1
|
Adelibieke Q, Yusan B, Wang X, Huang S, Wusiman A. Photocatalytic Oxidative C(sp 3)-H/N-H Cross-Dehydrogenative Coupling of Tertiary Anilines with Amides/Imides: Synthesis of N-Mannich Bases. J Org Chem 2025; 90:6123-6133. [PMID: 40302685 DOI: 10.1021/acs.joc.4c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
A photocatalytic method for the synthesis of N-Mannich bases has been developed through the C(sp3)-H/N-H cross-dehydrogenative coupling of N,N-dimethylanilines with amides/imides. This process utilizes 2,4,6-triphenylpyrylium tetrafluoroborate (TPT) as the photocatalyst and is conducted at ambient temperature and atmospheric air. Various N,N-dimethylanilines and the aromatic, heteroaromatic and aliphatic (cyclic) amides, as well as imides were successfully employed, yielding moderate to good results. Preliminary mechanistic and isotope-labeling studies indicate that the reaction likely proceeds via a single electron transfer pathway and involves an α-aminoalkyl radical intermediate.
Collapse
Affiliation(s)
- Qiaerbati Adelibieke
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. China
| | - Bulunuer Yusan
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. China
| | - Xiong Wang
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. China
| | - Shuai Huang
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. China
| | - Abudureheman Wusiman
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi 830054, P. R. China
| |
Collapse
|
2
|
Modi A, Gosmini C, Auffrant A. C-P Bond Formation by Nickel or Cobalt Catalyzed Coupling Reactions. Chem Asian J 2025; 20:e202401780. [PMID: 40026281 DOI: 10.1002/asia.202401780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
This review discloses nickel- and cobalt-catalyzed coupling reactions that allow C-P bond formation. Activation of C-halide bonds to form phosphonium, pentavalent phosphorus, or trivalent phosphorous compounds has been reported with both metals. However, the conversion of C-O bonds ((activated) ethers, carbonates, acetates) into C-P ones has been only described with Ni. Similarly, there are more examples of C-Y (Y=C, S, N, B) bond activations catalyzed by Ni than by Co. Nevertheless, the cross-dehydrogenative coupling reaction between a P-H reagent and a C-H bond has been reported more often with cobalt than with nickel. In addition, for both metals, electrolytic and photocatalytic processes have been shown to produce a variety of C-P containing molecules. This review aims to provide an overview of the potential of both metals for C-P bond formation and to highlight the remaining challenges.
Collapse
Affiliation(s)
- Anju Modi
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120, Palaiseau, France
| | - Corinne Gosmini
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 avenue des Sciences, 91400, Orsay, France
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120, Palaiseau, France
| |
Collapse
|
3
|
Lozano-Pérez A, Kulyabin P, Kumar A. Rising Opportunities in Catalytic Dehydrogenative Polymerization. ACS Catal 2025; 15:3619-3635. [PMID: 40078407 PMCID: PMC11894598 DOI: 10.1021/acscatal.4c08091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
This article gives a perspective on various types of catalytic dehydrogenative polymerization reactions (including organic and main group polymers) while introducing "hydrogen-borrowing polymerization" and "acceptorless dehydrogenative polymerization" to this class. Limitations and future opportunities of each method have been discussed.
Collapse
Affiliation(s)
| | | | - Amit Kumar
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K.
| |
Collapse
|
4
|
Li G, Yan B, Wu L, Li Y, Hao X, Gong M, Wu Y. Electrochemical α-C(sp 3)-H/N-H Cross-Coupling of Isochromans and Azoles. Molecules 2024; 30:4. [PMID: 39795062 PMCID: PMC11720983 DOI: 10.3390/molecules30010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Isochroman and azole moieties are both present in a wide variety of biologically active molecules. Their efficient combination under mild reaction conditions is beneficial for obtaining small-molecule drug candidates. In this paper, we describe electrochemical α-C(sp3)-H/N-H cross-coupling reactions between isochromans and azoles, yielding products in moderate to excellent yields. This protocol does not require any catalysts or exogenous oxidants and can be performed at room temperature under air. Control experiments and cyclic voltammetry showed that the reaction may proceed through both radical coupling and nucleophilic addition processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Gong
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China; (G.L.); (B.Y.); (L.W.); (Y.L.); (X.H.); (Y.W.)
| | | |
Collapse
|
5
|
Kamiyoshi I, Kojima Y, Xu S, Yasui K, Nishii Y, Hirano K. Synthesis of highly condensed phospholes by the Lewis acid-assisted dehydrogenative Mallory reaction under visible light irradiation. Chem Sci 2024; 15:20413-20420. [PMID: 39583556 PMCID: PMC11580199 DOI: 10.1039/d4sc05657d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
A photo-promoted oxidative cyclization, that is, the Mallory reaction of 2,3-diarylbenzophopholes has been developed. With the assistance of Bi(OTf)3 Lewis acid, the reaction proceeds smoothly under visible light irradiation even without any external oxidants. The newly developed dehydrogenative conditions are compatible with various functional groups and substitution patterns, which enables the streamlined synthesis of highly condensed dibenzophosphole derivatives of potent interest in material chemistry. Moreover, experimental and computational studies unveil the detailed reaction mechanism. The preliminary optoelectronic properties of some newly synthesized compounds are also demonstrated.
