1
|
Seneff S, Kyriakopoulos AM. Taurine prevents mitochondrial dysfunction and protects mitochondria from reactive oxygen species and deuterium toxicity. Amino Acids 2025; 57:6. [PMID: 39789296 PMCID: PMC11717795 DOI: 10.1007/s00726-024-03440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity. This can be of crucial impact to either normal or cancer cells that have highly different mitochondrial redox status. Deuterium is an isotope of hydrogen with a neutron as well as a proton, making it about twice as heavy as hydrogen. We first explain the important role that the gut microbiome and the gut sulfomucin barrier play in deuterium management. We describe the synergistic effects of taurine in the gut to protect against the deleterious accumulation of deuterium in the mitochondria, which disrupts ATP synthesis by ATPase pumps. Moreover, taurine's derivatives, N-chlorotaurine (NCT) and N-bromotaurine (NBrT), produced through spontaneous reaction of taurine with hypochlorite and hypobromite, have fascinating regulatory roles to protect from oxidative stress and beyond. We describe how taurine could potentially alleviate deuterium stress, primarily through metabolic collaboration among various gut microflora to produce deuterium depleted nutrients and deuterium depleted water, and in this way protect against leaky gut barrier, inflammatory bowel disease, and colon cancer.
Collapse
Affiliation(s)
- Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Anthony M Kyriakopoulos
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece
| |
Collapse
|
2
|
Konermann L, Scrosati PM. Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities. Mol Cell Proteomics 2024; 23:100853. [PMID: 39383946 PMCID: PMC11570944 DOI: 10.1016/j.mcpro.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as "residues X to Y become more protected after protein exposure to ligand Z"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m0)/(m100-m0) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Martins da Silva AY, Arouche TDS, Siqueira MRS, Ramalho TC, de Faria LJG, Gester RDM, Carvalho Junior RND, Santana de Oliveira M, Neto AMDJC. SARS-CoV-2 external structures interacting with nanospheres using docking and molecular dynamics. J Biomol Struct Dyn 2023; 42:9892-9907. [PMID: 37712854 DOI: 10.1080/07391102.2023.2252930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Coronavirus is caused by the SARS-CoV-2 virus has shown rapid proliferation and scarcity of treatments with proven effectiveness. In this way, we simulated the hospitalization of carbon nanospheres, with external active sites of the SARS-CoV-2 virus (M-Pro, S-Gly and E-Pro), which can be adsorbed or inactivated when interacting with the nanospheres. The computational procedures performed in this work were developed with the SwissDock server for molecular docking and the GROMACS software for molecular dynamics, making it possible to extract relevant data on affinity energy, distance between molecules, free Gibbs energy and mean square deviation of atomic positions, surface area accessible to solvents. Molecular docking indicates that all ligands have an affinity for the receptor's active sites. The nanospheres interact favorably with all proteins, showing promising results, especially C60, which presented the best affinity energy and RMSD values for all protein macromolecules investigated. The C60 with E-Pro exhibited the highest affinity energy of -9.361 kcal/mol, demonstrating stability in both molecular docking and molecular dynamics simulations. Our RMSD calculations indicated that the nanospheres remained predominantly stable, fluctuating within a range of 2 to 3 Å. Additionally, the analysis of other structures yielded promising results that hold potential for application in other proteases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anderson Yuri Martins da Silva
- Laboratory for the Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, Belem, Brazil
- Graduated in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
| | - Tiago da Silva Arouche
- Laboratory for the Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, Belem, Brazil
- Graduated in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
| | | | - Teodorico Castro Ramalho
- Postgraduate Program in Engineering of Natural Resources of the Amazon, ITEC, Federal University of Pará, Belém, Brazil
| | | | - Rodrigo do Monte Gester
- Institute of Exact Sciences (ICE), Federal University of the South and Southeast of Pará, Maraba, Brazil
| | - Raul Nunes de Carvalho Junior
- Postgraduate Program in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Engineering of Natural Resources of the Amazon, ITEC, Federal University of Pará, Belém, Brazil
- Faculty of Food Engineering ITEC, Federal University of Pará, Belém, Brazil
