li-Qing Zheng
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH 8093, Switzerland
| | - Sirun Yang
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Jinggang Lan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH 8057, Switzerland
| | - Luzia Gyr
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH 8093, Switzerland
| | - Guillaume Goubert
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH 8093, Switzerland
| | - Hai Qian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, 505 S Mathews Avenue, Urbana, Illinois, 61801, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH 8093, Switzerland
| |
Collapse
|
21
|
Lindquist NC, de Albuquerque CDL, Sobral-Filho RG, Paci I, Brolo AG. High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. NATURE NANOTECHNOLOGY 2019; 14:981-987. [PMID: 31527841 DOI: 10.1038/s41565-019-0535-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/23/2019] [Indexed: 05/06/2023]
Abstract
The concept of plasmonic hotspots is central to the interpretation of the surface-enhanced Raman scattering (SERS) effect. Although plasmonic hotspots are generally portrayed as static features, single-molecule SERS (SM-SERS) is marked by characteristic time-dependent fluctuations in signal intensity. The origin of those fluctuations can be assigned to a variety of dynamic and complex processes, including molecular adsorption or desorption, surface diffusion, molecular reorientation and metal surface reconstruction. Since each of these mechanisms simultaneously contributes to a fluctuating SERS signal, probing their relative impact in SM-SERS remains an experimental challenge. Here, we introduce a super-resolution imaging technique with an acquisition rate of 800,000 frames per second to probe the spatial and temporal features of the SM-SERS fluctuations from single silver nanoshells. The technique has a spatial resolution of ~7 nm. The images reveal short ~10 µs scattering events localized in various regions on a single nanoparticle. Remarkably, even a fully functionalized nanoparticle was 'dark' more than 98% of the time. The sporadic SERS emission suggests a transient hotspot formation mechanism driven by a random reconstruction of the metallic surface, an effect that dominates over any plasmonic resonance of the particle itself. Our results provide the SERS community with a high-speed experimental approach to study the fast dynamic properties of SM-SERS hotspots in typical room-temperature experimental conditions, with possible implications in catalysis and sensing.
Collapse
Affiliation(s)
- Nathan C Lindquist
- Department of Physics and Engineering, Bethel University, St Paul, MN, USA
| | - Carlos Diego L de Albuquerque
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
| | - Regivaldo G Sobral-Filho
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
| | - Irina Paci
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
22
|
Dong Y, Su Y, Du L, Wang R, Zhang L, Zhao D, Xie W. Plasmon-Enhanced Deuteration under Visible-Light Irradiation. ACS NANO 2019; 13:10754-10760. [PMID: 31487455 DOI: 10.1021/acsnano.9b05523] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deuteration has found important applications in synthetic chemistry especially for pharmaceutical developments. However, conventional deuteration methods using transition-metal catalysts or strong bases generally involve harsh reaction conditions, expensive deuterium source, insufficient efficiency, and poor selectivity. Herein, we report an efficient visible-light-driven dehalogenative deuteration of organic halides using plasmonic Au/CdS as photocatalyst and D2O as deuterium donor. Electron transfer from Au to CdS, which has been confirmed by surface-enhanced Raman spectroscopy, plays a decisive role for the plasmon-mediated dehalogenation. The deuteration is revealed to proceed via a radical pathway in which substrates are first activated by the photoinduced electron transfer to generate aryl radicals, and the radicals are further trapped by D2O to give deuterated products. Under visible-light irradiation, excellent deuteration efficiency is achieved with high functional group tolerance and a wide range of substrates at room temperature. Compared with bare CdS, the photocatalytic activity increases ∼18 times after the loading of plasmonic Au nanoparticles. This work sheds light on the interfacial charge transfer between plasmonic metals and semiconductors as an important criterion for rational design of visible-light photocatalysts.
