1
|
Shen D, Zhao Q, Zhang H, Wu C, Jin H, Guo K, Sun R, Guo H, Zhao Q, Feng H, Dong X, Gao Z, Zhang L, Liu Y. A hydrophobic photouncaging reaction to profile the lipid droplet interactome in tissues. Proc Natl Acad Sci U S A 2025; 122:e2420861122. [PMID: 40238459 PMCID: PMC12037041 DOI: 10.1073/pnas.2420861122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Most bioorthogonal photouncaging reactions preferentially occur in polar environments to accommodate biological applications in the aqueous cellular milieu. However, they are not precisely designed to chemically adapt to the diverse microenvironments of the cell. Herein, we report a hydrophobic photouncaging reaction with tailored photolytic kinetics toward solvent polarity. Structural modulations of the aminobenzoquinone-based photocage reveal the impact of cyclic ring size, steric substituent, and electronic substituent on the individual uncaging kinetics (kH2O and kdioxane) and polarity preference (kdioxane/kH2O). Rational incorporation of optimized moieties leads to up to 20.2-fold nonpolar kinetic selectivity (kdioxane/kH2O). Further photochemical spectroscopic characterizations and theoretical calculations together uncover the mechanism underlying the polarity-dependent uncaging kinetics. The uncaged ortho-quinone methide product bears covalent reactivity toward diverse nucleophiles of a protein revealed by tandem mass spectrometry. Finally, we demonstrate the application of such lipophilic photouncaging chemistry toward selective labeling and profiling of proteins in proximity to lipid droplets inside human fatty liver tissues. Together, this work studies the solvent polarity effects of a photouncaging reaction and chemically adapts it toward suborganelle-targeted protein proximity labeling and profiling.
Collapse
Affiliation(s)
- Di Shen
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Qun Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Huaiyue Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ci Wu
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Hao Jin
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Kun Guo
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Rui Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Hengke Guo
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Qi Zhao
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Huan Feng
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Yu Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| |
Collapse
|
2
|
Wu D, Sun X, Chen X. Chemo-optogenetic Dimerization Dissects Complex Biological Processes. SMALL METHODS 2025:e2401271. [PMID: 39815164 DOI: 10.1002/smtd.202401271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Light offers superior control in terms of high temporal precision, high spatial precision, and non-invasiveness for the regulation of cellular functions. In recent years, chemical biologists have adopted chemo-optogenetic dimerization approaches, such as photo-triggered chemical inducers of dimerization (pCIDs), as a general tool for spatiotemporal regulation of cellular functions. Traditional chemo-optogenetic dimerization triggers either a single ON or a single OFF of cellular activity. However, more sophisticated approaches are introduced in recent years. These include the ability to turn ON and OFF using different wavelengths of light, tools enabling multi-layer control of cellular activities, and nanobody-tethered photodimerizers. These advancements not only shed light on the study of ubiquitously existing multi-functional proteins but also create new opportunities for investigating complex cellular activity networks.
Collapse
Affiliation(s)
- Donglian Wu
- Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
- Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaofeng Sun
- Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
- Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xi Chen
- Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
- Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
3
|
Mashita T, Kowada T, Yamamoto H, Hamaguchi S, Sato T, Matsui T, Mizukami S. Quantitative control of subcellular protein localization with a photochromic dimerizer. Nat Chem Biol 2024; 20:1461-1470. [PMID: 38890432 DOI: 10.1038/s41589-024-01654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Abstract
Artificial control of intracellular protein dynamics with high precision provides deep insight into complicated biomolecular networks. Optogenetics and caged compound-based chemically induced dimerization (CID) systems are emerging as tools for spatiotemporally regulating intracellular protein dynamics. However, both technologies face several challenges for accurate control such as the duration of activation, deactivation rate and repetition cycles. Herein, we report a photochromic CID system that uses the photoisomerization of a ligand so that both association and dissociation are controlled by light, enabling quick, repetitive and quantitative regulation of the target protein localization upon illumination with violet and green light. We also demonstrate the usability of the photochromic CID system as a potential tool to finely manipulate intracellular protein dynamics during multicolor fluorescence imaging to study diverse cellular processes. We use this system to manipulate PTEN-induced kinase 1 (PINK1)-Parkin-mediated mitophagy, showing that PINK1 recruitment to the mitochondria can promote Parkin recruitment to proceed with mitophagy.
Collapse
Affiliation(s)
- Takato Mashita
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Toshiyuki Kowada
- Graduate School of Science, Tohoku University, Sendai, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hayashi Yamamoto
- Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | | | - Toshizo Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Toshitaka Matsui
- Graduate School of Science, Tohoku University, Sendai, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shin Mizukami
- Graduate School of Science, Tohoku University, Sendai, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan.
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
4
|
Fleming CL, Benitez-Martin C, Bernson E, Xu Y, Kristenson L, Inghardt T, Lundbäck T, Thorén FB, Grøtli M, Andréasson J. All-photonic kinase inhibitors: light-controlled release-and-report inhibition. Chem Sci 2024; 15:6897-6905. [PMID: 38725520 PMCID: PMC11077529 DOI: 10.1039/d4sc00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Light-responsive molecular tools targeting kinases affords one the opportunity to study the underlying cellular function of selected kinases. In efforts to externally control lymphocyte-specific protein tyrosine kinase (LCK) activity, the development of release-and-report LCK inhibitors is described, in which (i) the release of the active kinase inhibitor can be controlled externally with light; and (ii) fluorescence is employed to report both the release and binding of the active kinase inhibitor. This introduces an unprecedented all-photonic method for users to both control and monitor real-time inhibitory activity. A functional cellular assay demonstrated light-mediated LCK inhibition in natural killer cells. The use of coumarin-derived caging groups resulted in rapid cellular uptake and non-specific intracellular localisation, while a BODIPY-derived caging group predominately localised in the cellular membrane. This concept of release-and-report inhibitors has the potential to be extended to other biorelevant targets where both spatiotemporal control in a cellular setting and a reporting mechanism would be beneficial.
