1
|
Yang D, Wang B, Qu J. Construction and Function of Thiolate-Bridged Diiron N xH y Nitrogenase Model Complexes. Acc Chem Res 2024; 57:1761-1776. [PMID: 38861704 DOI: 10.1021/acs.accounts.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
ConspectusBiological nitrogen fixation mediated by nitrogenases has garnered significant research interest due to its critical importance to the development of efficient catalysts for mild ammonia synthesis. Although the active center of the most studied FeMo-nitrogenases has been determined to be a complicated [Fe7S9MoC] hetero-multinuclear metal-sulfur cluster known as the FeMo-cofactor, the exact binding site and reduction pathway of N2 remain a subject of debate. Over the past decades, the majority of studies have focused on mononuclear molybdenum or iron centers as potential reaction sites. In stark contrast, cooperative activation of N2 through bi- or multimetallic centers has been largely overlooked and underexplored, despite the renewed interest sparked by recent biochemical and computational studies. Consequently, constructing bioinspired bi- or multinuclear metallic model complexes presents an intriguing yet challenging prospect. In this Account, we detail our long-standing research on the design and synthesis of novel thiolate-bridged diiron complexes as nitrogenase models and their application to chemical simulations of potential biological N2 reduction pathways.Inspired by the structural and electronic features of the potential diiron active center in the belt region of the FeMo-cofactor, we have designed and synthesized a series of new thiolate-bridged diiron nitrogenase model complexes, wherein iron centers with +2 or +3 oxidation states are coordinated by Cp* as carbon-based donors and thiolate ligands as sulfur donors. Through the synergistic interaction between the two iron centers, unstable diazene (NH═NH) species can be trapped to generate the first example of a [Fe2S2]-type complex bearing a cis-μ-η1:η1-NH═NH subunit. Significantly, this species can not only catalyze the reductive N-N bond cleavage of hydrazine to ammonia but also trigger a stepwise reduction sequence NH═NH → [NH2-NH]- → [NH]2-(+NH3) → [NH2]- → NH3. Furthermore, an unprecedented thiolate-bridged diiron μ-nitride featuring a bent Fe-N-Fe moiety was successfully isolated and structurally characterized. Importantly, this diiron μ-nitride can undergo successive proton-coupled electron transfer processes to efficiently release ammonia in the presence of separate protons and electrons and can even be directly hydrogenated using H2 as a combination of protons and electrons for high-yield ammonia formation. Based on combined experimental and computational studies, we proposed two distinct reductive transformation sequences on the diiron centers, which involve a series of crucial NxHy intermediates. Moreover, we also achieved catalytic N2 reduction to silylamines with [Fe2S2]-type complexes by ligand modulation.Our bioinspired diiron cooperative scaffold may provide a suitable model for probing the potential N2 stepwise reduction pathways from the molecular level. Different from the traditional alternating and distal pathways dominated by mononuclear iron or molybdenum complexes, our proposed alternating transformation route based on the diiron centers may not involve the N2H4 intermediate, and the convergence point of the alternating and terminal pathways is imide, not amide. Our research strategy could inform the design and development of new types of bioinspired catalysts for mild and efficient nitrogen reduction in the future.