Collapse
Affiliation(s)
- Yueyue Dong
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Yanling Su
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Lili Du
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Ruifeng Wang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Li Zhang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| |
Collapse
|
23
|
Bhattarai A, El-Khoury PZ. Nanoscale Chemical Reaction Imaging at the Solid-Liquid Interface via TERS. J Phys Chem Lett 2019; 10:2817-2822. [PMID: 31074285 DOI: 10.1021/acs.jpclett.9b00935] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Not all regions of optical field nanolocalization and enhancement are suitable sites for chemical transformations on plasmonic metals. We illustrate the concept using chemically functionalized monocrystalline gold platelets in aqueous solution imaged using a Au-coated tip-enhanced Raman scattering (TERS) probe. For our proof-of-principle study, we select a model plasmon-driven chemical process, namely, the dimerization of p-nitrothiophenol (NTP) to dimercaptoazobenzene. Consistent with recent observations from our group, we find that TERS maps at vibrational resonances corresponding to NTP trace the optical fields that are maximally enhanced toward the edges of the platelets. Conversely, simultaneously recorded product maps reveal that the dimerization process occurs only at specific sites on our substrate. Given the uniformity of the structures and local optical fields at the edges of the gold platelets, our results suggest that molecular crowding and steric effects play a key role in our case of plasmon-driven NTP dimerization at the gold-water interface.
Collapse
Affiliation(s)
- Ashish Bhattarai
- Physical Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Patrick Z El-Khoury
- Physical Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| |
Collapse
|
24
|
Yu J, Wei Y, Wang H, Zhang C, Wei Y, Wang M, Man B, Lei F. In situ detection of trace pollutants: a cost-effective SERS substrate of blackberry-like silver/graphene oxide nanoparticle cluster based on quick self-assembly technology. OPTICS EXPRESS 2019; 27:9879-9894. [PMID: 31045136 DOI: 10.1364/oe.27.009879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
To realize fast detection of trace hazardous chemicals, a SERS substrate with the structure of a blackberry-like silver/graphene oxide nanoparticle cluster (Ag/GO NPC) has been designed and prepared through a quick capillarity-assistant self-assembly technology in this paper. Benefitting from the abundant "hot spots" and active oxygen sites brought by this Ag/GO NPC, the substrate shows good Raman performance for malachite green (MG), a common abusive germicide in aquaculture, with lowest limit of detection below 0.1 µg/L (3.48 × 10-10 mol/L). Detailed analyses are taken on both the formation process and enhancement mechanism of this SERS substrate, and the finite-difference time-domain simulations are utilized as well to prove our hypotheses. Further constructing this structure on polyethylene terephthalate (PET) film, a translucent flexible SERS substrate can be obtained, realizing a fast in situ detection of trace MG in the fishpond subsequently. In consideration of the facile preparation process, good SERS enhancement and affordable materials (PET, Cu, Ag and GO, etc.), this substrate presents high cost performance and a promising application prospect.
Collapse
|
25
|
Ziv A, Tzaguy A, Sun Z, Yochelis S, Stratakis E, Kenanakis G, Schatz GC, Lauhon LJ, Seidman DN, Paltiel Y, Yerushalmi R. Broad-band high-gain room temperature photodetectors using semiconductor-metal nanofloret hybrids with wide plasmonic response. NANOSCALE 2019; 11:6368-6376. [PMID: 30888369 DOI: 10.1039/c9nr00385a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semiconducting nanowires are widely studied as building blocks for electro-optical devices; however, their limited cross-section and hence photo-response hinder the utilization of their full potential. Herein, we present an opto-electronic device for broad spectral detection ranging from the visible (VIS) to the short wavelength infra-red (SWIR) regime, using SiGe nanowires coupled to a broadband plasmonic antenna. The plasmonic amplification is obtained by deposition of a metallic nanotip at the edge of a nanowire utilizing a bottom-up synthesis technique. The metallic nanotip is positioned such that both optical plasmonic modes and electrical detection paths are coupled, resulting in a specific detectivity improvement of ∼1000 compared to conventional SiGe NWs. Detectivity and high gain are also measured in the SWIR regime owing to the special plasmonic response. Furthermore, the temporal response is improved by ∼1000. The fabrication process is simple and scalable, and it relies on low-resolution and facile fabrication steps with minimal requirements for top-down techniques.