Collapse
Affiliation(s)
- Ikki Kamiyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Yuki Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Shibo Xu
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| | - Kosuke Yasui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
6
|
Nguyen KT, Huynh TNT, Ratanathawornkiti K, Juthathan M, Thamyongkit P, Sukwattanasinitt M, Wacharasindhu S. NaI-Mediated Electrochemical Cyclization-Desulfurization for the Synthesis of N-Substituted 2-Aminobenzimidazoles. J Org Chem 2024; 89:1591-1608. [PMID: 38102091 DOI: 10.1021/acs.joc.3c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
An electrochemical method for the synthesis of N-substituted 2-aminobenzimidazoles through a NaI-mediated desulfurization-cyclization process is reported. This electrosynthesis method utilizes cost-effective NaI as both a mediator and an electrolyte in a catalytic amount (0.2 equiv), replacing traditional oxidizing reagents. N-Substituted o-phenylenediamines and isothiocyanates undergo a thiourea formation/cyclization/desulfurization process to provide N-substituted 2-aminobenzimidazoles (55 examples, up to 98% yield) in a single reaction vessel. Importantly, this electrochemical methodology is applicable to gram-scale synthesis, maintaining reaction efficiency.
Collapse
Affiliation(s)
- Khuyen Thu Nguyen
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thao Nguyen Thanh Huynh
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Methasit Juthathan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patchanita Thamyongkit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Sumrit Wacharasindhu
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Green Chemistry for Fine Chemical Productions and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Li JL, Li HY, Zhang SS, Shen S, Yang XL, Niu X. Photoredox/Cobalt-Catalyzed Cascade Oxidative Synthesis of 2,5-Disubstituted 1,3,4-Oxadiazoles under Oxidant-Free Conditions. J Org Chem 2023; 88:14874-14886. [PMID: 37862710 DOI: 10.1021/acs.joc.3c01078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
An efficient oxidant-free, photoredox-mediated cascade cyclization strategy for the synthesis of 1,3,4-oxadiazoles by using an organo acridinium photocatalyst and a cobaloxime catalyst has been developed. Various acylhydrazones have been transformed into the corresponding 1,3,4-oxadiazole products in up to 96% yield, and H2 is the only byproduct. Mechanistic experiments and density functional theory (DFT) calculation studies indicate carbon-centered radicals rather than oxygen-centered radicals as π-radicals produced by the oxidation of photoexcited Mes-Acr+* along with deprotonation, which is responsible for this transformation. The practical utility of this method is highlighted by the one-pot gram-scale synthesis starting directly from commercially available aldehydes and acylhydrazides.
Collapse
Affiliation(s)
- Jun-Li Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Hao-Yuan Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shan-Shan Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoying Niu
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
- Postdoctoral Research Station of Chemistry Affiliated College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
8
|
Zhang Y, Sun H, Chen Y, Shi Y, Yu L. Polyaniline-Supported Tungsten-Catalyzed α-H Alkylation Reaction of Ketone with Alcohol. Org Lett 2023; 25:7928-7932. [PMID: 37870283 DOI: 10.1021/acs.orglett.3c03245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
α-H alkylation of carbonyls is a significant reaction in the pharmaceutical industry because it can directly form a C-C bond in an environmentally benign manner. Thus, developing a novel catalyst for this reaction is a hot and practical topic in catalysis, organic synthesis, and materials science. In this paper, we found that polyaniline-supported tungsten could catalyze the α-H alkylation reaction of ketone with alcohol generating water as the only byproduct. Polyaniline support is the key for promoting the catalytic activity of tungsten, which is relatively cheaper than the traditionally employed noble metals. The reaction occurred under mild conditions with a wide substrate scope. The substrate initial concentration was enhanced to 1 mol/L, while the reaction speed was accelerated to reduce the reaction time to only 6 h; these improvements could significantly enhance the production capacity. The advantages make this reaction practical for synthesis with industrial purposes.
Collapse
Affiliation(s)
- Yiyang Zhang
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Hong Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Ying Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Yaocheng Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| |
Collapse
|
9
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
10
|
Mondal S, Chatterjee N, Maity S. Recent Developments on Photochemical Synthesis of 1,n-Dicarbonyls. Chemistry 2023; 29:e202301147. [PMID: 37335758 DOI: 10.1002/chem.202301147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
1,n-dicarbonyls are one of the most fascinating chemical feedstocks finding abundant usage in the field of pharmaceuticals. Besides, they are utilized in a plethora of synthesis in general synthetic organic chemistry. A number of 'conventional' methods are available for their synthesis, such as the Stetter reaction, Baker-Venkatraman rearrangement, oxidation of vicinal diols, and oxidation of deoxybenzoins, synonymous with unfriendly reagents and conditions. In the last 15 years or so, photocatalysis has taken the world of synthetic organic chemistry by a remarkable renaissance. It is fair to say now that everybody loves the light and photoredox chemistry has opened a new gateway to organic chemists towards milder, more simpler alternatives to the previously available methods, allowing access to many sensitive reactions and products. In this review, we present the readers with the photochemical synthesis of a variety of 1,n-dicarbonyls. Diverse photocatalytic pathways to these fascinating molecules have been discussed, placing special emphasis on the mechanisms, giving the reader an opportunity to find all these significant developments in one place.