Collapse
Affiliation(s)
- Dawei Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Bioreactor Engineering, Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
2
|
Luo J, Montag M, Milstein D. Metal-Ligand Cooperation with Thiols as Transient Cooperative Ligands: Acceleration and Inhibition Effects in (De)Hydrogenation Reactions. Acc Chem Res 2024; 57:1709-1721. [PMID: 38833580 PMCID: PMC11191399 DOI: 10.1021/acs.accounts.4c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
ConspectusOver the past two decades, we have developed a series of pincer-type transition metal complexes capable of activating strong covalent bonds through a mode of reactivity known as metal-ligand cooperation (MLC). In such systems, an incoming substrate molecule simultaneously interacts with both the metal center and ligand backbone, with one part of the molecule reacting at the metal center and another part at the ligand. The majority of these complexes feature pincer ligands with a pyridine core, and undergo MLC through reversible dearomatization/aromatization of this pyridine moiety. This MLC platform has enabled us to perform a variety of catalytic dehydrogenation, hydrogenation, and related reactions, with high efficiency and selectivity under relatively mild conditions.In a typical catalytic complex that operates through MLC, the cooperative ligand remains coordinated to the metal center throughout the entire catalytic process, and this complex is the only catalytic species involved in the reaction. As part of our ongoing efforts to develop new catalytic systems featuring MLC, we have recently introduced the concept of transient cooperative ligand (TCL), i.e., a ligand that is capable of MLC when coordinated to a metal center, but the coordination of which is reversible rather than permanent. We have thus far employed thiol(ate)s as TCLs, in conjunction with an acridanide-based ruthenium(II)-pincer catalyst, and this has resulted in remarkable acceleration and inhibition effects in various hydrogenation and dehydrogenation reactions. A cooperative thiol(ate) ligand can be installed in situ by the simple addition of an appropriate thiol in an amount equivalent to the catalyst, and this has been repeatedly shown to enable efficient bond activation by MLC without the need for other additives, such as base. The use of an ancillary thiol ligand that is not fixed to the pincer backbone allows the catalytic system to benefit from a high degree of tunability, easily implemented by varying the added thiol. Importantly, thiols are coordinatively labile enough under typical catalytic conditions to leave a meaningful portion of the catalyst in its original unsaturated form, thereby allowing it to carry out its own characteristic catalytic activity. This generates two coexisting catalyst populations─one that contains a thiol(ate) ligand and another that does not─and this may lead to different catalytic outcomes, namely, enhancement of the original catalytic activity, inhibition of this activity, or the occurrence of diverging reactivities within the same catalytic reaction mixture. These thiol effects have enabled us to achieve a series of unique transformations, such as thiol-accelerated base-free aqueous methanol reforming, controlled stereodivergent semihydrogenation of alkynes using thiol as a reversible catalyst inhibitor, and hydrogenative perdeuteration of C═C bonds without using D2, enabled by a combination of thiol-induced acceleration and inhibition. We have also successfully realized the unprecedented formation of thioesters through dehydrogenative coupling of alcohols and thiols, as well as the hydrogenation of organosulfur compounds, wherein the cooperative thiol serves as a reactant or product. In this Account, we present an overview of the TCL concept and its various applications using thiols.
Collapse
Affiliation(s)
- Jie Luo
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Michael Montag
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - David Milstein
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Zhang X, Feng L, Tung CH, Wang W. Transformation of Acetylene to Ethenylidene, Carbene, Acetylide, Vinyl, and Olefin Groups with Cp*Fe(1,2-Cy 2PC 6H 4S). Inorg Chem 2023; 62:18599-18606. [PMID: 37910071 DOI: 10.1021/acs.inorgchem.3c02911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Tautomerization of C2H2 at half-sandwich compound Cp*Fe(1,2-Cy2PC6H4S) exclusively produces an iron ethenylidene, Cp*Fe(=C=CH2)(1,2-Cy2PC6H4S) (2). Protonation of the ethenylidene causes nucleophilic attack of the Cα by sulfur, affording a sulfur-tethered carbene complex, [Cp*Fe=C(CH3)SC6H4PCy2]+ (3+). This Fischer-type carbene complex undergoes an unusual isomerization by migrating a hydrogen atom from the β-CH3 group to the α-C, leading to the formation of an olefin complex [Cp*Fe(η4-CH=CH2SC6H4PCy2]+ (4+). Compound 2 also displays diverse redox reactivities. It transforms to a neutral acetylide ferric complex (5) when reacting with free radical scavengers and to a cationic vinyl complex [Cp*Fe(η3-C(=CH2)SC6H4PCy2]+ (6+) upon 1e- oxidation. The interconversion between the vinyl and acetylide complexes can be realized through protonation/deprotonation reactions.
