1
|
Andreoni L, Groppi J, Seven Ö, Baroncini M, Credi A, Silvi S. Directional Ring Translocation in a pH- and Redox-Driven Tristable [2]Rotaxane. Angew Chem Int Ed Engl 2025; 64:e202414609. [PMID: 39302658 DOI: 10.1002/anie.202414609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
We describe the synthesis and characterization of a [2]rotaxane comprising a dibenzo-24-crown-8 (DB24C8) macrocyclic component and a thread containing three recognition sites: ammonium (AmH+), bipyridinium (Bpy2+) and triazolium (Trz+). AmH+ and Bpy2+ are responsive to fully orthogonal stimuli, pH and electrochemical, which allows to precisely control the directional translation of the macrocycle along the axle. A better understanding of the processes driving the operation of the system was obtained thanks to an in-depth thermodynamic characterization. Orthogonal stimuli responsive tristable rotaxanes represent the starting point for the creation of linear motors and the development of molecular logic gates.
Collapse
Affiliation(s)
- Leonardo Andreoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, viale del Risorgimento 4, 40136, Bologna, Italy
- CLAN-Center for Light Activated Nanostructures, Institute ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures, Institute ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, 40129, Bologna, Italy
| | - Özlem Seven
- CLAN-Center for Light Activated Nanostructures, Institute ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, 40129, Bologna, Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures, Institute ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, viale Fanin 44, 40127, Bologna, Italy
| | - Alberto Credi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, viale del Risorgimento 4, 40136, Bologna, Italy
- CLAN-Center for Light Activated Nanostructures, Institute ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures, Institute ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
2
|
Wang W, Wu W, Su P. Radical Pairing Interactions and Donor-Acceptor Interactions in Cyclobis(paraquat-p-phenylene) Inclusion Complexes. Molecules 2023; 28:2057. [PMID: 36903306 PMCID: PMC10004262 DOI: 10.3390/molecules28052057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Understanding molecular interactions in mechanically interlocked molecules (MIMs) is challenging because they can be either donor-acceptor interactions or radical pairing interactions, depending on the charge states and multiplicities in the different components of the MIMs. In this work, for the first time, the interactions between cyclobis(paraquat-p-phenylene) (abbreviated as CBPQTn+ (n = 0-4)) and a series of recognition units (RUs) were investigated using the energy decomposition analysis approach (EDA). These RUs include bipyridinium radical cation (BIPY•+), naphthalene-1,8:4,5-bis(dicarboximide) radical anion (NDI•-), their oxidized states (BIPY2+ and NDI), neutral electron-rich tetrathiafulvalene (TTF) and neutral bis-dithiazolyl radical (BTA•). The results of generalized Kohn-Sham energy decomposition analysis (GKS-EDA) reveal that for the CBPQTn+···RU interactions, correlation/dispersion terms always have large contributions, while electrostatic and desolvation terms are sensitive to the variation in charge states in CBPQTn+ and RU. For all the CBPQTn+···RU interactions, desolvation terms always tend to overcome the repulsive electrostatic interactions between the CBPQT cation and RU cation. Electrostatic interaction is important when RU has the negative charge. Moreover, the different physical origins of donor-acceptor interactions and radical pairing interactions are compared and discussed. Compared to donor-acceptor interactions, in radical pairing interactions, the polarization term is always small, while the correlation/dispersion term is important. With regard to donor-acceptor interactions, in some cases, polarization terms could be quite large due to the electron transfer between the CBPQT ring and RU, which responds to the large geometrical relaxation of the whole systems.