Collapse
Affiliation(s)
- Subhashis Mondal
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Nirbhik Chatterjee
- Department of Chemistry, Kanchrapara College, North 24 Parganas, 743145, West Bengal, India
| | - Soumitra Maity
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
11
|
Zhou Z, Pan X, Sun L, Xie Y, Zheng J, Li L, Zhao G. Boosting Hydrogen Production via Selective Two-electron Mild Electrochemical Oxidation of Tetrahydroisoquinolines Completely to Dihydroisoquinolines. Angew Chem Int Ed Engl 2023; 62:e202216347. [PMID: 36642694 DOI: 10.1002/anie.202216347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
Different from the previous study that biomass derivatives replace water oxidation for enhancing hydrogen production, we found that mild oxidation was more conductive to cathodic hydrogen production. In this study, maximum Faradaic efficiency (>99 %) and lower energy consumption for hydrogen production was achieved by precisely controlling the two-electron mild electrochemical oxidation of tetrahydroisoquinolines (THIQs) to dihydroisoquinolines (DHIQs) in place of the four-electron deep oxidation to isoquinolines (IQs). Moreover, the high value-added DHIQs were prepared from THIQs with high selectivity (>99 %) at the low potential of 1.36 V. Operando electrochemical Raman and density functional theory proved that the high selectivity was attributed to the regulable active species of NiOOH induced by the interaction of Co and Fe for preferentially breaking C-H bond rather than N-H of THIQs. This novel method provides important insight into efficient biomass-assisted hydrogen production.
Collapse
Affiliation(s)
- Zhaoyu Zhou
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Xun Pan
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lingzhi Sun
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Yanan Xie
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Jingui Zheng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201800, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| |
Collapse
|
12
|
Fu K, Jiang J, Zhao Q, Wang N, Kong W, Yu Y, Xie H, Li T. Mn-catalyzed electrooxidative radical phosphorylation of 2-isocyanobiaryls. Org Biomol Chem 2023; 21:1662-1666. [PMID: 36734361 DOI: 10.1039/d2ob01849g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As an efficient and green synthesis method, the electrocatalysis hydrogen evolution coupling reaction has been widely used by chemists to realize the combining of two nucleophiles. In this work, an alternative method to synthesize 6-phosphorylated phenanthridines has been developed by synergistically utilizing electrocatalysis and Mn catalysis, with moderate to relatively good yields achieved. Mild and oxidant-free conditions make this synthetic method applicable in various settings.
Collapse
Affiliation(s)
- Kaifang Fu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China, 473061
| | - Juncai Jiang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China, 473061
| | - Qiang Zhao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China, 473061
| | - Nan Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China, 473061
| | - Weiguang Kong
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China, 473061
| | - Yongqi Yu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China, 473061
| | - Huanping Xie
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China, 473061
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China, 473061
| |
Collapse
|
13
|
Recent Advances in Nickel-Catalyzed C-C Cross-Coupling. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
14
|
Ding Y, Shen L, Liang K, Xia C. Synthesis of C2-Carbonyl Indoles via Visible Light-Induced Oxidative Cleavage of an Aminomethylene Group. J Org Chem 2022; 87:16644-16654. [PMID: 36445203 DOI: 10.1021/acs.joc.2c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A strategy for photochemical oxidative cleavage of the aminomethylene group at the C2 position of indole was developed to synthesize C2-carbonyl indoles. The reaction was initiated by the photochemical oxidation of N1, followed by a water-assisted concerted H-shift by abstracting hydrogen from aminomethylene. Bromopyridine was discovered to play dual roles as an oxidant for the regeneration of photocatalysts and as an accelerant for the single-electron transfer process.
Collapse
Affiliation(s)
- Yuzhen Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Lei Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| |
Collapse
|
15
|
Sugawara M, Sawamura M, Akakabe M, Ramadoss B, Sohtome Y, Sodeoka M. Pd-catalyzed Aerobic Cross-Dehydrogenative Coupling of Catechols with 2-Oxindoles and Benzofuranones: Reactivity Difference Between Monomer and Dimer. Chem Asian J 2022; 17:e202200807. [PMID: 36062560 PMCID: PMC9825984 DOI: 10.1002/asia.202200807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Persistent radicals, which are generated from 2-oxindole or benzofuranone dimers, are useful tools for designing the radical-based cross-coupling reaction to provide molecules containing a quaternary carbon. The persistent radical is accessible from both the dimer and monomer; however, the reactivity difference between these substrates for the oxidative cross-coupling reaction is not fully understood, most likely because of the mechanistic complexity. Here, we present details of an aerobic cross-dehydrogenative coupling (CDC) reaction using various monomers and catechols. UV-Vis analysis and mechanistic control experiments showed that the monomer is less reactive than the dimer under aerobic conditions. Our Pd(II)-BINAP-μ-hydroxo complex significantly improved the reactivity of the monomers for the aerobic CDC reaction with catechols, yielding results comparable to those of the corresponding dimer. The procedure, which enables the generation of the persistent radical in situ, is particularly useful when employing the monomer that is not readily converted to the corresponding dimer.