Collapse
Affiliation(s)
- Cassandra L Fleming
- Department of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology SE-41296 Göteborg Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg Box 462 SE-40530 Göteborg Sweden
| | - Carlos Benitez-Martin
- Department of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology SE-41296 Göteborg Sweden
| | - Elin Bernson
- TIMM Laboratory at Sahlgrenska Centre for Cancer Research, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg SE-41296 Göteborg Sweden
| | - Yongjin Xu
- Department of Chemistry and Molecular Biology, University of Gothenburg Box 462 SE-40530 Göteborg Sweden
| | - Linnea Kristenson
- TIMM Laboratory, Sahlgrenska Centre for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg SE-41296 Göteborg Sweden
| | - Tord Inghardt
- Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development, AstraZeneca SE-43183 Mölndal Sweden
| | - Thomas Lundbäck
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca SE-43183 Mölndal Sweden
| | - Fredrik B Thorén
- TIMM Laboratory, Sahlgrenska Centre for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg SE-41296 Göteborg Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg Box 462 SE-40530 Göteborg Sweden
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology SE-41296 Göteborg Sweden
| |
Collapse
|
5
|
Zhou C, He H, Chen X. Photoactivatable Nanobody Conjugate Dimerizer Temporally Resolves Tiam1-Rac1 Signaling Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307549. [PMID: 38225743 PMCID: PMC10953561 DOI: 10.1002/advs.202307549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Indexed: 01/17/2024]
Abstract
The precise spatiotemporal dynamics of protein activities play a crucial role in cell signaling pathways. To control cellular functions in a spatiotemporal manner, a powerful method called photoactivatable chemically induced dimerization (pCID) is used. In this study, photoactivatable nanobody conjugate inducers of dimerization (PANCIDs) is introduced, which combine pCID with nanobody technology. A PANCID consists of a nanobody module that directly binds to an antigenic target, a photocaged small molecule ligand, and a cyclic decaarginine (cR10 *) cell-penetrating peptide (CPP) for efficient nonendocytic intracellular delivery. Therefore, PANCID photodimerizers also benefit from nanobodies, such as their high affinities (in the nm or pm range), specificities, and ability to modulate endogenous proteins. Additionally it is demonstrated that the nanobody moiety can be easily replaced with alternative ones, expanding the potential applications. By using PANCIDs, the dynamics of the Tiam1-Rac1 signaling cascade is investigated and made an interesting finding. It is found that Rac1 and Tiam1 exhibit distinct behaviors in this axis, acting as time-resolved "molecular oscillators" that transit between different functions in the signaling cascade when activated either slowly or rapidly.
Collapse
Affiliation(s)
- Chengjian Zhou
- Laboratory of Chemical Biology and Frontier BiotechnologiesThe HIT Center for Life Sciences (HCLS)Harbin Institute of TechnologyHarbin150001P. R. China
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150001P. R. China
| | - Huiping He
- Laboratory of Chemical Biology and Frontier BiotechnologiesThe HIT Center for Life Sciences (HCLS)Harbin Institute of TechnologyHarbin150001P. R. China
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150001P. R. China
| | - Xi Chen
- Laboratory of Chemical Biology and Frontier BiotechnologiesThe HIT Center for Life Sciences (HCLS)Harbin Institute of TechnologyHarbin150001P. R. China
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150001P. R. China
| |
Collapse
|
6
|
Chung CI, Yang J, Shu X. Chemogenetic Minitool for Dissecting the Roles of Protein Phase Separation. ACS CENTRAL SCIENCE 2023; 9:1466-1479. [PMID: 37521779 PMCID: PMC10375881 DOI: 10.1021/acscentsci.3c00251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 08/01/2023]
Abstract
Biomolecular condensate is an emerging structural entity that regulates various cellular processes. Recent studies have discovered the phase-separation (PS) capability of several transcription factors (TFs) including YAP/TAZ upon biological stimuli, which provide new mechanisms of gene regulation. However, it remains mostly unanswered as to whether PS from a diffuse state to a phase-separated state promotes gene transcription. To address this question, we have designed a chemogenetic tool, dubbed SPARK-ON, which manipulates the PS of YAP and TAZ without a biological stimulus, forming condensates that are transcriptionally active, containing the DNA-binding partner TEAD, genomic DNA, transcriptional machinery, and nascent RNA. Most importantly, PS of TAZ increases the transcription of its target genes. Therefore, our data indicate that PS promotes gene transcription of TAZ. SPARK-ON is advantageous to current mutagenesis-based approaches that are often problematic when mutagenesis affects the transcriptional activity of a TF. Furthermore, protein abundance levels also affect gene transcription, but PS depends on protein abundance because PS occurs only when the protein level is above a saturation concentration. SPARK-ON decouples PS from protein abundance levels without introducing mutations and thus will find important applications in understanding the biological roles of PS for many TFs and other biomolecular condensates.