Collapse
Affiliation(s)
- Xin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Luo J, Lu L, Montag M, Liang Y, Milstein D. Hydrogenative alkene perdeuteration aided by a transient cooperative ligand. Nat Chem 2023; 15:1384-1390. [PMID: 37667011 DOI: 10.1038/s41557-023-01313-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/03/2023] [Indexed: 09/06/2023]
Abstract
Deuterogenation of unsaturated organic compounds is an attractive route for installing C(sp3)-D bonds, but the existing methods typically use expensive D2 and introduce only two deuterium atoms per unsaturation. Herein we report the hydrogenative perdeuteration of alkenes using readily available H2 and D2O instead of D2, catalysed by an acridanide-based ruthenium pincer complex and resulting in the incorporation of up to 4.9 D atoms per C=C double bond in a single synthetic step. Importantly, adding a catalytic amount of thiol, which serves as a transient cooperative ligand, ensures the incorporation of deuterium rather than protium by balancing the rates of two sequential deuteration processes. The current method opens an avenue for installing perdeuteroalkyl groups at specific sites from widely available alkenes under mild conditions.
Collapse
Affiliation(s)
- Jie Luo
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lijun Lu
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Montag
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Yaoyu Liang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Bai SF, Ma JW, Guo YN, Du XM, Wang YL, Li QL, Lü S. Aminophosphine-substituted Fe/E (E = S, Se) carbonyls related to [FeFe]-hydrogenases: Synthesis, protonation, and electrocatalytic proton reduction. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
6
|
MacArdle SG, Rees DC. Solvent Deuterium Isotope Effects of Substrate Reduction by Nitrogenase from Azotobacter vinelandii. J Am Chem Soc 2022; 144:21125-21135. [DOI: 10.1021/jacs.2c07574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Siobhán G. MacArdle
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Douglas C. Rees
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| |
Collapse
|
7
|
Elsby MR, Oh C, Son M, Kim SYH, Baik MH, Baker RT. Spin-state crossover in photo-catalyzed nitrile dihydroboration via Mn-thiolate cooperation. Chem Sci 2022; 13:12550-12559. [PMID: 36382284 PMCID: PMC9629026 DOI: 10.1039/d2sc04339d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/30/2022] [Indexed: 09/07/2024] Open
Abstract
The role of S-donors in ligand-assisted catalysis using first-row metals has not been broadly investigated. Herein is described a combined experimental and computational mechanistic study of the dihydroboration of nitriles with pinacolborane (HBpin) catalyzed by the Mn(i) complex, Mn(κ3-SMeNS)(CO)3, that features thioether, imine, and thiolate donors. Mechanistic studies revealed that catalysis requires the presence of UV light to enter and remain in the catalytic cycle and evidence is presented for loss of two CO ligands. Stoichiometric reactions showed that HBpin reduces the imine N[double bond, length as m-dash]C of the ligand backbone in the absence of nitrile, forming an inactive off-cycle by-product. DFT calculations showed that the bifunctional thiolate donor, coordinative flexibility of the SMeNS ligand, and access to an open-shell intermediate are all crucuial to accessing low-energy intermediates during catalysis.
Collapse
Affiliation(s)
- Matthew R Elsby
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Changjin Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Mina Son
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Scott Y H Kim
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - R Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
8
|
Chatelain L, Breton JB, Arrigoni F, Schollhammer P, Zampella G. Geometrical influence on the non-biomimetic heterolytic splitting of H 2 by bio-inspired [FeFe]-hydrogenase complexes: a rare example of inverted frustrated Lewis pair based reactivity. Chem Sci 2022; 13:4863-4873. [PMID: 35655865 PMCID: PMC9067592 DOI: 10.1039/d1sc06975f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/13/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the high levels of interest in the synthesis of bio-inspired [FeFe]-hydrogenase complexes, H2 oxidation, which is one specific aspect of hydrogenase enzymatic activity, is not observed for most reported complexes. To attempt H-H bond cleavage, two disubstituted diiron dithiolate complexes in the form of [Fe2(μ-pdt)L2(CO)4] (L: PMe3, dmpe) have been used to play the non-biomimetic role of a Lewis base, with frustrated Lewis pairs (FLPs) formed in the presence of B(C6F5)3 Lewis acid. These unprecedented FLPs, based on the bimetallic Lewis base partner, allow the heterolytic splitting of the H2 molecule, forming a protonated diiron cation and hydrido-borate anion. The substitution, symmetrical or asymmetrical, of two phosphine ligands at the diiron dithiolate core induces a strong difference in the H2 bond cleavage abilities, with the FLP based on the first complex being more efficient than the second. DFT investigations examined the different mechanistic pathways involving each accessible isomer and rationalized the experimental findings. One of the main DFT results highlights that the iron site acting as a Lewis base for the asymmetrical complex is the {Fe(CO)3} subunit, which is less electron-rich than the {FeL(CO)2} site of the symmetrical complex, diminishing the reactivity towards H2. Calculations relating to the different mechanistic pathways revealed the presence of a terminal hydride intermediate at the apical site of a rotated {Fe(CO)3} site, which is experimentally observed, and a semi-bridging hydride intermediate from H2 activation at the Fe-Fe site; these are responsible for a favourable back-reaction, reducing the conversion yield observed in the case of the asymmetrical complex. The use of two equivalents of Lewis acid allows for more complete and faster H2 bond cleavage due to the encapsulation of the hydrido-borate species by a second borane, favouring the reactivity of each FLP, in agreement with DFT calculations.