Collapse
Affiliation(s)
- Masumi Sugawara
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan
| | - Miki Sawamura
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Tokyo Medical and Dental UniversityTokyo113-8510Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science
| | - Boobalan Ramadoss
- Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science
| | - Yoshihiro Sohtome
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science,Tokyo Medical and Dental UniversityTokyo113-8510Japan
| |
Collapse
|
16
|
Yu J, Cheng Y, Chen B, Tung C, Wu L. Cobaloxime Photocatalysis for the Synthesis of Phosphorylated Heteroaromatics. Angew Chem Int Ed Engl 2022; 61:e202209293. [DOI: 10.1002/anie.202209293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ji‐Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuan‐Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
17
|
Covalent Organic Frameworks Composites Containing Bipyridine Metal Complex for Oxygen Evolution and Methane Conversion. Molecules 2022; 27:molecules27165193. [PMID: 36014434 PMCID: PMC9416349 DOI: 10.3390/molecules27165193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Novel covalent organic framework (COF) composites containing a bipyridine multimetal complex were designed and obtained via the coordination interaction between bipyridine groups and metal ions. The obtained Pt and polyoxometalate (POM)–loaded COF complex (POM–Pt@COF–TB) exhibited excellent oxidation of methane. In addition, the resultant Co/Fe–based COF composites achieved great performance in an electrocatalytic oxygen evolution reaction (OER). Compared with Co–modified COFs (Co@COF–TB), the optimized bimetallic modified COF composites (Co0.75Fe0.25@COF–TB) exhibited great performance for electrocatalytic OER activity, showing a lower overpotential of 331 mV at 10 mA cm−2. Meanwhile, Co0.75Fe0.25@COF–TB also possessed a great turnover frequency (TOF) value (0.119 s−1) at the overpotential of 330 mV, which exhibited high efficiency in the utilization of metal atoms and was better than that of many reported COF-based OER electrocatalysts. This work provides a new perspective for the future coordination of COFs with bimetallic or polymetallic ions, and broadens the application of COFs in methane conversion and electrocatalytic oxygen evolution.
Collapse
|
18
|
Yu JX, Cheng YY, Chen B, Tung CH, Wu LZ. Cobaloxime Photocatalysis for Phosphorylated Heteroaromatics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ji-Xin Yu
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Yuan-Yuan Cheng
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Bin Chen
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Chen-Ho Tung
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry Chinese Academy of Science Zhongguancun east road 29#, haidian district, Beijing 100190, China 100190 Beijing CHINA
| |
Collapse
|
19
|
Affiliation(s)
- Yichang Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yi-Hung Chen
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| |
Collapse
|
20
|
Chang X, Chen X, Lu S, Zhao Y, Ma Y, Zhang D, Yang L, Sun P. Electrochemical [3+2] Cycloaddition of Anilines and 1,3‐Dicarbonyl Compounds: Construction of Multisubstituted Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoqiang Chang
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Xingyu Chen
- Institute of Chinese Materia Medica and Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China CHINA
| | - Sixian Lu
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Yifan Zhao
- Institute of Chinese Materia Medica and Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China CHINA
| | | | | | - Lan Yang
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Peng Sun
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| |
Collapse
|
21
|
Xie S, Wang H, Wang Y, Yang Q, Zhu H. Visible‐light‐induced Catalyzed Dehydrogenative Coupling of Quinoxalin‐2(1
H
)‐ones with Azoles Using Carbon Nitride. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shihua Xie
- College of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing P. R. China
| | - Hui Wang
- College of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing P. R. China
| | - Yong Wang
- College of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing P. R. China
| | - Qifan Yang
- College of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing P. R. China
| | - Hongjun Zhu
- College of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing P. R. China
| |
Collapse
|
22
|
Xu XJ, Amuti A, Hu WJ, Adelibieke Q, Wusiman A. TEMPO-Promoted Mono- and Bisimidation of Tertiary Anilines: Synthesis of Symmetric and Unsymmetric N-Mannich Bases. J Org Chem 2022; 87:9011-9022. [PMID: 35749377 DOI: 10.1021/acs.joc.2c00700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A TEMPO-promoted method was developed for the synthesis of symmetric bis-N-Mannich bases via sequential activation of two α,α'-amino C(sp3)-H bonds of N,N-dimethylanilines under mild conditions. This methodology was further extended for monoimidation of α-amino-functionalized methylanilines to give unsymmetric N-Mannich bases in good to high yields. Several control experiments were performed, and the coupling reaction outcomes indicated that the oxoammonium (TEMPO+) species is involved in the reaction.