Collapse
Affiliation(s)
- Chan-I Chung
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158, United States
- Cardiovascular
Research Institute, University of California—San
Francisco, San Francisco, California 94158, United States
| | - Junjiao Yang
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158, United States
- Cardiovascular
Research Institute, University of California—San
Francisco, San Francisco, California 94158, United States
| | - Xiaokun Shu
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158, United States
- Cardiovascular
Research Institute, University of California—San
Francisco, San Francisco, California 94158, United States
- Helen Diller
Family Comprehensive Cancer Center, University
of California—San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
7
|
Sarkar HS, Mashita T, Kowada T, Hamaguchi S, Sato T, Kasahara K, Matubayasi N, Matsui T, Mizukami S. Arylazopyrazole-Based Photoswitchable Inhibitors Selective for Escherichia coli Dihydrofolate Reductase. ACS Chem Biol 2023; 18:340-346. [PMID: 36662098 DOI: 10.1021/acschembio.2c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Selective inhibitors of Escherichia coli dihydrofolate reductase (eDHFR) are crucial chemical biology tools that have widespread clinical applications. We developed a set of eDHFR-selective photoswitchable inhibitors by derivatizing the structure of our previously reported methotrexate (MTX) azolog, azoMTX. Substitution of the skeletal p-phenylene group of azoMTX with bulky bis-alkylated arylazopyrazole moieties significantly increased its selectivity toward eDHFR over human DHFR. Owing to the physical properties of arylazopyrazoles, the new ligands exhibited nearly complete Z-to-E photoconversion and high thermostability of Z-isomers. In addition, real-time photoreversible control of eDHFR activity was achieved by alternatively switching the illumination light wavelengths.
Collapse
Affiliation(s)
- Himadri S Sarkar
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
| | - Takato Mashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Miyagi, Japan
| | - Toshiyuki Kowada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Miyagi, Japan.,Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
| | - Satoshi Hamaguchi
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
| | - Toshizo Sato
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
| | - Kento Kasahara
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
| | - Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Miyagi, Japan.,Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Miyagi, Japan.,Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
| |
Collapse
|
8
|
Liu Q, Huang Y, Li L, Li Z, Li M. Endogenous Enzyme-Operated Spherical Nucleic Acids for Cell-Selective Protein Capture and Localization Regulation. Angew Chem Int Ed Engl 2023; 62:e202214958. [PMID: 36788111 DOI: 10.1002/anie.202214958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
Precise regulation of protein activity and localization in cancer cells is crucial to dissect the function of the protein-involved cellular network in tumorigenesis, but there is a lack of suitable methodology. Here we report the design of enzyme-operated spherical nucleic acids (E-SNAs) for manipulation of the nucleocytoplasmic translocation of proteins with cancer-cell selectivity. The E-SNAs are constructed by programmable engineering of aptamer-based modules bearing enzyme-responsive units in predesigned sites and further combination with SNA nanotechnology. We demonstrate that E-SNAs are able to regulate cytoplasmic-to-nuclear shuttling of RelA protein efficiently and specifically in tumor cells, while they remain inactive in normal cells due to insufficient enzyme expression. We further confirmed the generality of this strategy by investigating the enzyme-modulated inhibition/activation of thrombin activity by varying the aptamer-based design.
Collapse
Affiliation(s)
- Qing Liu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
9
|
Cason SE, Fenton AR, Holzbaur ELF. Employing Live-Cell Imaging to Study Motor-Mediated Transport. Methods Mol Biol 2023; 2623:45-59. [PMID: 36602678 DOI: 10.1007/978-1-0716-2958-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microtubule-based transport is a highly regulated process, requiring kinesin and/or dynein motors, a multitude of motor-associated regulatory proteins including activating adaptors and scaffolding proteins, and microtubule tracks that also provide regulatory cues. While in vitro studies are invaluable, fully replicating the physiological conditions under which motility occurs in cells is not yet possible. Here, we describe two methods that can be employed to study motor-based transport and motor regulation in a cellular context. Live-cell imaging of organelle transport in neurons leverages the uniform polarity of microtubules in axons to better understand the factors regulating microtubule-based motility. Peroxisome recruitment assays allow users to examine the net effect of motors and motor-regulatory proteins on organelle distribution. Together, these methods open the door to motility experiments that more fully interrogate the complex cellular environment.
Collapse
Affiliation(s)
- Sydney E Cason
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Adam R Fenton
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Garabedian MV, Su Z, Dabdoub J, Tong M, Deiters A, Hammer DA, Good MC. Protein Condensate Formation via Controlled Multimerization of Intrinsically Disordered Sequences. Biochemistry 2022; 61:2470-2481. [PMID: 35918061 DOI: 10.1021/acs.biochem.2c00250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many proteins harboring low complexity or intrinsically disordered sequences (IDRs) are capable of undergoing liquid-liquid phase separation to form mesoscale condensates that function as biochemical niches with the ability to concentrate or sequester macromolecules and regulate cellular activity. Engineered disordered proteins have been used to generate programmable synthetic membraneless organelles in cells. Phase separation is governed by the strength of interactions among polypeptides with multivalency enhancing phase separation at lower concentrations. Previously, we and others demonstrated enzymatic control of IDR valency from multivalent precursors to dissolve condensed phases. Here, we develop noncovalent strategies to multimerize an individual IDR, the RGG domain of LAF-1, using protein interaction domains to regulate condensate formation in vitro and in living cells. First, we characterize modular dimerization of RGG domains at either terminus using cognate high-affinity coiled-coil pairs to form stable condensates in vitro. Second, we demonstrate temporal control over phase separation of RGG domains fused to FRB and FKBP in the presence of dimerizer. Further, using a photocaged dimerizer, we achieve optically induced condensation both in cell-sized emulsions and within live cells. Collectively, these modular tools allow multiple strategies to promote phase separation of a common core IDR for tunable control of condensate assembly.