Collapse
Affiliation(s)
- Lucile Chatelain
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 Brest-Cedex 3 29238 France
| | - Jean-Baptiste Breton
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 Brest-Cedex 3 29238 France
| | - Federica Arrigoni
- Department of Biotechnology and Bioscience, University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Philippe Schollhammer
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 Brest-Cedex 3 29238 France
| | - Giuseppe Zampella
- Department of Biotechnology and Bioscience, University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
9
|
Bai SF, Du X, Tian WJ, Xu H, Zhang RF, Ma C, Wang Y, Lü S, Li Q, Li YL. Di-, tri- and tetraphosphine-substituted Fe/Se carbonyls: Synthesis, Characterization and electrochemical properties. Dalton Trans 2022; 51:11125-11134. [DOI: 10.1039/d2dt01376b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The active sites of [FeFe]-hydrogenase promoted by Fe/E (E=S, Se) clusters have attracted considerable interest due to their significance for understanding the interconversion of hydrogen with protons and electrons. As...
Collapse
|
10
|
Elsby MR, Son M, Oh C, Martin J, Baik MH, Baker RT. Mechanistic Study of Metal–Ligand Cooperativity in Mn(II)-Catalyzed Hydroborations: Hemilabile SNS Ligand Enables Metal Hydride-Free Reaction Pathway. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matthew R. Elsby
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mina Son
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Changjin Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jessica Martin
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - R. Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
11
|
Lü S, Qin CR, Ma HL, Ouyang JM, Li QL. Tertiary phosphine disubstituted diiron bis(monothiolate) carbonyls related to the active site of [FeFe]-H2ases: Preparation, protonation and electrochemical properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Abstract
Hydrogenases are metalloenzymes that catalyze proton reduction and H2 oxidation with outstanding efficiency. They are model systems for bioinorganic chemistry, including low-valent transition metals, hydride chemistry, and proton-coupled electron transfer. In this Account, we describe how photochemistry and infrared difference spectroscopy can be used to identify the dynamic hydrogen-bonding changes that facilitate proton transfer in [NiFe]- and [FeFe]-hydrogenase.[NiFe]-hydrogenase binds a heterobimetallic nickel/iron site embedded in the protein by four cysteine ligands. [FeFe]-hydrogenase carries a homobimetallic iron/iron site attached to the protein by only a single cysteine. Carbon monoxide and cyanide ligands in the active site facilitate detailed investigations of hydrogenase catalysis by infrared spectroscopy because of their strong signals and redox-dependent frequency shifts. We found that specific redox-state transitions in [NiFe]- and [FeFe]-hydrogenase can be triggered by visible light to record extremely sensitive "light-minus-dark" infrared difference spectra monitoring key amino acid residues. As these transitions are coupled to protonation changes, our data allowed investigation of dynamic hydrogen-bonding changes that go well beyond the resolution of protein crystallography.In [NiFe]-hydrogenase, photolysis of the bridging hydride ligand in the Ni-C state was followed by infrared difference spectroscopy. Our data clearly indicate the formation of a protonated cysteine residue as well as hydrogen-bonding changes involving a glutamic acid residue and a "dangling water" molecule. These findings are in excellent agreement with crystallographic analyses of [NiFe]-hydrogenase. In [FeFe]-hydrogenase, an external redox dye was used to accumulate the Hred state. Infrared difference spectra indicate hydrogen-bonding changes involving two glutamic acid residues and a conserved arginine residue. While crystallographic analyses of [FeFe]-hydrogenase in the oxidized state failed to explain the rapid proton transfer because of a breach in the succession of residues, our findings facilitated a precise molecular model of discontinued proton transfer.Comparing both systems, our data emphasize the role of the outer coordination sphere in bimetallic hydrogenases: we suggest that protonation of a nickel-ligating cysteine in [NiFe]-hydrogenase causes the notable preference toward H2 oxidation. On the contrary, proton transfer in [FeFe]-hydrogenase involves an adjacent cysteine as a relay group, promoting both H2 oxidation and proton reduction. These observations may guide the design of organometallic compounds that mimic the catalytic properties of hydrogenases.