Collapse
Affiliation(s)
- Xiu Juan Xu
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. of China
| | - Adila Amuti
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. of China
| | - Wen Jing Hu
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. of China
| | - Qiaerbati Adelibieke
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. of China
| | - Abudureheman Wusiman
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. of China.,Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi 830054, People's Republic of China
| |
Collapse
|
23
|
|
24
|
Bajya KR, Sermadurai S. Dual Photoredox and Cobalt Catalysis Enabled Transformations. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Selvakumar Sermadurai
- Indian Institute of Technology Indore Chemistry Khandwa road Simrol 453552 Indore INDIA
| |
Collapse
|
25
|
Benchouaia R, Nandi S, Maurer C, Patureau FW. O 2-Mediated Dehydrogenative Phenoxazination of Phenols. J Org Chem 2022; 87:4926-4935. [PMID: 35276045 PMCID: PMC8981320 DOI: 10.1021/acs.joc.1c02827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Phenoxazines, in
particular N-arylated phenoxazines, represent
an increasingly important scaffold in the material sciences. Moreover,
the oxygen-gas-mediated dehydrogenative phenochalcogenazination concept
of phenols has been developed and exemplified for X = sulfur and recently
for X = selenium and tellurium. The smallest chalcogen, X = oxygen,
is herein exemplified with various functional groups under a likewise
trivial oxygen atmosphere.
Collapse
Affiliation(s)
- Rajaa Benchouaia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Shiny Nandi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Clemens Maurer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
26
|
Vemuri P, Cremer C, Patureau FW. Te(II)-Catalyzed Cross-Dehydrogenative Phenothiazination of Anilines. Org Lett 2022; 24:1626-1630. [PMID: 35192766 PMCID: PMC8902801 DOI: 10.1021/acs.orglett.2c00125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/11/2022]
Abstract
Oxidative clicklike reactions are useful for the late-stage functionalization of pharmaceuticals and organic materials. Hence, novel methodologies that enable such transformations are in high demand. Herein we describe a tellurium(II)-catalyzed cross-dehydrogenative phenothiazination (CDP) of aromatic amines. A key feature of this method is a cooperative effect between the phenotellurazine catalyst and the silver salt, which serves as a chemical oxidant for the reaction. This novel catalysis concept therefore enables a considerably broader scope compared with previous chemical oxidation methods.
Collapse
Affiliation(s)
- Pooja
Y. Vemuri
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Christopher Cremer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
27
|
Abstract
In photochemical production of hydrogen from water, the hole-mediated oxidation reaction is the rate-determining step. A poor solar-to-hydrogen efficiency is usually related to a mismatch between the internal quantum efficiency of photon-induced hole generation and the apparent quantum yield of hydrogen. This waste of photogenerated holes is unwanted yet unavoidable. Although great progress has been made, we are still far away from the required level of dexterity to deal with the associated challenges of wasted holes and its consequential chemical effects that have placed one of the greatest bottlenecks in attaining high solar-to-hydrogen efficiency. A critical assessment of the hole and its related phenomena in solar hydrogen production would, therefore, pave the way moving forward. In this regard, we focus on the contextual and conceptual understanding of the dynamics and kinetics of photogenerated holes and its critical role in driving redox reactions, with the objective of guiding future research. The main reasons behind and consequences of unused holes are examined and different approaches to improve overall efficiency are outlined. We also highlight yet unsolved research questions related to holes in solar fuel production.
Collapse
|
28
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
29
|
Baidya M, Maiti D, Roy L, De Sarkar S. Trifluoroethanol as a Unique Additive for the Chemoselective Electrooxidation of Enamines to Access Unsymmetrically Substituted NH‐Pyrroles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mrinmay Baidya
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Debabrata Maiti
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai IOC Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre Bhubaneswar 751013 India
| | - Suman De Sarkar
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| |
Collapse
|
30
|
Kong X, Wang Y, Chen Y, Chen X, Lin L, Cao ZY. Cyanation and cyanomethylation of trimethylammonium salts via electrochemical cleavage of C–N bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01858b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A practical and mild electrochemical protocol for cyanation and cyanomethylation of trimethylammonium salts has been developed.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Yuchang Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Long Lin
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
31
|
Chen X, Luo X, Wang P. Electrochemical-induced Radical Allylation via the Fragmentation of Alkyl 1,4-Dihydropyridines. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Xie W, Chen X, Li Y, Lin J, Chen W, Shi J. Electrooxidative Annulation of Unsaturated Molecules via Directed C—H Activation. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Yan ZH, Li WC, Wu YH, Yan QB, Wei ZL, Liao WW. Electrochemical cyclization of N-cyanamide alkenes with CF 3SO 2Na to access C, N-(bis)trifluoromethylated cyclic amidines and related compounds. Org Chem Front 2022. [DOI: 10.1039/d2qo01323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical trifluoromethylative cyclization of N-cyanamide alkenes and alkynes is presented, which afforded (bis)-C,N-trifluoromethylated cyclic amidines, azines and amides with selective multiple bond formations in a controllable manner.
Collapse
Affiliation(s)
- Zhi-Hua Yan
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wen-Cheng Li
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu-Heng Wu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qi-Bo Yan
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhong-Lin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
34
|
Abstract
Selective hydrogenation of epoxides would be a direct and powerful approach for alcohol synthesis, but it has proven to be elusive. Here, electrochemically epoxide hydrogenation using electrons and protons as reductants is reported. A wide range of primary, secondary, and tertiary alcohols can be achieved through selective Markovnikov or anti-Markovnikov ring opening in the absence of transition metals. Mechanistic investigations revealed that the regioselectivity is controlled by the thermodynamic stabilities of the in situ generated benzyl radicals for aryl-substituted epoxides and the kinetic tendency for Markovnikov selective ring opening for alkyl-substituted epoxides.