Collapse
Affiliation(s)
- Mikael V Garabedian
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhihui Su
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jorge Dabdoub
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michelle Tong
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Philadelphia, Pennsylvania 15260, United States
| | - Daniel A Hammer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthew C Good
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Lackner RM, O’Connell W, Zhang H, Chenoweth DM. A general strategy for the design and evaluation of heterobifunctional tools: applications to protein localization and phase separation. Chembiochem 2022; 23:e202200209. [DOI: 10.1002/cbic.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Indexed: 11/12/2022]
Affiliation(s)
| | - Will O’Connell
- Carnegie Mellon University Biological Sciences UNITED STATES
| | - Huaiying Zhang
- Carnegie Mellon University Biological Sciences UNITED STATES
| | - David M. Chenoweth
- University of Pennsylvania Chemistry 231 South 34th Street 19104-6323 Philadelphia UNITED STATES
| |
Collapse
|
12
|
Miura Y, Senoo A, Doura T, Kiyonaka S. Chemogenetics of cell surface receptors: beyond genetic and pharmacological approaches. RSC Chem Biol 2022; 3:269-287. [PMID: 35359495 PMCID: PMC8905536 DOI: 10.1039/d1cb00195g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Cell surface receptors transmit extracellular information into cells. Spatiotemporal regulation of receptor signaling is crucial for cellular functions, and dysregulation of signaling causes various diseases. Thus, it is highly desired to control receptor functions with high spatial and/or temporal resolution. Conventionally, genetic engineering or chemical ligands have been used to control receptor functions in cells. As the alternative, chemogenetics has been proposed, in which target proteins are genetically engineered to interact with a designed chemical partner with high selectivity. The engineered receptor dissects the function of one receptor member among a highly homologous receptor family in a cell-specific manner. Notably, some chemogenetic strategies have been used to reveal the receptor signaling of target cells in living animals. In this review, we summarize the developing chemogenetic methods of transmembrane receptors for cell-specific regulation of receptor signaling. We also discuss the prospects of chemogenetics for clinical applications.
Collapse
Affiliation(s)
- Yuta Miura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Akinobu Senoo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Tomohiro Doura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Shigeki Kiyonaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| |
Collapse
|
13
|
López‐Andarias J, Eblighatian K, Pasquer QTL, Assies L, Sakai N, Hoogendoorn S, Matile S. Photocleavable Fluorescent Membrane Tension Probes: Fast Release with Spatiotemporal Control in Inner Leaflets of Plasma Membrane, Nuclear Envelope, and Secretory Pathway. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Javier López‐Andarias
- Department of Organic Chemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Krikor Eblighatian
- Department of Organic Chemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Quentin T. L. Pasquer
- Department of Organic Chemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Lea Assies
- Department of Organic Chemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Sascha Hoogendoorn
- Department of Organic Chemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
14
|
López‐Andarias J, Eblighatian K, Pasquer QTL, Assies L, Sakai N, Hoogendoorn S, Matile S. Photocleavable Fluorescent Membrane Tension Probes: Fast Release with Spatiotemporal Control in Inner Leaflets of Plasma Membrane, Nuclear Envelope, and Secretory Pathway. Angew Chem Int Ed Engl 2022; 61:e202113163. [PMID: 34734671 PMCID: PMC9299180 DOI: 10.1002/anie.202113163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Mechanosensitive flipper probes are attracting interest as fluorescent reporters of membrane order and tension in biological systems. We introduce PhotoFlippers, which contain a photocleavable linker and an ultralong tether between mechanophore and various targeting motifs. Upon irradiation, the original probe is released and labels the most ordered membrane that is accessible by intermembrane transfer. Spatiotemporal control from photocleavable flippers is essential to access open, dynamic or elusive membrane motifs without chemical or physical interference. For instance, fast release with light is shown to place the original small-molecule probes into the innermost leaflet of the nuclear envelope to image changes in membrane tension, at specific points in time of membrane trafficking along the secretory pathway, or in the inner leaflet of the plasma membrane to explore membrane asymmetry. These results identify PhotoFlippers as useful chemistry tools to enable research in biology.
Collapse
Affiliation(s)
- Javier López‐Andarias
- Department of Organic ChemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Krikor Eblighatian
- Department of Organic ChemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Quentin T. L. Pasquer
- Department of Organic ChemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Lea Assies
- Department of Organic ChemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Sascha Hoogendoorn
- Department of Organic ChemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
15
|
Blázquez-Moraleja A, Maierhofer L, Mann E, Prieto-Montero R, Oliden-Sánchez A, Celada L, Martínez-Martínez V, Chiara MD, Chiara JL. Acetoxymethyl-BODIPY dyes: a universal platform for the fluorescent labeling of nucleophiles. Org Chem Front 2022. [DOI: 10.1039/d2qo01099b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and robust methodology has been developed for the direct incorporation of a wide variety of C-, N-, P-, O-, S-, and halo-nucleophiles into functional BODIPY conjugates in a single reaction step.