Collapse
Affiliation(s)
- Hulin Tai
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji, Jilin 133002, China
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
13
|
Abstract
The role of deuterium in disentangling key steps of the mechanisms of H2 activation by mimics of hydrogenases is presented. These studies have allowed to a better understanding of the mode of action of the natural enzymes and their mimics.
Collapse
Affiliation(s)
- Mar Gómez-Gallego
- Departamento de Química Orgánica I and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Facultad de Química
- Universidad Complutense
- 28040-Madrid
- Spain
| | - Miguel A. Sierra
- Departamento de Química Orgánica I and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Facultad de Química
- Universidad Complutense
- 28040-Madrid
- Spain
| |
Collapse
|
14
|
Abstract
This review summarizes the recent achievements of dinuclear gold-catalyzed redox coupling, asymmetric catalysis and photocatalysis. The dinuclear gold catalysts show a better catalytic performance than the mononuclear gold catalysts in certain cases.
Collapse
Affiliation(s)
- Wenliang Wang
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Kai Liu
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| |
Collapse
|
15
|
Kaim V, Kaur-Ghumaan S. Mononuclear Mn complexes featuring N,S-/N,N-donor and 1,3,5-triaza-7-phosphaadamantane ligands: synthesis and electrocatalytic properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj02104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mononuclear Mn(i) carbonyl complexes incorporating 2-mercaptobenzothiazole or 2-mercaptobenzimidazole and phosphaadamantane ligands were evaluated as electrocatalysts for the HER both in acetonitrile and acetonitrile/water.
Collapse
Affiliation(s)
- Vishakha Kaim
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
16
|
Zhao PH, Li JR, Ma ZY, Han HF, Qu YP, Lu BP. Diiron azadithiolate clusters supported on carbon nanotubes for efficient electrocatalytic proton reduction. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01415j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first example of diiron azadithiolate clusters supported on carbon nanotubes (1-f-SWCNTs) was constructed via covalent attachment. This nanohybrid shows efficient electrocatalytic proton reduction with a TOF of 9444 s−1 in 0.2 N aqueous H2SO4.
Collapse
Affiliation(s)
- Pei-Hua Zhao
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- P. R. China
| | - Jian-Rong Li
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- P. R. China
| | - Zhong-Yi Ma
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- P. R. China
| | - Hong-Fei Han
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- P. R. China
| | - Yong-Ping Qu
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- P. R. China
| | - Bao-Ping Lu
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- P. R. China
| |
Collapse
|
17
|
Arrigoni F, Elleouet C, Mele A, Pétillon FY, De Gioia L, Schollhammer P, Zampella G. Insights into the Two‐Electron Reductive Process of [FeFe]H
2
ase Biomimetics: Cyclic Voltammetry and DFT Investigation on Chelate Control of Redox Properties of [Fe
2
(CO)
4
(κ
2
‐Chelate)(μ‐Dithiolate)]. Chemistry 2020; 26:17536-17545. [DOI: 10.1002/chem.202003233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/25/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnology and Bioscience University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Catherine Elleouet
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest-Cedex 3 France
| | - Andrea Mele
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest-Cedex 3 France
| | - François Y. Pétillon
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest-Cedex 3 France
| | - Luca De Gioia
- Department of Biotechnology and Bioscience University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Philippe Schollhammer
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest-Cedex 3 France
| | - Giuseppe Zampella
- Department of Biotechnology and Bioscience University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
18
|
Lü S, Gong S, Qin CR, Li QL. PNP bridged diiron carbonyls containing Fe/E (E = S and Se) cluster core related to the active site of [FeFe]-H2ases. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Amine‐containing tertiary phosphine‐substituted diiron ethanedithioate (edt) complexes Fe
2
(
μ
‐edt)(CO)
6‐n
L
n
(
n
