1
|
Luo S, Zhao L, Li Z, Chen Z, Wang H, Fang F, Li H, Li X, Yu X. Construction of Luminescent Terpyridine-Based Metallo-Bowties with Alkyl Chain-Bridged Dimerized Building Blocks. Chemistry 2025; 31:e202403783. [PMID: 39532691 DOI: 10.1002/chem.202403783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Numerous metallo-supramolecules with well-defined sizes and shapes have been successfully constructed via the strong coordination interaction between terpyridine (TPY) moieties and ruthenium cations. However, the pseudo-octahedral geometry of unit hampers the luminescent properties of such metallo-architectures, thus limiting their applications as optical materials. To address this issue, we herein use a flexible alkyl chain to bridge TPY building blocks, replacing conventional linkage. The introduction of alkyl chain guides the self-assembly into desired architecture while simultaneously eliminating the quenching effects typically associated with the linkage. More importantly, this design strategy enables the precise construction of bowtie-shaped metallo-supramolecules with significantly enhanced emission. The incorporation of alkyl chain linkage not only maintains structural integrity but also enhances optical performance, making these metallo-supramolecular assemblies highly promising for applications in advanced photonic and luminescent materials. This study offers a versatile approach to construct complex metallo-supramolecular architectures with desired optical properties.
Collapse
Affiliation(s)
- Siqi Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lingang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Fang Fang
- Instrumental Analysis Center, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hang Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
2
|
Li K, Zhang S, Hu Y, Kang S, Yu X, Wang H, Wang M, Li X. Shape-Dependent Complementary Ditopic Terpyridine Pair with Two Levels of Self-Recognition for Coordination-Driven Self-Assembly. Macromol Rapid Commun 2023; 44:e2200303. [PMID: 35666548 DOI: 10.1002/marc.202200303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/28/2022] [Indexed: 01/11/2023]
Abstract
Molecular recognition in biological systems plays a vital role in the precise construction of biomacromolecules and the corresponding biological activities. Such recognition mainly relies on the highly specific binding of complementary molecular pairs with complementary sizes, shapes, and intermolecular forces. It still remains challenging to develop artificial complementary motif pairs for coordination-driven self-assembly. Herein, a series of shape-dependent complementary motif pairs, based on ditopic 2,2':6',2″-terpyridine (TPY) backbone, are designed and synthesized. The fidelity degrees of self-assemblies from these motifs are carefully evaluated by multi-dimensional mass spectrometry, nuclear magnetic resonance spectroscopy, and molecular modeling. In addition, two levels of self-recognition in both homoleptic and heteroleptic assembly are discovered in the assembled system. Through finely tuning the shape and size of the ligands, a complementary pair is developed with error-free narcissistically self-sorting at two levels of self-recognition, and the intrinsic principle is carefully investigated.
Collapse
Affiliation(s)
- Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China.,College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shunran Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Yaqi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shimin Kang
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
3
|
Xuan JJ, Xia ZJ, Yan DN, Hu SJ, Zhou LP, Cai LX, Sun QF. Shape Complementary Coordination Self-Assembly of a Redox-Active Heteroleptic Complex. Inorg Chem 2022; 61:8854-8860. [PMID: 35642338 DOI: 10.1021/acs.inorgchem.2c00872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present here the coordination self-assembly of a new heteroleptic (bpyPd)4L1L22 coordination complex (1) from one novel pyridinium-functionalized bis-2,4,6-tris(pyridin-3-yl)-1,3,5-triazine (bis-3-TPT, L1) macrocyclic ligand, two separate 3-TPT (L2) ligands, and four cis-blocking bpyPd(NO3)2 (bpy = 2,2'-bipyridine). While homoleptic self-assemblies with either L1 or L2 gave dynamic mixtures of products, a single thermodynamic heteroleptic complex was obtained driven by the shape complementarity of building blocks. Moreover, the redox-active nature of the heteroleptic assembly facilitates the highly efficient catalytic aerobic photo-oxidation of aromatic secondary alcohols under mild conditions.