Collapse
Affiliation(s)
| | - Larissa Maierhofer
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Enrique Mann
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ruth Prieto-Montero
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - Ainhoa Oliden-Sánchez
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - Lucía Celada
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), CIBERONC, Universidad de Oviedo, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - María-Dolores Chiara
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), CIBERONC, Universidad de Oviedo, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Jose Luis Chiara
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
16
|
Ryan A, Hammond GRV, Deiters A. Optical Control of Phosphoinositide Binding: Rapid Activation of Subcellular Protein Translocation and Cell Signaling. ACS Synth Biol 2021; 10:2886-2895. [PMID: 34748306 DOI: 10.1021/acssynbio.1c00328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cells utilize protein translocation to specific compartments for spatial and temporal regulation of protein activity, in particular in the context of signaling processes. Protein recognition and binding to various subcellular membranes is mediated by a network of phosphatidylinositol phosphate (PIP) species bearing one or multiple phosphate moieties on the polar inositol head. Here, we report a new, highly efficient method for optical control of protein localization through the site-specific incorporation of a photocaged amino acid for steric and electrostatic disruption of inositol phosphate recognition and binding. We demonstrate general applicability of the approach by photocaging two unrelated proteins, sorting nexin 3 (SNX3) and the pleckstrin homology (PH) domain of phospholipase C delta 1 (PLCδ1), with two distinct PIP binding domains and distinct subcellular localizations. We have established the applicability of this methodology through its application to Son of Sevenless 2 (SOS2), a signaling protein involved in the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) cascade. Upon fusing the photocaged plasma membrane-targeted construct PH-enhanced green fluorescent protein (EGFP), to the catalytic domain of SOS2, we demonstrated light-induced membrane localization of the construct resulting in fast and extensive activation of the ERK signaling pathway in NIH 3T3 cells. This approach can be readily extended to other proteins, with minimal protein engineering, and provides a method for acute optical control of protein translocation with rapid and complete activation.
Collapse
Affiliation(s)
- Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
17
|
Courtney TM, Hankinson CP, Horst TJ, Deiters A. Targeted protein oxidation using a chromophore-modified rapamycin analog. Chem Sci 2021; 12:13425-13433. [PMID: 34777761 PMCID: PMC8528027 DOI: 10.1039/d1sc04464h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
Chemically induced dimerization of FKBP and FRB using rapamycin and rapamycin analogs has been utilized in a variety of biological applications. Formation of the FKBP-rapamycin-FRB ternary complex is typically used to activate a biological process and this interaction has proven to be essentially irreversible. In many cases, it would be beneficial to also have temporal control over deactivating a biological process once it has been initiated. Thus, we developed the first reactive oxygen species-generating rapamycin analog toward this goal. The BODIPY-rapamycin analog BORap is capable of dimerizing FKBP and FRB to form a ternary complex, and upon irradiation with 530 nm light, generates singlet oxygen to oxidize and inactivate proteins of interest fused to FKBP/FRB.
Collapse
Affiliation(s)
- Taylor M Courtney
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | | | - Trevor J Horst
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
18
|
Yoshii T, Oki C, Watahiki R, Nakamura A, Tahara K, Kuwata K, Furuta T, Tsukiji S. Chemo-optogenetic Protein Translocation System Using a Photoactivatable Self-Localizing Ligand. ACS Chem Biol 2021; 16:1557-1565. [PMID: 34339163 DOI: 10.1021/acschembio.1c00416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Manipulating subcellular protein localization using light is a powerful approach for controlling signaling processes with high spatiotemporal precision. The most widely used strategy for this is based on light-induced protein heterodimerization. The use of small synthetic molecules that can control the localization of target proteins in response to light without the need for a second protein has several advantages. However, such methods have not been well established. Herein, we present a chemo-optogenetic approach for controlling protein localization using a photoactivatable self-localizing ligand (paSL). We developed a paSL that can recruit tag-fused proteins of interest from the cytoplasm to the plasma membrane within seconds upon light illumination. This paSL-induced protein translocation (paSLIPT) is reversible and enables the spatiotemporal control of signaling processes in living cells, even in a local region. paSLIPT can also be used to implement simultaneous optical stimulation and multiplexed imaging of molecular processes in a single cell, offering an attractive and novel chemo-optogenetic platform for interrogating and engineering dynamic cellular functions.
Collapse
Affiliation(s)
- Tatsuyuki Yoshii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Choji Oki
- Department of Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Rei Watahiki
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Akinobu Nakamura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
| | - Kai Tahara
- Department of Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Toshiaki Furuta
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Shinya Tsukiji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
19
|
Precise spatiotemporal control of voltage-gated sodium channels by photocaged saxitoxin. Nat Commun 2021; 12:4171. [PMID: 34234116 PMCID: PMC8263607 DOI: 10.1038/s41467-021-24392-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Here we report the pharmacologic blockade of voltage-gated sodium ion channels (NaVs) by a synthetic saxitoxin derivative affixed to a photocleavable protecting group. We demonstrate that a functionalized saxitoxin (STX-eac) enables exquisite spatiotemporal control of NaVs to interrupt action potentials in dissociated neurons and nerve fiber bundles. The photo-uncaged inhibitor (STX-ea) is a nanomolar potent, reversible binder of NaVs. We use STX-eac to reveal differential susceptibility of myelinated and unmyelinated axons in the corpus callosum to NaV-dependent alterations in action potential propagation, with unmyelinated axons preferentially showing reduced action potential fidelity under conditions of partial NaV block. These results validate STX-eac as a high precision tool for robust photocontrol of neuronal excitability and action potential generation.