= 1, 2): Synthesis, protonation, and electrochemical properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Li JR, Wang YH, Zhao PH. Crystal structure and electrocatalytic investigation of diiron azadiphosphine complex [Fe 2( μ-pdt)(CO) 4{( μ-Ph 2P) 2NH}] related to [FeFe]-hydrogenases. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1733018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jian-Rong Li
- School of Materials Science and Engineering, North University of China, Taiyuan, P. R. China
| | - Yan-Hong Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, P. R. China
| | - Pei-Hua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan, P. R. China
| |
Collapse
|
21
|
Lü S, Gong S, Xu GH, Liu YY, Lü L, Qin CR, Li QL. Synthesis, characterization, and electrochemical properties of diiron bis(monotellurolate) carbonyls related to [FeFe]-hydrogenases. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Luo J, Rauch M, Avram L, Diskin-Posner Y, Shmul G, Ben-David Y, Milstein D. Formation of thioesters by dehydrogenative coupling of thiols and alcohols with H2 evolution. Nat Catal 2020. [DOI: 10.1038/s41929-020-00514-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Li H, Chai XC, Wang J, Li J, Yao CZ. Synthesis, characterization, and electrochemistry of diiron ethane-1,2-dithiolate complexes with monosubstituted ethyldiphenylphosphine or dicyclohexylphenylphosphine. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1756292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Hui Li
- Department of Applied Chemistry, Yuncheng University, Yuncheng, China
| | - Xiao-Chuan Chai
- Department of Applied Chemistry, Yuncheng University, Yuncheng, China
| | - Jie Wang
- Department of Applied Chemistry, Yuncheng University, Yuncheng, China
| | - Jun Li
- Department of Applied Chemistry, Yuncheng University, Yuncheng, China
| | - Chen-Zhong Yao
- Department of Applied Chemistry, Yuncheng University, Yuncheng, China
| |
Collapse
|
24
|
Zhao PH, Hu MY, Li JR, Wang YZ, Lu BP, Han HF, Liu XF. Impacts of coordination modes (chelate versus bridge) of PNP-diphosphine ligands on the redox and electrocatalytic properties of diiron oxadithiolate complexes for proton reduction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136615] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Diiron and trinuclear NiFe2 dithiolate complexes chelating by PCNCP ligands: Synthetic models of [FeFe]- and [NiFe]-hydrogenases. J Inorg Biochem 2020; 210:111126. [DOI: 10.1016/j.jinorgbio.2020.111126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
|
26
|
Asymmetrically PNP-chelate diiron ethanedithiolate complexes Fe2(μ-edt)(CO)4{κ-(Ph2P)2NR} as diiron subsite models of [FeFe]-hydrogenases: Structural and electrocatalytic investigation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Tai H, Hirota S. Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments. Chembiochem 2020; 21:1573-1581. [DOI: 10.1002/cbic.202000058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Hulin Tai
- MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional MoleculesDepartment of ChemistryYanbian University Park Road 977 Yanji 133002 Jilin China
| | - Shun Hirota
- Division of Materials ScienceGraduate School of Science and TechnologyNara Institute of Science and Technology 8916-5 Takayama Ikoma Nara 630-0192 Japan
| |
Collapse
|
28
|
Tang H, Brothers EN, Grapperhaus CA, Hall MB. Electrocatalytic Hydrogen Evolution and Oxidation with Rhenium Tris(thiolate) Complexes: A Competition between Rhenium and Sulfur for Electrons and Protons. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | | | - Craig A. Grapperhaus
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
29
|
Li Q, Zhang R, Ma C, Lü S, Mu C, Li Y. Synthesis, characterization, and some electrocatalytic properties of heteromultinuclear Fe
I
/Ru
II
Clusters. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Qian‐Li Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 P. R. China
| | - Ru‐Fen Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 P. R. China
| | - Chun‐Lin Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 P. R. China
| | - Shuang Lü
- School of PharmacyLiaocheng University Liaocheng 252059 China
| | - Chao Mu
- College of Chemistry and Environmental EngineeringSichuan University of Science & Engineering Zigong 643000 P. R. China
| | - Yu‐Long Li
- College of Chemistry and Environmental EngineeringSichuan University of Science & Engineering Zigong 643000 P. R. China
| |
Collapse
|
30
|
Elsby MR, Baker RT. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chem Soc Rev 2020; 49:8933-8987. [DOI: 10.1039/d0cs00509f] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of metal–ligand cooperation (MLC) by transition metal bifunctional catalysts has emerged at the forefront of homogeneous catalysis science.