Collapse
Affiliation(s)
- Jin-Jin Xuan
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Zi-Jun Xia
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Dan-Ni Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Li-Xuan Cai
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Qing-Fu Sun
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| |
Collapse
|
4
|
Wang J, Wang F, Dong Q, Chen M, Jiang Z, Zhao H, Liu D, Jiang Z, Su P, Li Y, Liu Q, Liu H, Wang P. Tetratopic Terpyridine Building Unit as a Precursor to Wheel-Like Metallo-Supramolecules. Inorg Chem 2022; 61:5343-5351. [PMID: 35324194 DOI: 10.1021/acs.inorgchem.2c00123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an effort to construct molecules with distinct shapes and functions, the design and synthesis of multitopic ligands are often able to play an important role. Here, we report the synthesis of a novel tetratopic organic ligand LA, which can be viewed as a bis-tenon with successive angular orientations in space. The particular ligand has been treated with different tailored metal-organic ligands to afford new members of the molecular wheel family (multi-rhomboidal-shaped wheel and bis-trapezium-shaped wheel) that show enhanced stability. Two-dimensional (2D) diffusion nuclear magnetic resonance (NMR) spectroscopy (DOSY), electrospray ionization (ESI) mass spectrometry, traveling wave ion mobility (TWIM), and gradient tandem mass spectrometry (gMS2) experiments, as well as molecular modeling, have been employed to provide structural information and differentiate the isomeric separation process. In addition, considering that LA has rotational properties, it is expected to open the door to functional supramolecules and stimuli-responsive materials.
Collapse
Affiliation(s)
- Jun Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Feng Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Qiangqiang Dong
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - He Zhao
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Qianqian Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
5
|
Kumar A, Banerjee R, Zangrando E, Mukherjee PS. Solvent and Counteranion Assisted Dynamic Self-Assembly of Molecular Triangles and Tetrahedral Cages. Inorg Chem 2022; 61:2368-2377. [PMID: 35029966 DOI: 10.1021/acs.inorgchem.1c03797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-assembly of naked PdII ions separately with newly designed bis(3-pyridyl)benzothiadiazole (L1) and bis(3-pyridyl)thiazolo[5,4-d]thiazole (L2) donors separately, under varying experimental conditions, yielded Pd4L8 (L= L1 or L2) tetrahedral cages and their homologous Pd3L6 (L= L1 or L2) double-walled triangular macrocycles. The resulting assemblies exhibited solvent, temperature, and counteranion induced dynamic equilibrium. Treatment of L1 with Pd(BF4)2 in acetonitrile (ACN) resulted in selective formation of a tetrahedral cage [Pd4(L1)8](BF4)8 (1a), which is in dynamic equilibrium with its homologue triangle [Pd3(L1)6](BF4)6 (2a) in dimethyl sulfoxide (DMSO). On the other hand, similar self-assembly using L2 instead of L1 yielded an equilibrium mixture of tetrahedral cage [Pd4(L2)8](BF4)8 (3a) and triangle [Pd3(L2)6](BF4)6 (4a) forms in both ACN and DMSO. The assembles were characterized by multinuclear NMR and ESI-MS while the structure of the tetrahedral cage (1a) was determined by single crystal X-ray diffraction. Existence of a dynamic equilibrium between the assemblies in solution has been investigated via variable temperature 1H NMR. The equilibrium constant K = ([Pd4L8]3/[Pd3L6]4) was calculated at each experimental temperature and fitted with the Van't Hoff equation to determine the standard enthalpy (ΔH°) and entropy (ΔS°) associated with the interconversion of the double-walled triangle to tetrahedral cage. The thermodynamic feasibility of structural interconversion was analyzed from the change in ΔG°, which suggests favorable conversion of Pd3L6 triangle to Pd4L8 cage at elevated temperature for L1 in DMSO and L2 in ACN. Interestingly, similar self-assembly reactions of L1 and L2 with Pd(NO3)2 instead of Pd(BF4)2 resulted in selective formation of a tetrahedral cage [Pd4(L1)8](NO3)8 (1b) and double-walled triangle [Pd3(L2)6](NO3)6 (4b), respectively.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ranit Banerjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
6
|
Li S, Zhao H, Chen M, Wang J, Zhong W, Jiang Z, Liu D, Liu H, Wang P. A triple-pore tessellated square array by a metal-hexagonal ligand with reinforced tetra-connectors. Chem Commun (Camb) 2021; 57:12832-12835. [PMID: 34787122 DOI: 10.1039/d1cc05428g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tessellation of nine polygons into a 3 × 3 array is accomplished by the self-assembly of specifically designed hexaruthenium macrocycles containing a tetrapod ligand. Differing from the hexagon-containing bipod ligand, more connections lead to a giant discrete stable higher-order assembly. The formed tessellated square array possesses three different kinds of pores and each pore contains different metal ions, including one central tetragonum (Zn4), four corner hexagons (Ru6), and four side irregular hexagons (Ru2Zn2), which provides a promising way to fabricate multichannel architectures.