Collapse
Affiliation(s)
| | | | - Peifeng Su
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
4
|
Bej S, Nandi M, Ghosh P. Development of fluorophoric [2]pseudorotaxanes and [2]rotaxane: selective sensing of Zn(II). Org Biomol Chem 2022; 20:7284-7293. [PMID: 36052954 DOI: 10.1039/d2ob01210c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorophoric [2]pseudorotaxanes {NiPR1(ClO4)2-NiPR3(ClO4)2} are synthesized by utilizing newly designed fluorophoric bidentate ligands (L1-L3) and a heteroditopic naphthalene containing macrocycle (NaphMC) with high yields via Ni(II) templation and π-π stacking interactions. Subsequently, a fluorophoric [2]rotaxane (NAPRTX) is established through a Cu(I) catalysed click reaction between an azide terminated pseudorotaxane, {NiPR4(ClO4)2}, which contains the newly designed fluorophoric ligand L4, and alkyne terminated bulky stopper units. All these fluorophoric [2]pseudorotaxanes and the [2]rotaxane were characterized using numerous techniques such as mass spectrometry, NMR, UV/Vis, PL, and elemental analysis, wherever applicable. Furthermore, to investigate the effect of the fluorophoric moieties, the coordinating ability of chelating units, and size and shape of the three dimensional cavity generated by the mechanical bond in the interlocked [2]rotaxane (NAPRTX), we have performed a sensing study of various metal ions. Thus, the interlocked [2]rotaxane is found to have potential as a selective fluorescent sensor for Zn(II) metal ions over other transition, alkali and alkaline earth metal ions, where the 2,2'-bipyridyl arylvinylene moiety of the axle acts as a fluorescence signalling unit.
Collapse
Affiliation(s)
- Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Mandira Nandi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
5
|
Li WX, Yin YF, Duan HY, Liu LJ, Kong LC, Zhan TG, Zhang KD. An orthogonal photoresponsive tristable [3]rotaxane with non-destructive readout. Org Chem Front 2021. [DOI: 10.1039/d0qo01441a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An orthogonal photoresponsive [3]rotaxane is constructed by introducing two orthogonal photoswitchable azobenzene binding sites, and it features reversible photoregulated tristate absorption spectral changes with non-destructive readout capability.
Collapse
Affiliation(s)
- Wan-Xia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Yong-Fei Yin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Hong-Ying Duan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Li-Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Li-Chun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Tian-Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Kang-Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| |
Collapse
|
6
|
Pang XY, Zhou H, Yao H, Jiang W. Naphthobox: a selective molecular box for planar aromatic cations. Org Chem Front 2021. [DOI: 10.1039/d1qo00819f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular box with an electron-rich cavity, namely naphthobox, was contructed and showed selective binding to planar aromatic cations.
Collapse
Affiliation(s)
- Xin-Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Hang Zhou
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Huan Yao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| |
Collapse
|
7
|
Guo MY, Li P, Yang SL, Bu R, Piao XQ, Gao EQ. Distinct and Selective Amine- and Anion-Responsive Behaviors of an Electron-Deficient and Anion-Exchangeable Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43958-43966. [PMID: 32880426 DOI: 10.1021/acsami.0c14648] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Smart materials that respond to chemical stimuli with color or luminescence changes are highly desirable for daily-life and high-tech applications. Here, we report a novel porous metal-organic framework (MOF) that shows multiple, selective, and discriminative responsive properties owing to the combination of different functional ingredients [tripyridinium chromogen, Eu(III) luminophore, cationic framework, and special porous structure]. The MOF contains two interpenetrated three-dimensional cationic coordination networks built of a tetrahedral [Eu4(μ3-OH)4] cluster and a tripyridinium-tricarboxylate zwitterionic linker. It shows reversible and discriminative chromic response to aliphatic amines and aniline through different host-guest interactions between electron-deficient pyridinium and electron-rich amines. The size- and shape-selective response to aliphatic amines is ascribed to the radical formation through host-guest electron transfer, whereas the response to aniline is ascribed to the formation of sandwich-type acceptor-donor-acceptor complexes. The MOF is capable of reversible anion exchange with various anions and shows selective and discriminative ionochromic response to iodide, bromide, and thiocyanate, which is attributed to charge-transfer complexation. The above chromic behaviors are accompanied by efficient quenching of Eu(III) photoluminescence. The MOF represents a multi-stimuli dual-output responsive system. It can be used for discrimination and identification of anions and amines. The potential use in invisible printing, reusable sensory films, and optical switches was demonstrated by the ink and the membrane made of the MOF and organic polymers.