Collapse
Affiliation(s)
- Matthew R. Elsby
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - R. Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|
31
|
Li Q, Gong S, Lü L, Lü S, Deng C, Yang J, Li Y. Unexpected Reaction of Fe
3
(CO)
12
with Dialkyldithiophosphate: The Case of P–S Bond Activation. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qian‐Li Li
- Department of Chemistry and Chemical Engineering Liaocheng University 252059 Liaocheng P. R. China
| | - Sheng Gong
- Department of Chemistry and Chemical Engineering Liaocheng University 252059 Liaocheng P. R. China
| | - Liang Lü
- Department of Chemistry and Chemical Engineering Liaocheng University 252059 Liaocheng P. R. China
| | - Shuang Lü
- School of Pharmacy Liaocheng University 252059 Liaocheng P. R. China
| | - Cheng‐Long Deng
- College of Chemistry and Environmental Engineering Sichuan University of Science & Engineering 643000 Zigong P. R. China
| | - Jun Yang
- College of Chemistry and Environmental Engineering Sichuan University of Science & Engineering 643000 Zigong P. R. China
| | - Yu‐Long Li
- College of Chemistry and Environmental Engineering Sichuan University of Science & Engineering 643000 Zigong P. R. China
| |
Collapse
|
32
|
Zhuang X, Chen JY, Yang Z, Jia M, Wu C, Liao RZ, Tung CH, Wang W. Sequential Transformation of Terminal Alkynes to 1,3-Dienes by a Cooperative Cobalt Pyridonate Catalyst. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00486] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xuewen Zhuang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, People’s Republic of China
| | - Jia-Yi Chen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| | - Zhuoyi Yang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, People’s Republic of China
| | - Mengjing Jia
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, People’s Republic of China
| | - Chengjuan Wu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, People’s Republic of China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, People’s Republic of China
| | - Wenguang Wang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, People’s Republic of China
| |
Collapse
|
33
|
Influence of pendant amines in phosphine ligands on the formation, structures, and electrochemical properties of diiron aminophosphine complexes related to [FeFe]-hydrogenases. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
34
|
Tai H, Nishikawa K, Higuchi Y, Mao ZW, Hirota S. Cysteine SH and Glutamate COOH Contributions to [NiFe] Hydrogenase Proton Transfer Revealed by Highly Sensitive FTIR Spectroscopy. Angew Chem Int Ed Engl 2019; 58:13285-13290. [PMID: 31343102 DOI: 10.1002/anie.201904472] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/10/2019] [Indexed: 11/12/2022]
Abstract
A [NiFe] hydrogenase (H2 ase) is a proton-coupled electron transfer enzyme that catalyses reversible H2 oxidation; however, its fundamental proton transfer pathway remains unknown. Herein, we observed the protonation of Cys546-SH and Glu34-COOH near the Ni-Fe site with high-sensitivity infrared difference spectra by utilizing Ni-C-to-Ni-L and Ni-C-to-Ni-SIa photoconversions. Protonated Cys546-SH in the Ni-L state was verified by the observed SH stretching frequency (2505 cm-1 ), whereas Cys546 was deprotonated in the Ni-C and Ni-SIa states. Glu34-COOH was double H-bonded in the Ni-L state, as determined by the COOH stretching frequency (1700 cm-1 ), and single H-bonded in the Ni-C and Ni-SIa states. Additionally, a stretching mode of an ordered water molecule was observed in the Ni-L and Ni-C states. These results elucidate the organized proton transfer pathway during the catalytic reaction of a [NiFe] H2 ase, which is regulated by the H-bond network of Cys546, Glu34, and an ordered water molecule.