Collapse
Affiliation(s)
- Suqing Li
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan-410083, China.
| | - He Zhao
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan-410083, China.
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou-510006, China.
| | - Jun Wang
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan-410083, China.
| | - Wanying Zhong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou-510006, China.
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou-510006, China.
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou-510006, China.
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan-410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan-410083, China. .,Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou-510006, China.
| |
Collapse
|
7
|
Prusty S, Chan YT. Terpyridine-based Self-assembled Heteroleptic Coordination Complexes. CHEM LETT 2021. [DOI: 10.1246/cl.210048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Soumyakanta Prusty
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Kumar A, Saha R, Mukherjee PS. Self-assembled metallasupramolecular cages towards light harvesting systems for oxidative cyclization. Chem Sci 2021; 12:5319-5329. [PMID: 34163765 PMCID: PMC8179592 DOI: 10.1039/d1sc00097g] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
Designing artificial light harvesting systems with the ability to utilize the output energy for fruitful application in aqueous medium is an intriguing topic for the development of clean and sustainable energy. We report here facile synthesis of three prismatic molecular cages as imminent supramolecular optoelectronic materials via two-component coordination-driven self-assembly of a new tetra-imidazole donor (L) in combination with 180°/120° di-platinum(ii) acceptors. Self-assembly of 180° trans-Pt(ii) acceptors A1 and A2 with L leads to the formation of cages Pt4 L 2(1a) and Pt8 L 2(2a) respectively, while 120°-Pt(ii) acceptor A3 with L gives the Pt8 L 2(3a) metallacage. PF6 - analogues (1b, 2b and 3b) of the metallacages possess a high molar extinction coefficient and large Stokes shift. 1b-3b are weakly emissive in dilute solution but showed aggregation induced emission (AIE) in a water/MeCN mixture as well as in the solid state. AIE active 2b and 3b in aqueous (90% water/MeCN mixture) medium act as donors for fabricating artificial light harvesting systems via Förster resonance energy transfer (FRET) with organic dye rhodamine-B (RhB) with high energy efficiency and good antenna effect. The metallacages 2b and 3b represent an interesting platform to fabricate new generation supramolecular aqueous light harvesting systems with high antenna effect. Finally, the harvested energy of the LHSs (2b + RhB) and (3b + RhB) was utilized successfully for efficient visible light induced photo-oxidative cross coupling cyclization of N,N-dimethylaniline (4) with a series of N-alkyl/aryl maleimides (5) in aqueous acetonitrile with dramatic enhancement in yields compared to the reactions with RhB or cages alone.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
9
|
Bai Q, Wu T, Zhang Z, Xu L, Tang Z, Guan Y, Xie TZ, Chen M, Su P, Wang H, Wang P, Li X. Clover leaf-shaped supramolecules assembled using a predesigned metallo-organic ligand. Org Chem Front 2021. [DOI: 10.1039/d1qo00336d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of clover-like supramolecular structures were designed and synthesized using a combination of Ru–Zn, Ru–Co, Ru–Mn or Ru–Ni metal ions. These structures with distinct redox properties may have further applications as functional materials.
Collapse
|
10
|
Chen M, Cao JN, Li S, Liu D, Wang J, Zhao H, Wang G, Wu T, Jiang Z, Wang P. Customized self-assembled molecules: rim adjustable coronal polygons with multiple-folds symmetry. Org Chem Front 2021. [DOI: 10.1039/d1qo01316e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three desired discrete metallomacrocyclic wreaths with four-, five- and six-fold symmetry were successfully realized in a controlled fashion.