Collapse
Affiliation(s)
- Cheng Huang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Wan Ma
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Xuelian Zheng
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Minghao Xu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.,Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
35
|
Liu Y, Shi B, Liu Z, Gao R, Huang C, Alhumade H, Wang S, Qi X, Lei A. Time-Resolved EPR Revealed the Formation, Structure, and Reactivity of N -Centered Radicals in an Electrochemical C(sp 3)-H Arylation Reaction. J Am Chem Soc 2021; 143:20863-20872. [PMID: 34851107 DOI: 10.1021/jacs.1c09341] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electrochemical synthesis has been rapidly developed over the past few years, while a vast majority of the reactions proceed through a radical pathway. Understanding the properties of radical intermediates is crucial in the mechanistic study of electrochemical transformations and will be beneficial for developing new reactions. Nevertheless, it is rather difficult to determine the "live" radical intermediates due to their high reactivity. In this work, the formation and structure of sulfonamide N-centered radicals have been researched directly by using the time-resolved electron paramagnetic resonance (EPR) technique under electrochemical conditions. Supported by the EPR results, the reactivity of N-centered radicals as a mediator in the hydrogen atom transfer (HAT) approach has been discussed. Subsequently, these mechanistic study results have been successfully utilized in the discovery of an unactivated C(sp3)-H arylation reaction. The kinetic experiments have revealed the rate-determined step is the anodic oxidation of sulfonamides.
Collapse
Affiliation(s)
- Yichang Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Biyin Shi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Zhao Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Renfei Gao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Cunlong Huang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Center of Research Excellence in Renewable Energy and Power Ststems, King Abdulzaziz University, Jeddah 21589, Saudi Arabia
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Xiaotian Qi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China.,Department of Chemical and Materials Engineering, Abdulzaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
36
|
Baidya M, Maiti D, Roy L, De Sarkar S. Trifluoroethanol as a Unique Additive for the Chemoselective Electrooxidation of Enamines to Access Unsymmetrically Substituted NH-Pyrroles. Angew Chem Int Ed Engl 2021; 61:e202111679. [PMID: 34851544 DOI: 10.1002/anie.202111679] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/15/2021] [Indexed: 01/31/2023]
Abstract
An electrochemical method for the synthesis of unsymmetrically substituted NH-pyrroles is described. The synthetic strategy comprises a challenging heterocoupling between two structurally diverse enamines via sequential chemoselective oxidation, addition, and cyclization processes. A series of aryl- and alkyl-substituted enamines were effectively cross-coupled from an equimolar mixture to synthesize various unsymmetrical pyrrole derivatives up to 84 % yield. The desired cross-coupling was achieved by tuning the oxidation potential of the enamines by utilizing a "magic effect" of the additive trifluoroethanol (TFE). Additionally, extensive computational studies reveal the unique role of TFE in promoting the heterocoupling process by regulating the activation energies of the reaction steps through H-bonding and C-H⋅⋅⋅π interactions. Importantly, the developed electrochemical protocol was found to be equally efficient for the homocoupling of enamines to form symmetric pyrroles up to 92 % yield.
Collapse
Affiliation(s)
- Mrinmay Baidya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Debabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, 751013, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
37
|
Shi G, Sun J, Chen Z. One‐Pot Electro‐Oxidative Annulation Reactions: Synthesis of Polysubstituted Pyrroles from Anilines and Alkynoates. ChemistrySelect 2021. [DOI: 10.1002/slct.202102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guang Shi
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Jie Sun
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Zhiwei Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P.R. China
| |
Collapse
|
38
|
Maity B, Zhu C, Rueping M, Cavallo L. Mechanistic Understanding of Arylation vs Alkylation of Aliphatic Csp3–H Bonds by Decatungstate–Nickel Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bholanath Maity
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Chen Zhu
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
39
|
Wan H, Guan Z, He Y. Electrochemically Promoted Bifunctionalization of Alkynes for the Synthesis of
β
‐Keto Sulfones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hai‐Lan Wan
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Yan‐Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
40
|
Gu Q, Wang X, Liu X, Wu G, Xie Y, Shao Y, Zhao Y, Zeng X. Electrochemical sulfonylation of enamides with sodium sulfinates to access β-amidovinyl sulfones. Org Biomol Chem 2021; 19:8295-8300. [PMID: 34519742 DOI: 10.1039/d1ob01485d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical sulfonylation of enamides with sodium sulfinates was developed in an undivided cell in constant current mode, leading to the formation of β-amidovinyl sulfones in moderate to good yields. The catalyst-, electrolyte- and oxidant-free protocol features good functional group tolerance and employs electric current as a green oxidant. Mechanistic insights into the reaction indicate that the reaction may proceed via a radical mechanism.