Collapse
Affiliation(s)
- Amir Ziv
- Department of Applied Physics, the Hebrew University, Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu T, Besteiro LV, Liedl T, Correa-Duarte MA, Wang Z, Govorov AO. Chiral Plasmonic Nanocrystals for Generation of Hot Electrons: Toward Polarization-Sensitive Photochemistry. NANO LETTERS 2019; 19:1395-1407. [PMID: 30681343 DOI: 10.1021/acs.nanolett.8b05179] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of biomaterials, with techniques such as DNA-directed assembly or biodirected synthesis, can surpass top-down fabrication techniques in creating plasmonic superstructures in terms of spatial resolution, range of functionality, and fabrication speed. In particular, by enabling a very precise placement of nanoparticles in a bioassembled complex or through the controlled biodirected shaping of single nanoparticles, plasmonic nanocrystals can show remarkably strong circular dichroism (CD) signals. We show that chiral bioplasmonic assemblies and single nanocrystals can enable polarization-sensitive photochemistry based on the generation of energetic (hot) electrons. It is now established that hot plasmonic electrons can induce surface photochemistry or even reshape plasmonic nanocrystals. We show that merging chiral plasmonic nanocrystal systems and the hot-election generation effect offers unique possibilities in photochemistry, such as polarization-sensitive photochemistry promoting nonchiral molecular reactions, chiral photoinduced growth of a colloid at the atomic level, and chiral photochemical destruction of chiral nanocrystals. In contrast, for chiral molecular systems, the equivalent of the described effects is challenging to observe because molecular species typically exhibit very small CD signals. Moreover, we compare our findings with traditional chiral photochemistry at the molecular level, identifying new, different regimes for chiral photochemistry with possibilities that are unique for plasmonic colloidal systems. In this study, we bring together the concept of hot-electron generation and the field of chiral colloidal plasmonics. Using chiral plasmonic nanorod complexes as a model system, we demonstrate remarkably strong CD in both optical extinction and generation rates of hot electrons. Studying the regime of steady-state excitation, we discuss the influence of geometrical and material parameters on the chiral effects involved in the generation of hot electrons. Optical chirality and the chiral hot-electron response in the nanorod dimers result from complex interparticle interactions, which can appear in the weak coupling regime or in the form of Rabi splitting. Regarding practical applications, our study suggests interesting opportunities in polarization-sensitive photochemistry, in chiral recognition or separation, and in promoting chiral crystal growth at the nanoscale.
Collapse
Affiliation(s)
- Tianji Liu
- Institute of Fundamental and Frontier Sciences , University of Electronic Science and Technology of China , Chengdu 610054 , China
- Department of Physics and Astronomy , Ohio University , Athens , Ohio 45701 , United States
| | - Lucas V Besteiro
- Institute of Fundamental and Frontier Sciences , University of Electronic Science and Technology of China , Chengdu 610054 , China
- Centre Énergie Matériaux et Télécommunications , Institut National de la Recherche Scientifique , 1650 Boul. Lionel Boulet , Varennes , Quebec J3X 1S2 , Canada
| | - Tim Liedl
- Fakultät für Physik and Center for Nanoscience , Ludwig-Maximilians-Universtät München , Geschwister-Scholl-Platz 1 , 80539 Munich , Germany
| | - Miguel A Correa-Duarte
- Department of Physical Chemistry, Center for Biomedical Research (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research, Networking Center for Mental Health (CIBERSAM) , Universidade de Vigo , 36310 Vigo , Spain
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences , University of Electronic Science and Technology of China , Chengdu 610054 , China
| | - Alexander O Govorov
- Institute of Fundamental and Frontier Sciences , University of Electronic Science and Technology of China , Chengdu 610054 , China
- Department of Physics and Astronomy , Ohio University , Athens , Ohio 45701 , United States
| |
Collapse
|
27
|
Ma T, Guo J, Chang S, Wang X, Zhou J, Liang F, He J. Modulating and probing the dynamic intermolecular interactions in plasmonic molecule-pair junctions. Phys Chem Chem Phys 2019; 21:15940-15948. [DOI: 10.1039/c9cp02030f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The intermolecular interactions, including hydrogen bonds, are electromechanically modulated and probed in metal–molecule pair–metal junctions.