Collapse
Affiliation(s)
- Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Jia-nan Cao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Suqing Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Jun Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Guotao Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
11
|
Wang J, Zhao H, Chen M, Jiang Z, Wang F, Wang G, Li K, Zhang Z, Liu D, Jiang Z, Wang P. Construction of Macromolecular Pinwheels Using Predesigned Metalloligands. J Am Chem Soc 2020; 142:21691-21701. [PMID: 33206521 DOI: 10.1021/jacs.0c08020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Developing a methodology to build target structures is one of the major themes of synthetic chemistry. However, it has proven to be immensely challenging to achieve multilevel elaborate molecular architectures in a predictable way. Herein, we describe the self-assembly of a series of pinwheel-shaped starlike supramolecules through three rationally preorganized metalloligands L1-L3. The key octa-uncomplexed terpyridine (tpy) metalloligand L3, synthesized with an 8-fold Suzuki coupling reaction to metal-containing complexes, has four different types of terpyridines connected with three ⟨tpy-Ru2+-tpy⟩ units, making this the most subunits known so far for a preorganized module. Based on the principle of geometric complementation and the high "density of coordination sites", these metalloligands were assembled with Zn2+ ions to form a pinwheel-shaped star trigon P1, pentagram P2, and hexagram P3 with precisely controlled shapes in nearly quantitative yields. With molecular weights ranging from 16756 to 56053 Da and diameters of 6.7-13.6 nm, the structural composition, shape, and rigidity of these pinwheel-shaped architectures have been fully characterized by 1D and 2D (NMR), electrospray ionization mass spectrometry, traveling-wave ion mobility mass spectrometry, and transmission electron microscopy.
Collapse
Affiliation(s)
- Jun Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - He Zhao
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Feng Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Guotao Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Kaixiu Li
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
12
|
Wang SC, Cheng KY, Fu JH, Cheng YC, Chan YT. Conformational Regulation of Multivalent Terpyridine Ligands for Self-Assembly of Heteroleptic Metallo-Supramolecules. J Am Chem Soc 2020; 142:16661-16667. [PMID: 32881485 DOI: 10.1021/jacs.0c06618] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A two-ligand system composed of the predesigned multivalent and complementary terpyridine-based ligands was exploited to construct heteroleptic metallo-supramolecules and to investigate the self-assembly mechanism. Molecular stellation of the trimeric hexagon [Cd6L23] gave rise to the exclusive self-assembly of the star hexagon [Cd18L16L33] through complementary ligand pairing between the ditopic and octatopic tectons. To understand how the intermolecular heteroleptic complexation influenced the self-assembly pathway, the star hexagon was truncated into two triangular fragments: [Cd12L13L43] and [Cd12L13L53]. In the self-assembly of [Cd12L13L43], the conformational movements of hexatopic ligand L4 could be regulated by L1 to promote the subsequent coordination event, which was the key step to the successful multicomponent self-assembly. In contrast, the formation of [Cd12L13L53] was hampered by the geometrically mismatched intermediates.
Collapse
Affiliation(s)
- Shi-Cheng Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Yu Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jun-Hao Fu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yuan-Chung Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
13
|
Chao YJ, Wu K, Chang HH, Chien MJ, Chan JCC. Manifold of self-assembly of a de novo designed peptide: amyloid fibrils, peptide bundles, and fractals. RSC Adv 2020; 10:29510-29515. [PMID: 35521097 PMCID: PMC9055936 DOI: 10.1039/d0ra04480f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022] Open
Abstract
We report that a peptide with the sequence of EGAGAAAAGAGE can have different aggregation states, viz., amyloid fibrils, peptide bundles, and fractal assembly under different incubation conditions. The chemical state of the Glu residue played a pivotal regulating role in the aggregation behavior of the peptide. The mechanism of the fractal assembly of this peptide has been unraveled as follows. The peptide fragments adopting the beta-sheet conformation are well dispersed in alkaline solution. In the buffer of sodium bicarbonate, peptide rods are formed with considerable structural rigidity at the C- and N-termini. The peptide rods undergo random trajectory in the solution and form a fractal pattern on a two-dimensional surface via the diffusion-limited aggregation process.