Collapse
Affiliation(s)
- Qingyun Gu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xin Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xinyi Liu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Guixia Wu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yushan Xie
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Shao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| |
Collapse
|
41
|
Zhao J, Huang B, Zhu B, Ma X, Mo D. Visible Light Promoted Chan‐Lam Reaction and Cycloaddition to Prepare Chromeno[4,3‐c]isoxazolidines in One‐Pot Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jie Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Bing‐Qing Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Bin‐Can Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Xiao‐Pan Ma
- College of Pharmacy Guilin Medical University Guilin 541199 People's Republic of China
| | - Dong‐Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004 People's Republic of China
| |
Collapse
|
42
|
Zhang F, Wang Y, Wang Y, Pan Y. Electrochemical Deoxygenative Thiolation of Preactivated Alcohols and Ketones. Org Lett 2021; 23:7524-7528. [PMID: 34519513 DOI: 10.1021/acs.orglett.1c02738] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This work describes an electrochemically promoted nickel-catalyzed deoxygenative thiolation of alcohols and ketones under mild conditions. Excellent substrate tolerance and good chemical yields can be achieved by graphene/nickel foam electrodes in an undivided cell. Further study to gain mechanistic insight into this electrochemical cross-coupling has been carried out.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yang Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
43
|
Faarasse S, El Brahmi N, Guillaumet G, El Kazzouli S. Regioselective C-H Functionalization of the Six-Membered Ring of the 6,5-Fused Heterocyclic Systems: An Overview. Molecules 2021; 26:5763. [PMID: 34641306 PMCID: PMC8510187 DOI: 10.3390/molecules26195763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The regioselective C-H functionalization of the five-membered ring of the 6,5-fused heterocyclic systems is nowadays well documented due to its high reactivity compared to the six-membered ring. So, developing new procedures of C-H functionalization of the six-membered ring "by thinking out of the box" is extremely challenging, which explains the limited number of reports published to date. This review paper aims to highlight advances achieved in this emerging chemistry research and discusses recently reported methods.
Collapse
Affiliation(s)
- Soukaina Faarasse
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, Fez 30000, Morocco; (S.F.); (N.E.B.); (G.G.)
- Institute of Organic and Analytical Chemistry, University of Orleans, UMR CNRS 7311, BP 6759, CEDEX 2, 45067 Orleans, France
| | - Nabil El Brahmi
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, Fez 30000, Morocco; (S.F.); (N.E.B.); (G.G.)
| | - Gérald Guillaumet
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, Fez 30000, Morocco; (S.F.); (N.E.B.); (G.G.)
- Institute of Organic and Analytical Chemistry, University of Orleans, UMR CNRS 7311, BP 6759, CEDEX 2, 45067 Orleans, France
| | - Saïd El Kazzouli
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, Fez 30000, Morocco; (S.F.); (N.E.B.); (G.G.)
| |
Collapse
|
44
|
Rhodium-Catalyzed Oxidative Annulation of 2- or 7-Arylindoles with Alkenes/Alkynes Using Molecular Oxygen as the Sole Oxidant Enabled by Quaternary Ammonium Salt. Molecules 2021; 26:molecules26175329. [PMID: 34500762 PMCID: PMC8433977 DOI: 10.3390/molecules26175329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022] Open
Abstract
Developing an efficient catalytic system using molecular oxygen as the oxidant for rhodium-catalyzed cross-dehydrogenative coupling remains highly desirable. Herein, rhodium-catalyzed oxidative annulation of 2- or 7-phenyl-1H-indoles with alkenes or alkynes to assemble valuable 6H-isoindolo[2,1-a]indoles, pyrrolo[3,2,1-de]phenanthridines, or indolo[2,1-a]isoquinolines using the atmospheric pressure of air as the sole oxidant enabled by quaternary ammonium salt has been accomplished. Mechanistic studies provided evidence for the fast intramolecular aza-Michael reaction and aerobic reoxidation of Rh(I)/Rh(III), facilitated by the addition of quaternary ammonium salt.