Collapse
|
20
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Tsai YH, Doura T, Kiyonaka S. Tethering-based chemogenetic approaches for the modulation of protein function in live cells. Chem Soc Rev 2021; 50:7909-7923. [PMID: 34114579 DOI: 10.1039/d1cs00059d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Proteins are the workhorse molecules performing various tasks to sustain life. To investigate the roles of a protein under physiological conditions, the rapid modulation of the protein with high specificity in a living system would be ideal, but achieving this is often challenging. To address this challenge, researchers have developed chemogenetic strategies for the rapid and selective modulation of protein function in live cells. Here, the target protein is modified genetically to become sensitive to a designer molecule that otherwise has no effect on other cellular biomolecules. One powerful chemogenetic strategy is to introduce a tethering point into the target protein, allowing covalent or non-covalent attachment of the designer molecule. In this tutorial review, we focus on tethering-based chemogenetic approaches for modulating protein function in live cells. We first describe genetic, optogenetic and chemical means to study protein function. These means lay the basis for the chemogenetic concept, which is explained in detail. The next section gives an overview, including advantages and limitations, of tethering tactics that have been employed for modulating cellular protein function. The third section provides examples of the modulation of cell-surface proteins using tethering-based chemogenetics through non-covalent tethering and covalent tethering for irreversible modulation or functional switching. The fourth section presents intracellular examples. The last section summarizes key considerations in implementing tethering-based chemogenetics and shows perspectives highlighting future directions and other applications of this burgeoning research field.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | | | | |
Collapse
|
22
|
Chemical tools for dissecting cell division. Nat Chem Biol 2021; 17:632-640. [PMID: 34035515 PMCID: PMC10157795 DOI: 10.1038/s41589-021-00798-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/13/2021] [Indexed: 02/03/2023]
Abstract
Components of the cell division machinery typically function at varying cell cycle stages and intracellular locations. To dissect cellular mechanisms during the rapid division process, small-molecule probes act as complementary approaches to genetic manipulations, with advantages of temporal and in some cases spatial control and applicability to multiple model systems. This Review focuses on recent advances in chemical probes and applications to address select questions in cell division. We discuss uses of both enzyme inhibitors and chemical inducers of dimerization, as well as emerging techniques to promote future investigations. Overall, these concepts may open new research directions for applying chemical probes to advance cell biology.
Collapse
|
23
|
Kowada T, Arai K, Yoshimura A, Matsui T, Kikuchi K, Mizukami S. Optical Manipulation of Subcellular Protein Translocation Using a Photoactivatable Covalent Labeling System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshiyuki Kowada
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai Miyagi 980-8577 Japan
- Graduate School of Life Sciences Tohoku University Sendai Miyagi 980-8577 Japan
| | - Keisuke Arai
- Graduate School of Life Sciences Tohoku University Sendai Miyagi 980-8577 Japan
| | - Akimasa Yoshimura
- Graduate School of Engineering Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai Miyagi 980-8577 Japan
- Graduate School of Life Sciences Tohoku University Sendai Miyagi 980-8577 Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
- Center for Quantum Information and Quantum Biology Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai Miyagi 980-8577 Japan
- Graduate School of Life Sciences Tohoku University Sendai Miyagi 980-8577 Japan
| |
Collapse
|
24
|
Kowada T, Arai K, Yoshimura A, Matsui T, Kikuchi K, Mizukami S. Optical Manipulation of Subcellular Protein Translocation Using a Photoactivatable Covalent Labeling System. Angew Chem Int Ed Engl 2021; 60:11378-11383. [PMID: 33644979 DOI: 10.1002/anie.202016684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Indexed: 12/21/2022]
Abstract
The photoactivatable chemically induced dimerization (photo-CID) technique for tag-fused proteins is one of the most promising methods for regulating subcellular protein translocations and protein-protein interactions. However, light-induced covalent protein dimerization in living cells has yet to be established, despite its various advantages. Herein, we developed a photoactivatable covalent protein-labeling technology by applying a caged ligand to the BL-tag system, a covalent protein labeling system that uses mutant β-lactamase. We further developed CBHD, a caged protein dimerizer, using caged BL-tag and HaloTag ligands, and achieved light-induced protein translocation from the cytoplasm to subcellular regions. In addition, this covalent photo-CID system enabled quick protein translocation to a laser-illuminated microregion. These results indicate that the covalent photo-CID system will expand the scope of CID applications in the optical manipulation of cellular functions.
Collapse
Affiliation(s)
- Toshiyuki Kowada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Keisuke Arai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Akimasa Yoshimura
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Immunology Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Quantum Information and Quantum Biology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
25
|
Joest EF, Winter C, Wesalo JS, Deiters A, Tampé R. Light-guided intrabodies for on-demand in situ target recognition in human cells. Chem Sci 2021; 12:5787-5795. [PMID: 35342543 PMCID: PMC8872839 DOI: 10.1039/d1sc01331a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Due to their high stability and specificity in living cells, fluorescently labeled nanobodies are perfect probes for visualizing intracellular targets at an endogenous level. However, intrabodies bind unrestrainedly and hence may interfere with the target protein function. Here, we report a strategy to prevent premature binding through the development of photo-conditional intrabodies. Using genetic code expansion, we introduce photocaged amino acids within the nanobody-binding interface, which, after photo-activation, show instantaneous binding of target proteins with high spatiotemporal precision inside living cells. Due to the highly stable binding, light-guided intrabodies offer a versatile platform for downstream imaging and regulation of target proteins.