Collapse
Affiliation(s)
- Hulin Tai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Koji Nishikawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Yoshiki Higuchi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
35
|
Tai H, Nishikawa K, Higuchi Y, Mao Z, Hirota S. Cysteine SH and Glutamate COOH Contributions to [NiFe] Hydrogenase Proton Transfer Revealed by Highly Sensitive FTIR Spectroscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hulin Tai
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Koji Nishikawa
- Graduate School of Life Science University of Hyogo 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
| | - Yoshiki Higuchi
- Graduate School of Life Science University of Hyogo 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
| | - Zong‐wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Shun Hirota
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| |
Collapse
|
36
|
Hu M, Yan L, Li J, Wang Y, Zhao P, Liu X. Reactions of Fe
2
(
μ
‐odt)(CO)
6
(odt = 1, 3‐oxadithiolate) with small bite‐angle diphosphines to afford the monodentate, chelate, and bridge diiron complexes: Selective substitution, structures, protonation, and electrocatalytic proton reduction. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4949] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng‐Yuan Hu
- School of Materials Science and EngineeringNorth University of China Taiyuan 030051 People's Republic of China
| | - Lin Yan
- School of Materials and Chemical EngineeringNingbo University of Technology Ningbo 315211 People's Republic of China
| | - Jian‐Rong Li
- School of Materials Science and EngineeringNorth University of China Taiyuan 030051 People's Republic of China
| | - Yan‐Hong Wang
- School of Chemical Engineering and TechnologyNorth University of China Taiyuan 030051 People's Republic of China
| | - Pei‐Hua Zhao
- School of Materials Science and EngineeringNorth University of China Taiyuan 030051 People's Republic of China
| | - Xu‐Feng Liu
- School of Materials and Chemical EngineeringNingbo University of Technology Ningbo 315211 People's Republic of China
| |
Collapse
|
37
|
Yang Z, Pang M, Xia SG, Gao XY, Guo Q, Li XB, Tung CH, Wu LZ, Wang W. Catalytic Hydrogen Production Using A Cobalt Catalyst Bearing a Phosphinoamine Ligand. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201800246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhennan Yang
- Key Lab of Colloid and Interface Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 P. R. China
| | - Maofu Pang
- Key Lab of Colloid and Interface Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 P. R. China
| | - Shu-Guang Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; The Chinese Academy of Sciences; Beijing 100190 P. R. China
- The College of Future Technology; University of the Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Xiao-Ya Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; The Chinese Academy of Sciences; Beijing 100190 P. R. China
- The College of Future Technology; University of the Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Qing Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; The Chinese Academy of Sciences; Beijing 100190 P. R. China
- The College of Future Technology; University of the Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; The Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; The Chinese Academy of Sciences; Beijing 100190 P. R. China
- The College of Future Technology; University of the Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Wenguang Wang
- Key Lab of Colloid and Interface Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 P. R. China
| |
Collapse
|
38
|
Zhao PH, Hu MY, Li JR, Ma ZY, Wang YZ, He J, Li YL, Liu XF. Influence of Dithiolate Bridges on the Structures and Electrocatalytic Performance of Small Bite-Angle PNP-Chelated Diiron Complexes Fe2(μ-xdt)(CO)4{κ2-(Ph2P)2NR} Related to [FeFe]-Hydrogenases. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00759] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pei-Hua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan, Shanxi 030051, P. R. China
| | - Meng-Yuan Hu
- School of Materials Science and Engineering, North University of China, Taiyuan, Shanxi 030051, P. R. China
| | - Jian-Rong Li
- School of Materials Science and Engineering, North University of China, Taiyuan, Shanxi 030051, P. R. China
| | - Zhong-Yi Ma
- School of Materials Science and Engineering, North University of China, Taiyuan, Shanxi 030051, P. R. China
| | - Yan-Zhong Wang
- School of Materials Science and Engineering, North University of China, Taiyuan, Shanxi 030051, P. R. China
| | - Jiao He
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, P. R. China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, P. R. China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|