Collapse
|
45
|
Hu J, Wang T, Zhang WJ, Hao H, Yu Q, Gao H, Zhang N, Chen Y, Xia XH, Chen HY, Xu JJ. Dissecting the Flash Chemistry of Electrogenerated Reactive Intermediates by Microdroplet Fusion Mass Spectrometry. Angew Chem Int Ed Engl 2021; 60:18494-18498. [PMID: 34129259 DOI: 10.1002/anie.202106945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 11/06/2022]
Abstract
A novel mass spectrometric method for probing the flash chemistry of electrogenerated reactive intermediates was developed based on rapid collision mixing of electrosprayed microdroplets by using a theta-glass capillary. The two individual microchannels of the theta-glass capillary are asymmetrically or symmetrically fabricated with a carbon bipolar electrode to produce intermediates in situ. Microdroplets containing the newly formed intermediates collide with those of the invoked reactants at sub-10 microsecond level, making it a powerful tool for exploring their ultrafast initial transformations. As a proof-of-concept, we present the identification of the key radical cation intermediate in the oxidative dimerization of 8-methyl-1,2,3,4-tetrahydroquinoline and also the first disclosure of previously hidden nitrenium ion involved reaction pathway in the C-H/N-H cross-coupling between N,N'-dimethylaniline and phenothiazine.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wen-Jun Zhang
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Han Hao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yun Chen
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
46
|
Hu J, Wang T, Zhang W, Hao H, Yu Q, Gao H, Zhang N, Chen Y, Xia X, Chen H, Xu J. Dissecting the Flash Chemistry of Electrogenerated Reactive Intermediates by Microdroplet Fusion Mass Spectrometry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Hu
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wen‐Jun Zhang
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Han Hao
- Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yun Chen
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Xing‐Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
47
|
Qi MY, Conte M, Anpo M, Tang ZR, Xu YJ. Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production over Semiconductor-Based Photocatalysts. Chem Rev 2021; 121:13051-13085. [PMID: 34378934 DOI: 10.1021/acs.chemrev.1c00197] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Merging hydrogen (H2) evolution with oxidative organic synthesis in a semiconductor-mediated photoredox reaction is extremely attractive because the clean H2 fuel and high-value chemicals can be coproduced under mild conditions using light as the sole energy input. Following this dual-functional photocatalytic strategy, a dreamlike reaction pathway for constructing C-C/C-X (X = C, N, O, S) bonds from abundant and readily available X-H bond-containing compounds with concomitant release of H2 can be readily fulfilled without the need of external chemical reagents, thus offering a green and fascinating organic synthetic strategy. In this review, we begin by presenting a concise overview on the general background of traditional photocatalytic H2 production and then focus on the fundamental principles of cooperative photoredox coupling of selective organic synthesis and H2 production by simultaneous utilization of photoexcited electrons and holes over semiconductor-based catalysts to meet the economic and sustainability goal. Thereafter, we put dedicated emphasis on recent key progress of cooperative photoredox coupling of H2 production and various selective organic transformations, including selective alcohol oxidation, selective methane conversion, amines oxidative coupling, oxidative cross-coupling, cyclic alkanes dehydrogenation, reforming of lignocellulosic biomass, and so on. Finally, the remaining challenges and future perspectives in this flourishing area have been critically discussed. It is anticipated that this review will provide enlightening guidance on the rational design of such dual-functional photoredox reaction system, thereby stimulating the development of economical and environmentally benign solar fuel generation and organic synthesis of value-added fine chemicals.
Collapse
Affiliation(s)
- Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Marco Conte
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Masakazu Anpo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
48
|
Wang B, Peng P, Ma W, Liu Z, Huang C, Cao Y, Hu P, Qi X, Lu Q. Electrochemical Borylation of Alkyl Halides: Fast, Scalable Access to Alkyl Boronic Esters. J Am Chem Soc 2021; 143:12985-12991. [PMID: 34374534 DOI: 10.1021/jacs.1c06473] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, a fast, scalable, and transition-metal-free borylation of alkyl halides (X = I, Br, Cl) enabled by electroreduction is reported. This process provides an efficient and practical access to primary, secondary, and tertiary boronic esters at a high current. More than 70 examples, including the late-stage borylation of natural products and drug derivatives, are furnished at room temperature, thereby demonstrating the broad utility and functional-group tolerance of this protocol. Mechanistic studies disclosed that B2cat2 serves as both a reagent and a cathodic mediator, enabling electroreduction of difficult-to-reduce alkyl bromides or chlorides at a low potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qingquan Lu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
49
|
Cheng Z, Gao X, Yao L, Wei Z, Qin G, Zhang Y, Wang B, Xia Y, Abdukader A, Xue F, Jin W, Liu C. Electrochemical Scalable Sulfoxidation of Sulfides with Molecular Oxygen and Water. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhen Cheng
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Xinglian Gao
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Lingling Yao
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Zhaoxin Wei
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Guohui Qin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Ablimit Abdukader
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| |
Collapse
|
50
|
Cai CY, Wu ZJ, Liu JY, Chen M, Song J, Xu HC. Tailored cobalt-salen complexes enable electrocatalytic intramolecular allylic C-H functionalizations. Nat Commun 2021; 12:3745. [PMID: 34145285 PMCID: PMC8213807 DOI: 10.1038/s41467-021-24125-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/03/2021] [Indexed: 12/04/2022] Open
Abstract
Oxidative allylic C–H functionalization is a powerful tool to streamline organic synthesis as it minimizes the need for functional group activation and generates alkenyl-substituted products amenable to further chemical modifications. The intramolecular variants can be used to construct functionalized ring structures but remain limited in scope and by their frequent requirement for noble metal catalysts and stoichiometric chemical oxidants. Here we report an oxidant-free, electrocatalytic approach to achieve intramolecular oxidative allylic C–H amination and alkylation by employing tailored cobalt-salen complexes as catalysts. These reactions proceed through a radical mechanism and display broad tolerance of functional groups and alkene substitution patterns, allowing efficient coupling of di-, tri- and even tetrasubstituted alkenes with N- and C-nucleophiles to furnish high-value heterocyclic and carbocyclic structures. Oxidative allylic C–H functionalizations minimise the need for functional group activation and generate alkenyl-substituted products amenable to further chemical modifications. Here the authors report an oxidant-free, electrocatalytic approach to achieve intramolecular oxidative allylic C–H amination and alkylation by employing tailored cobalt-salen complexes as catalysts.
Collapse
Affiliation(s)
- Chen-Yan Cai
- Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zheng-Jian Wu
- Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ji-Ying Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Ming Chen
- Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Jinshuai Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Hai-Chao Xu
- Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| |
Collapse
|