Collapse
Affiliation(s)
- Eike F Joest
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Germany
| | - Christian Winter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Germany
| | - Joshua S Wesalo
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Germany
| |
Collapse
|
26
|
Zhao R, Chenoweth DM, Zhang H. Chemical Dimerization-Induced Protein Condensates on Telomeres. J Vis Exp 2021. [PMID: 33900288 DOI: 10.3791/62173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chromatin-associated condensates are implicated in many nuclear processes, but the underlying mechanisms remain elusive. This protocol describes a chemically-induced protein dimerization system to create condensates on telomeres. The chemical dimerizer consists of two linked ligands that can each bind to a protein: Halo ligand to Halo-enzyme and trimethoprim (TMP) to E. coli dihydrofolate reductase (eDHFR), respectively. Fusion of Halo enzyme to a telomere protein anchors dimerizers to telomeres through covalent Halo ligand-enzyme binding. Binding of TMP to eDHFR recruits eDHFR-fused phase separating proteins to telomeres and induces condensate formation. Because TMP-eDHFR interaction is non-covalent, condensation can be reversed by using excess free TMP to compete with the dimerizer for eDHFR binding. An example of inducing promyelocytic leukemia (PML) nuclear body formation on telomeres and determining condensate growth, dissolution, localization and composition is shown. This method can be easily adapted to induce condensates at other genomic locations by fusing Halo to a protein that directly binds to the local chromatin or to dCas9 that is targeted to the genomic locus with a guide RNA. By offering the temporal resolution required for single cell live imaging while maintaining phase separation in a population of cells for biochemical assays, this method is suitable for probing both the formation and function of chromatin-associated condensates.
Collapse
Affiliation(s)
- Rongwei Zhao
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University
| | - David M Chenoweth
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania
| | - Huaiying Zhang
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University;
| |
Collapse
|
27
|
Chang D, Feng S, Girik V, Riezman H, Winssinger N. Luciferase Controlled Protein Interactions. J Am Chem Soc 2021; 143:3665-3670. [PMID: 33684293 DOI: 10.1021/jacs.0c11016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein trafficking and protein-protein interactions (PPIs) are central to regulatory processes in cells. Induced dimerization systems have been developed to control PPIs and regulate protein trafficking (localization) or interactions. Chemically induced dimerization (CID) has proven to be a robust approach to control protein interactions and localization. The most recent embodiment of this technology relies on CID conjugates that react with a self-labeling protein on one side and a photocaged ligand on the other side to provide spatiotemporal control of the interaction with the protein of interest. Advancing this technology further is limited by the light delivery problem and the phototoxicity of intense irradiation necessary to achieve photouncaging. Herein, we designed a novel chemically induced dimerization system that was triggered by bioluminescence, instead of external light. Protein dimerization showed fast kinetics and was validated by an induced change of localization of a target protein (to and from the nucleus or plasma membrane) upon trigger. The technology was used transiently to activate the phosphatidylinositol 3-kinase (PI3K)/mTOR pathway and measure the impact on lipid synthesis/metabolism, assessed by lipidomics.
Collapse
Affiliation(s)
- Dalu Chang
- School of Chemistry and Biochemistry, Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Geneva 12004, Switzerland
| | - Suihan Feng
- School of Chemistry and Biochemistry, Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Geneva 12004, Switzerland
| | - Vladimir Girik
- School of Chemistry and Biochemistry, Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Geneva 12004, Switzerland
| | - Howard Riezman
- School of Chemistry and Biochemistry, Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Geneva 12004, Switzerland
| | - Nicolas Winssinger
- School of Chemistry and Biochemistry, Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Geneva 12004, Switzerland
| |
Collapse
|
28
|
Casey GR, Zhou X, Lesiak L, Xu B, Fang Y, Becker DF, Stains CI. An Evolutionary Strategy for Identification of Higher Order, Green Fluorescent Host-Guest Pairs Compatible with Living Systems. Chemistry 2020; 26:16721-16726. [PMID: 32725914 DOI: 10.1002/chem.202002423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/26/2020] [Indexed: 11/09/2022]
Abstract
Engineered miniprotein host-small-molecule guest pairs could be utilized to design new processes within cells as well as investigate fundamental aspects of cell signaling mechanisms. However, the development of host-guest pairs capable of functioning in living systems has proven challenging. Moreover, few examples of host-guest pairs with stoichiometries other than 2:1 exist, significantly hindering the ability to study the influence of oligomerization state on signaling fidelity. Herein, we present an approach to identify host-guest systems for relatively small green fluorescent guests by incorporation into cyclic peptides. The optimal host-guest pair produced a 10-fold increase in green fluorescence signal upon binding. Biophysical characterization clearly demonstrated higher order supramolecular assembly, which could be visualized on the surface of living yeast cells using a turn-on fluorescence readout. This work further defines evolutionary design principles to afford host-guest pairs with stoichiometries other than 2:1 and enables the identification of spectrally orthogonal host-guest pairs.
Collapse
Affiliation(s)
- Garrett R Casey
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, MO, 63701, USA
| | - Xinqi Zhou
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lauren Lesiak
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Bi Xu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yuan Fang
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Donald F Becker
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Cliff I Stains
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Cancer Genes and Molecular Regulation Program, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
29
|
Design and Applications of Bifunctional Small Molecules in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140534. [PMID: 32871274 DOI: 10.1016/j.bbapap.2020.140534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
|
30
|
Li Y, Fu H. Bioorthogonal Ligations and Cleavages in Chemical Biology. ChemistryOpen 2020; 9:835-853. [PMID: 32817809 PMCID: PMC7426781 DOI: 10.1002/open.202000128] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Bioorthogonal reactions including the bioorthogonal ligations and cleavages have become an active field of research in chemical biology, and they play important roles in chemical modification and functional regulation of biomolecules. This review summarizes the developments and applications of the representative bioorthogonal reactions including the Staudinger reactions, the metal-mediated bioorthogonal reactions, the strain-promoted cycloadditions, the inverse electron demand Diels-Alder reactions, the light-triggered bioorthogonal reactions, and the reactions of chloroquinoxalines and ortho-dithiophenols.