Collapse
Affiliation(s)
- Meng-Yue Guo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Peng Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xian-Qing Piao
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
8
|
Wu D, Pan F, Gao L, Tao Y, Kong Y. Enantioselective Limiting Transport into a Fixed Cavity via Supramolecular Interaction for the Chiral Electroanalysis of Amino Acids Regardless of Electroactive Units. Anal Chem 2020; 92:13711-13717. [DOI: 10.1021/acs.analchem.0c00554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Li Gao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
9
|
Synthesis of enhanced fluorescent graphene quantum dots for catecholamine neurotransmitter sensing. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0507-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Jensen M, Kristensen R, Andersen SS, Bendixen D, Jeppesen JO. Probing the Electrostatic Barrier of Tetrathiafulvalene Dications using a Tetra-stable Donor-Acceptor [2]Rotaxane. Chemistry 2020; 26:6165-6175. [PMID: 32049376 DOI: 10.1002/chem.202000302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/09/2020] [Indexed: 12/18/2022]
Abstract
A tetra-stable donor-acceptor [2]rotaxane 1⋅4PF6 has been synthesized. The dumbbell component is comprised of an oxyphenylene (OP), a tetrathiafulvalene (TTF), a monopyrrolo-TTF (MPTTF), and a hydroquinone (HQ) unit, which can act as recognition sites (stations) for the tetra-cationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT4+ ). The TTF and the MPTTF stations are located in the middle of the dumbbell component and are connected by a triethylene glycol (TEG) chain in such a way that the pyrrole moiety of the MPTTF station points toward the TTF station, while the TTF and MPTTF stations are flanked by the OP and HQ stations on their left hand side and right hand side, respectively. The [2]rotaxane was characterized in solution by 1 H NMR spectroscopy and cyclic voltammetry. The spectroscopic data revealed that the majority (77 %) of the tetra-stable [2]rotaxane 14+ exist as the translational isomer 1⋅MPTTF4+ in which the CBPQT4+ ring encircles the MPTTF station. The electrochemical studies showed that CBPQT4+ in 1⋅MPTTF4+ undergoes ring translation as result of electrostatic repulsion from the oxidized MPTTF unit. Following tetra-oxidation of 1⋅MPTTF4+ , a high-energy state of 18+ was obtained (i.e., 1⋅TEG8+ ) in which the CBPQT4+ ring was located on the TEG linker connecting the di-oxidized TTF2+ and MPTTF2+ units. 1 H NMR spectroscopy carried out in CD3 CN at 298 K on a chemically oxidized sample of 1⋅MPTTF4+ revealed that the metastable state 1⋅TEG8+ is only short-lived with a lifetime of a few minutes and it was found that 70 % of the positively charged CBPQT4+ ring moved from 1⋅TEG8+ to the HQ station, while 30 % moved to the much weaker OP station. These results clearly demonstrate that the CBPQT4+ ring can cross both an MPTTF2+ and a TTF2+ electrostatic barrier and that the free energy of activation required to cross MPTTF2+ is ca. 0.5 kcal mol-1 smaller as compared to TTF2+ .