Collapse
Affiliation(s)
- Tao Ma
- The State Key Laboratory of Refractories and Metallurgy
- School of Chemistry and Chemical Engineering
- School of Materials and Metallurgy
- Wuhan University of Science and Technology
- Wuhan
| | - Jing Guo
- Department of Physics
- Florida International University
- Miami
- USA
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy
- School of Chemistry and Chemical Engineering
- School of Materials and Metallurgy
- Wuhan University of Science and Technology
- Wuhan
| | - Xuewen Wang
- Department of Physics
- Florida International University
- Miami
- USA
| | - Jianghao Zhou
- The State Key Laboratory of Refractories and Metallurgy
- School of Chemistry and Chemical Engineering
- School of Materials and Metallurgy
- Wuhan University of Science and Technology
- Wuhan
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy
- School of Chemistry and Chemical Engineering
- School of Materials and Metallurgy
- Wuhan University of Science and Technology
- Wuhan
| | - Jin He
- Department of Physics
- Florida International University
- Miami
- USA
- Biomolecular Science Institute
| |
Collapse
|
28
|
Ahuja T, Ghosh A, Mondal S, Basuri P, Jenifer SK, Srikrishnarka P, Mohanty JS, Bose S, Pradeep T. Ambient electrospray deposition Raman spectroscopy (AESD RS) using soft landed preformed silver nanoparticles for rapid and sensitive analysis. Analyst 2019; 144:7412-7420. [DOI: 10.1039/c9an01700c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ambient electrospray deposition Raman spectroscopy (AESD RS) using soft landed preformed silver nanoparticles for rapid and sensitive SERS analysis.
Collapse
Affiliation(s)
- Tripti Ahuja
- DST Unit of NanoScience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Atanu Ghosh
- DST Unit of NanoScience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Sandip Mondal
- DST Unit of NanoScience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Pallab Basuri
- DST Unit of NanoScience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Shantha Kumar Jenifer
- DST Unit of NanoScience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Pillalamarri Srikrishnarka
- DST Unit of NanoScience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Jyoti Sarita Mohanty
- DST Unit of NanoScience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Sandeep Bose
- DST Unit of NanoScience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Thalappil Pradeep
- DST Unit of NanoScience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| |
Collapse
|
29
|
Szczerbiński J, Gyr L, Kaeslin J, Zenobi R. Plasmon-Driven Photocatalysis Leads to Products Known from E-beam and X-ray-Induced Surface Chemistry. NANO LETTERS 2018; 18:6740-6749. [PMID: 30277787 DOI: 10.1021/acs.nanolett.8b02426] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plasmonic metal nanostructures can concentrate incident optical fields in nanometer-sized volumes, called hot spots. This leads to enhanced optical responses of molecules in such a hot spot but also to chemical transformations, driven by plasmon-induced hot carriers. Here, we employ tip-enhanced Raman spectroscopy (TERS) to study the mechanism of these reactions in situ at the level of a single hot spot. Direct spectroscopic measurements reveal the energy distribution of hot electrons, as well as the temperature changes due to plasmonic heating. Therefore, charge-driven reactions can be distinguished from thermal reaction pathways. The products of the hot-carrier-driven reactions are strikingly similar to the ones known from X-ray or e-beam-induced surface chemistry despite the >100-fold energy difference between visible and X-ray photons. Understanding the analogies between those two scenarios implies new strategies for rational design of plasmonic photocatalytic reactions and for the elimination of photoinduced damage in plasmon-enhanced spectroscopy.
Collapse
Affiliation(s)
- Jacek Szczerbiński
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| | - Luzia Gyr
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| | - Jérôme Kaeslin
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|