Collapse
Affiliation(s)
- Youshan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
31
|
Li C, Iscen A, Palmer LC, Schatz GC, Stupp SI. Light-Driven Expansion of Spiropyran Hydrogels. J Am Chem Soc 2020; 142:8447-8453. [DOI: 10.1021/jacs.0c02201] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chuang Li
- Center for Bio-inspired Energy Science, Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Aysenur Iscen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Liam C. Palmer
- Center for Bio-inspired Energy Science, Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I. Stupp
- Center for Bio-inspired Energy Science, Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
32
|
Aptamer-based optical manipulation of protein subcellular localization in cells. Nat Commun 2020; 11:1347. [PMID: 32165631 PMCID: PMC7067792 DOI: 10.1038/s41467-020-15113-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 02/14/2020] [Indexed: 01/03/2023] Open
Abstract
Protein-dominant cellular processes cannot be fully decoded without precise manipulation of their activity and localization in living cells. Advances in optogenetics have allowed spatiotemporal control over cellular proteins with molecular specificity; however, these methods require recombinant expression of fusion proteins, possibly leading to conflicting results. Instead of modifying proteins of interest, in this work, we focus on design of a tunable recognition unit and develop an aptamer-based near-infrared (NIR) light-responsive nanoplatform for manipulating the subcellular localization of specific proteins in their native states. Our results demonstrate that this nanoplatform allows photocontrol over the cytoplasmic-nuclear shuttling behavior of the target RelA protein (a member of the NF-κβ family), enabling regulation of RelA-related signaling pathways. With a modular design, this aptamer-based nanoplatform can be readily extended for the manipulation of different proteins (e.g., lysozyme and p53), holding great potential to develop a variety of label-free protein photoregulation strategies for studying complex biological events. Optogenetic manipulation of protein localisation in cells involves the creation of fusions that can influence activity. Here the authors develop a near-infrared light-responsive aptamer-based system to regulate the nuclear-cytoplasmic shuttling of NF-κB subunit RelA.
Collapse
|
33
|
Strom AR, Brangwynne CP. The liquid nucleome - phase transitions in the nucleus at a glance. J Cell Sci 2019; 132:132/22/jcs235093. [PMID: 31754043 DOI: 10.1242/jcs.235093] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cells organize membrane-less internal compartments through a process called liquid-liquid phase separation (LLPS) to create chemically distinct compartments, referred to as condensates, which emerge from interactions among biological macromolecules. These condensates include various cytoplasmic structures such as P-granules and stress granules. However, an even wider array of condensates subcompartmentalize the cell nucleus, forming liquid-like structures that range from nucleoli and Cajal bodies to nuclear speckles and gems. Phase separation provides a biophysical assembly mechanism underlying this non-covalent form of fluid compartmentalization and functionalization. In this Cell Science at a Glance article and the accompanying poster, we term these phase-separated liquids that organize the nucleus the liquid nucleome; we discuss examples of biological phase transitions in the nucleus, how the cell utilizes biophysical aspects of phase separation to form and regulate condensates, and suggest interpretations for the role of phase separation in nuclear organization and function.
Collapse
Affiliation(s)
- Amy R Strom
- Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, Princeton University, Princeton NJ 08544, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
34
|
Wu DZ, Lackner RM, Aonbangkhen C, Lampson MA, Chenoweth DM. Reversible optogenetic control of protein function and localization. Methods Enzymol 2019; 624:25-45. [PMID: 31370933 DOI: 10.1016/bs.mie.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein-protein interactions are highly dynamic biological processes that regulate various cellular reactions. They exhibit high specificity and spatiotemporal control in order to efficiently utilize finite resources in a cellular compartment. Photoactivatable chemically inducible dimerization (pCID) has emerged as an attractive technique in the scientific community, leading to the development of systems that can be activated with various wavelengths of light in order to manipulate processes on biologically relevant scales with molecular specificity. These systems can be modified to control various protein functions with unprecedented precision and spatiotemporal resolution. In this chapter, we describe an optogenetic platform that provides reversible control over dimerization of genetically tagged proteins using orthogonal wavelengths of light. We demonstrate photoactivation and photo-reversal of protein localization and transport. Mitosis is manipulated by activating and silencing the spindle assembly checkpoint through recruitment and release of proteins from kinetochores.
Collapse
Affiliation(s)
- Daniel Z Wu
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Rachel M Lackner
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Chanat Aonbangkhen
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael A Lampson
- Lynch Laboratories, Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - David M Chenoweth
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
35
|
Dignon GL, Zheng W, Mittal J. Simulation methods for liquid-liquid phase separation of disordered proteins. Curr Opin Chem Eng 2019; 23:92-98. [PMID: 32802734 PMCID: PMC7426017 DOI: 10.1016/j.coche.2019.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid-liquid phase separation of intrinsically disordered proteins (IDPs) and other biomolecules is a highly complex but robust process used by living systems. Drawing inspiration from biology, phase separating proteins have been successfully utilized for promising applications in fields of materials design and drug delivery. These protein-based materials are advantageous due to the ability to finely tune their stimulus-responsive phase behavior and material properties, and the ability to encode biologically active motifs directly into the sequence. The number of possible protein sequences is virtually endless, which makes sequence-based design a rather daunting task, but also attractive due to the amount of control coming from exploration of this variable space. The use of computational methods in this field of research have come to the aid in several aspects, including interpreting experimental results, identifying important structural features and molecular mechanisms capable of explaining the phase behavior, and ultimately providing predictive frameworks for rational design of protein sequences. Here we provide an overview of computational studies focused on phase separating biomolecules and the tools that are available to researchers interested in this topic.
Collapse
Affiliation(s)
- Gregory L. Dignon
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, United States
| |
Collapse
|