Collapse
Affiliation(s)
- Yu-Jo Chao
- Department of Chemistry, National Taiwan University No. 1, Section 4, Roosevelt Road Taipei 10617 Taiwan
| | - Kan Wu
- Department of Chemistry, National Taiwan University No. 1, Section 4, Roosevelt Road Taipei 10617 Taiwan
| | - Hsun-Hui Chang
- Department of Chemistry, National Taiwan University No. 1, Section 4, Roosevelt Road Taipei 10617 Taiwan
| | - Ming-Jou Chien
- Department of Chemistry, National Taiwan University No. 1, Section 4, Roosevelt Road Taipei 10617 Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University No. 1, Section 4, Roosevelt Road Taipei 10617 Taiwan
| |
Collapse
|
14
|
Jiang Z, Liu D, Chen M, Wang J, Zhao H, Li Y, Zhang Z, Xie T, Wang F, Li X, Newkome GR, Wang P. Assembling Shape-Persistent High-Order Sierpiński Triangular Fractals. iScience 2020; 23:101064. [PMID: 32380420 PMCID: PMC7210427 DOI: 10.1016/j.isci.2020.101064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/08/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Fractals are a series of intricate patterns with aesthetic, mathematic, and philosophic significance. The Sierpiński triangles have been known for more than one hundred years, but only recently discrete shape-persistent low-generation (mainly ST-1) fractal supramolecules have been realized. Herein, we report a retro-assembly pathway to the nanometer-scale, supra-macromolecular second-generation Sierpiński triangle and its third-generation saturated counterpart (Pascal's triangle). These gigantic triangular assemblies are unambiguously confirmed by NMR, DOSY, ESI-MS, TWIM-MS, TEM, and AFM analyses. Notably, the dense-packed counterions of these discrete triangular architectures could further form supramolecular hydro-gels in water. This work not only provides a fundamental chemical pathway to explore various giant supramolecular constructs and further overcome the synthetic limitation of complicated molecular fractals, but also presents a new type of supramolecular hydro-gels with potential in controlled release applications. Giant supramacromolecular Sierpiński and Pascal's triangles The design and use of small synthons to assemble high-order molecular fractals A retro-assembly modular construction strategy for complicated molecular fractals The dense-packed counterions of architectures could form supramolecular hydro-gels
Collapse
Affiliation(s)
- Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou-510006, China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou-510006, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou-510006, China.
| | - Jun Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan-410083, China
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan-410083, China
| | - Yiming Li
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou-510006, China
| | - Tingzheng Xie
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou-510006, China
| | - Feng Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan-410083, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - George R Newkome
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, FL 33428, USA.
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou-510006, China; Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan-410083, China.
| |
Collapse
|
15
|
Yu W, Li B, Zhang Y, Yan Q, Yan J. Discovery of a Fullerene-Polyoxometalate Hybrid Exhibiting Enhanced Photocurrent Response. Inorg Chem 2020; 59:5266-5270. [PMID: 32250606 DOI: 10.1021/acs.inorgchem.0c00188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new C60-polyoxometalate compound was synthesized by a C60 derivative with a {SiW11Mn} cluster connecting through a coordination bond and characterized. The photocurrent response test showed great improvement of this new compound compared to C60 and the polyoxometalate precursor, which could be used as a potential photoelectric material.
Collapse
Affiliation(s)
- Weidong Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Bin Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Yin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Qianwen Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.,Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
16
|
Sarkar R, Xie TZ, Endres KJ, Wang Z, Moorefield CN, Saunders MJ, Ghorai S, Patri AK, Wesdemiotis C, Dobrynin AV, Newkome GR. Sierpiński Pyramids by Molecular Entanglement. J Am Chem Soc 2020; 142:5526-5530. [PMID: 32131597 DOI: 10.1021/jacs.0c01168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Planar, terpyridine-based metal complexes with the Sierpiński triangular motif and alkylated corners undergo a second self-assembly event to give megastructural Sierpiński pyramids; assembly is driven by the facile lipophilic-lipophilic association of the alkyl moieties and complementary perfect fit of the triangular building blocks. Confirmation of the 3D, pyramidal structures was verified and supported by a combination of TEM, AFM, and multiscale simulation techniques.
Collapse
Affiliation(s)
- Rajarshi Sarkar
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Ting-Zheng Xie
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Kevin J Endres
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Zilu Wang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Charles N Moorefield
- Dendronex LLC, 109 Runway Drive, Reese Technology Center, Lubbock, Texas 79416, United States
| | - Mary Jane Saunders
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Suman Ghorai
- NCTR-ORA Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food & Drug Administration, HFT-30, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Anil K Patri
- NCTR-ORA Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food & Drug Administration, HFT-30, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Chrys Wesdemiotis
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States.,Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Andrey V Dobrynin
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - George R Newkome
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States.,Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States.,Center for Molecular Biology and Biotechnology, Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
| |
Collapse
|
17
|
He L, Wang SC, Lin LT, Cai JY, Li L, Tu TH, Chan YT. Multicomponent Metallo-Supramolecular Nanocapsules Assembled from Calix[4]resorcinarene-Based Terpyridine Ligands. J Am Chem Soc 2020; 142:7134-7144. [PMID: 32150683 DOI: 10.1021/jacs.0c01482] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetrafunctionalized calix[4]resorcinarene cavitands commonly serve as supramolecular scaffolds for construction of coordination-driven self-assembled capsules. However, due to the calix-like shape, the structural diversity of assemblies is mostly restricted to dimeric and hexameric capsules. Previously, we reported a spontaneous heteroleptic complexation strategy based on a pair of self-recognizable terpyridine-based ligands and CdII ions. Building on this complementary ligand pairing system, herein three types of nanocapsules, including a dimeric capsule, a Sierpiński triangular prism, and a cubic star, could be readily obtained through dynamic complexation reactions between a tetratopic cavitand-based ligand and various multitopic counterparts in the presence of CdII ions. The dimeric capsular assemblies display the spacer-length-dependent self-sorting behavior in a four-component system. Moreover, the precise multicomponent self-assembly of a Sierpiński triangular prism and a cubic star possessing three and six cavitand-based motifs, respectively, demonstrates that such self-assembly methodology is able to efficiently enhance architectural complexity for calix[4]resorcinarene-containing metallo-supramolecules.