Collapse
Affiliation(s)
- Morten Jensen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Rikke Kristensen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Sissel S Andersen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Dan Bendixen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jan O Jeppesen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
11
|
Liu S, Cheng Y, Li Y, Chen M, Lam JWY, Tang BZ. Manipulating Solid-State Intramolecular Motion toward Controlled Fluorescence Patterns. ACS NANO 2020; 14:2090-2098. [PMID: 31909986 DOI: 10.1021/acsnano.9b08761] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecules have limited mobility in the solid state because of the strong intermolecular interactions, and therefore, applications based on solid-state molecular motions are seldom explored. Herein, by manipulating the solid-state intramolecular motion of tetraphenylethylene (TPE) in a crystallizing polymer matrix, controlled fluorescent patterns with information storage and encoding functionality are developed. The intramolecular mobility of TPE can not only affect the fluorescence intensity but also determine the photocyclization activity, which can be tuned by surrounding polymer rigidity. The soft amorphous region in the semicrystalline polymer facilitates the intramolecular motion to achieve weak blue emission and high photocyclization activity, whereas the rigid crystalline phase restricts the intramolecular motion to give intense blue emission and low photoreactivity. Meanwhile, in the process of crystallization, the dynamic movement of the polymer chain in the crystal growth boundary layer further accelerates the intramolecular motions of TPE, allowing enhanced photoreactivity across crystalline and amorphous regions. The motion-dominated fluorescence allows TPE as a smart molecular robot to generate desired fluorescent patterns triggered by polymer crystallization. Our findings provide a correlation between microscopic molecular motions and macroscopic optical signals.
Collapse
Affiliation(s)
- Shunjie Liu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077
- HKUST-Shenzhen Research Institute , No.9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057 , China
| | - Yanhua Cheng
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
- HKUST-Shenzhen Research Institute , No.9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057 , China
| | - Yuanyuan Li
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077
- HKUST-Shenzhen Research Institute , No.9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057 , China
| | - Ming Chen
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077
- HKUST-Shenzhen Research Institute , No.9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057 , China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077
- HKUST-Shenzhen Research Institute , No.9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057 , China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510641 , China
- HKUST-Shenzhen Research Institute , No.9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057 , China
| |
Collapse
|
12
|
Nandi M, Bej S, Bhunia S, Ghosh P. Template Directed Syntheses of Electrochemically Active [2]Rotaxanes: Anion Binding and Redox Studies. ChemElectroChem 2020. [DOI: 10.1002/celc.201901655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mandira Nandi
- School of Chemical SciencesIndian Association for the Cultivation of Science 2 A & 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Somnath Bej
- School of Chemical SciencesIndian Association for the Cultivation of Science 2 A & 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Sarmistha Bhunia
- School of Chemical SciencesIndian Association for the Cultivation of Science 2 A & 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Pradyut Ghosh
- School of Chemical SciencesIndian Association for the Cultivation of Science 2 A & 2B Raja S. C. Mullick Road Kolkata 700032 India
| |
Collapse
|
13
|
Nakamura T, Mori Y, Naito M, Okuma Y, Miyagawa S, Takaya H, Kawasaki T, Tokunaga Y. Rotaxanes comprising cyclic phenylenedioxydiacetamides and secondary mono- and bis-dialkylammonium ions: effect of macrocyclic ring size on pseudorotaxane formation. Org Chem Front 2020. [DOI: 10.1039/c9qo01359h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[2]Rotaxanes, stabilized through multiple and cooperative hydrogen bonding system, were synthesized from dialkylammonium ions and macrocycle possessing two phenylenedioxydiacetamide units and appropriate spacers.
Collapse
Affiliation(s)
- Takanori Nakamura
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Yuka Mori
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Masaya Naito
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Yukari Okuma
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Hikaru Takaya
- International Research Center for Elements Science
- Institute for Chemical Research
- Kyoto University
- Uji 611-0011
- Japan
| | - Tsuneomi Kawasaki
- Department of Applied Chemistry
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| |
Collapse
|
14
|
Wang C, Wu G, Zhu J, Jiao T, Zhang Y, Li H. An Octacationic [2]Catenane Formed by Oxime Condensation: A Bistable Molecular Switch. Chempluschem 2019. [DOI: 10.1002/cplu.201900668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cai‐Yun Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Guangcheng Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiaqi Zhu
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Yang Zhang
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
15
|
Schröder HV, Schalley CA. Electrochemically switchable rotaxanes: recent strides in new directions. Chem Sci 2019; 10:9626-9639. [PMID: 32110308 PMCID: PMC7020790 DOI: 10.1039/c9sc04118d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Are they still electrifying? Electrochemically switchable rotaxanes are well known for their ability to efficiently undergo changes of (co-)conformation and properties under redox-control. Thus, these mechanically interlocked assemblies represent an auspicious liaison between the fields of molecular switches and molecular electronics. Since the first reported example of a redox-switchable molecular shuttle in 1994, improved tools of organic and supramolecular synthesis have enabled sophisticated new architectures, which provide precise control over properties and function. This perspective covers recent advances in the area of electrochemically active rotaxanes including novel molecular switches and machines, metal-containing rotaxanes, non-equilibrium systems and potential applications.
Collapse
Affiliation(s)
- Hendrik V Schröder
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Christoph A Schalley
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| |
Collapse
|
16
|
Kwan CS, Wang T, Li M, Chan ASC, Cai Z, Leung KCF. Type III-C rotaxane dendrimers: synthesis, dual size modulation and in vivo evaluation. Chem Commun (Camb) 2019; 55:13426-13429. [PMID: 31642458 DOI: 10.1039/c9cc06200a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type III-C rotaxane dendrimers were synthesized by a divergent approach. Dual shuttling behavior and size modulation were observed from non-methylated/methylated rotaxane dendrimers under the same external stimuli. The biological distribution of dendrimers in C57BL/6J mice determined by MALDI-TOF-MS shows predominant accumulation in the spleen and liver. Drug encapsulations with chlorambucil and lithocholic acid were demonstrated.
Collapse
Affiliation(s)
- Chak-Shing Kwan
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | - Tao Wang
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China
| | - Albert S C Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | - Ken Cham-Fai Leung
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
17
|
Andersen SS, Saad AW, Kristensen R, Pedersen TS, O'Driscoll LJ, Flood AH, Jeppesen JO. Salts accelerate the switching kinetics of a cyclobis(paraquat-p-phenylene) [2]rotaxane. Org Biomol Chem 2019; 17:2432-2441. [PMID: 30742174 DOI: 10.1039/c9ob00085b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The rate at which the macrocyclic cyclobis(paraquat-p-phenylene) ring of a bistable [2]rotaxane moves from a tetrathiafulvalene station to an oxyphenylene station upon oxidation of the tetrathiafulvalene station is found to be increased in the presence of added salts. Compared to the salt-free case, 0.1 M solutions of a series of tetraalkylammonium hexafluorophosphate salts (R4N·PF6, R = H, Me, Et or n-Bu) and of tetrabutylammonium perchlorate (n-Bu4N·ClO4) all afford an increased switching rate, which is largest in the case of n-Bu4N·ClO4 with smaller anions. Variation in the size of the ammonium cation has no significant effect. These results indicate that the addition of excess ions can be used as an accelerator to speed up shuttling processes in rotaxanes and catenanes based on the mobile cyclobis(paraquat-p-phenylene) ring, and that the choice of anion offers a convenient means of controlling the extent of this effect.
Collapse
Affiliation(s)
- Sissel S Andersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark.
| | | | | | | | | | | | | |
Collapse
|
18
|
Bej S, Nandi M, Ghosh TK, Ghosh P. Cu(ii) templated formation of [n]pseudorotaxanes (n = 2, 3, 4) using a tris-amino ether macrocyclic wheel and multidentate axles. Dalton Trans 2019; 48:6853-6862. [DOI: 10.1039/c9dt01067j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The systematic development of mono-, bi- and tri-nuclear [n]pseudorotaxanes (n = 2, 3, 4) via Cu(ii) templation and π–π stacking interactions.
Collapse
Affiliation(s)
- Somnath Bej
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Mandira Nandi
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Tamal Kanti Ghosh
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Pradyut Ghosh
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|