Collapse
Affiliation(s)
- Lipeng He
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shi-Cheng Wang
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Lin-Ting Lin
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Jhen-Yu Cai
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Lijie Li
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
18
|
Jiang Z, Xue X, Wu T, Chen M, Wang SC, Wang J, Yan J, Chan YT, Wang P. Precise Self-Assembly of Molecular Four- and Six-Pointed Stars. Inorg Chem 2020; 59:875-879. [PMID: 31868353 DOI: 10.1021/acs.inorgchem.9b03124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel metal-organic ligand (MOL 2) has been prepared by linking two V-shaped bis-terpyridines with one X-shaped tetrakis-terpyridine through the stable <tpy-Ru2+-tpy> connectivity. The complexation between MOL 2, X-shaped tetrakis-terpyridine, and Zn2+ gave rise to a supramolecular C6-symmetrical six-pointed star quantitatively. In addition, a mixture of MOL 2, K-shaped tetrakis-terpyridine, and Zn2+ afforded a C2-symmetrical four-pointed star. These metallo-supramolecular architectures were adequately characterized by NMR, ESI-MS, TWIM-MS, and TEM analyses.
Collapse
Affiliation(s)
- Zhiyuan Jiang
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , China
| | - Xiaobo Xue
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education ; Guangzhou University , Guangzhou 510006 , China
| | - Mingzhao Chen
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , China
| | - Shi-Cheng Wang
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Jun Wang
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , China
| | - Jun Yan
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , China
| | - Yi-Tsu Chan
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , China.,Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education ; Guangzhou University , Guangzhou 510006 , China
| |
Collapse
|
19
|
Route to Useful Metallomonomers: Step-Wise Construction of Bimetallic Triangles by Site-Specific Metalation. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01223-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Zhao FJ, Wang H, Li K, Wang XD, Zhang N, Zhu X, Zhang W, Wang M, Hao XQ, Song MP, Li X. Ditopic Chiral Pineno-Fused 2,2':6',2″-Terpyridine: Synthesis, Self-Assembly, and Optical Properties. Inorg Chem 2019; 58:15039-15044. [PMID: 31682430 DOI: 10.1021/acs.inorgchem.9b02657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The syntheses of 4'-substituted chiral 2,2':6',2″-terpyridine (tpy) ligands with predetermined configurations and directionalities are rather limited in the supramolecular chemistry field. In this study, a carbazole-linked ditopic chiral ligand L was synthesized using 4'-bromo-substituted pineno-fused tpy 5 as the precursor. Upon complexation with Cd(NO3)2·4H2O and Zn(NO3)2·6H2O, two enantiomerically pure metallosupramolecules, [Cd3L3] and [Zn4L4], have been self-assembled and characterized by NMR, electrospray ionization-mass spectrometry, traveling wave ion mobility-mass spectrometry, and DOSY analysis. In addition, their optical properties are characterized by UV-vis, fluorescence, circular dichroism, and circularly polarized luminescence, suggesting an efficiency transmission and amplification of chirality from the ligand to metal center via self-assembly.
Collapse
Affiliation(s)
- Fu-Jie Zhao
- College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Heng Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , P. R. China
| | - Xiao-Die Wang
- College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Ning Zhang
- College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Xinju Zhu
- College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Wenjing Zhang
- College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , P. R. China
| | - Xin-Qi Hao
- College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Mao-Ping Song
- College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
21
|
Structural controlled pure metallo-triangular assembly through bisterpyridinyl Dibenzo[b,d]thiophene, Dibenzo[b,d]furan and Dibenzo[b,d]carbazole. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|