| | | | - Antonio Maia de Jesus Chaves Neto
- Laboratory for the Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, Belem, Brazil
- Graduated in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- National Professional Master's in Physics Teaching, Federal University of Pará, Belém, Brazil
- Museu Paraense Emílio Goeldi, Diretoria, Coordenação de Botânica, Rua Augusto Corrêa, Belém, Brazil
| |
Collapse
|
4
|
Biehn SE, Picarello DM, Pan X, Vachet RW, Lindert S. Accounting for Neighboring Residue Hydrophobicity in Diethylpyrocarbonate Labeling Mass Spectrometry Improves Rosetta Protein Structure Prediction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:584-591. [PMID: 35147431 PMCID: PMC8988852 DOI: 10.1021/jasms.1c00373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Covalent labeling mass spectrometry allows for protein structure elucidation via covalent modification and identification of exposed residues. Diethylpyrocarbonate (DEPC) is a commonly used covalent labeling reagent that provides insight into structure through the labeling of lysine, histidine, serine, threonine, and tyrosine residues. We recently implemented a Rosetta algorithm that used binary DEPC labeling data to improve protein structure prediction efforts. In this work, we improved on our modeling efforts by accounting for the level of hydrophobicity of neighboring residues in the microenvironment of serine, threonine, and tyrosine residues to obtain a more accurate estimate of the hydrophobic neighbor count. This was incorporated into Rosetta functionality, along with considerations for solvent-exposed histidine and lysine residues. Overall, our new Rosetta score term successfully identified best scoring models with less than 2 Å root-mean-squared deviations (RMSDs) for five of the seven benchmark proteins tested. We additionally developed a confidence metric to measure prediction success for situations in which a native structure is unavailable.
Collapse
Affiliation(s)
- Sarah E Biehn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Danielle M Picarello
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Rosetta Commons Research Experience for Undergraduates, Rosetta Commons, https://www.rosettacommons.org/about/intern
| | - Xiao Pan
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Devaurs D, Antunes DA, Borysik AJ. Computational Modeling of Molecular Structures Guided by Hydrogen-Exchange Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:215-237. [PMID: 35077179 DOI: 10.1021/jasms.1c00328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Data produced by hydrogen-exchange monitoring experiments have been used in structural studies of molecules for several decades. Despite uncertainties about the structural determinants of hydrogen exchange itself, such data have successfully helped guide the structural modeling of challenging molecular systems, such as membrane proteins or large macromolecular complexes. As hydrogen-exchange monitoring provides information on the dynamics of molecules in solution, it can complement other experimental techniques in so-called integrative modeling approaches. However, hydrogen-exchange data have often only been used to qualitatively assess molecular structures produced by computational modeling tools. In this paper, we look beyond qualitative approaches and survey the various paradigms under which hydrogen-exchange data have been used to quantitatively guide the computational modeling of molecular structures. Although numerous prediction models have been proposed to link molecular structure and hydrogen exchange, none of them has been widely accepted by the structural biology community. Here, we present as many hydrogen-exchange prediction models as we could find in the literature, with the aim of providing the first exhaustive list of its kind. From purely structure-based models to so-called fractional-population models or knowledge-based models, the field is quite vast. We aspire for this paper to become a resource for practitioners to gain a broader perspective on the field and guide research toward the definition of better prediction models. This will eventually improve synergies between hydrogen-exchange monitoring and molecular modeling.
Collapse
Affiliation(s)
- Didier Devaurs
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77005, United States
| | - Antoni J Borysik
- Department of Chemistry, King's College London, London SE1 1DB, U.K
| |
Collapse
|
6
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Biehn SE, Limpikirati P, Vachet RW, Lindert S. Utilization of Hydrophobic Microenvironment Sensitivity in Diethylpyrocarbonate Labeling for Protein Structure Prediction. Anal Chem 2021; 93:8188-8195. [PMID: 34061512 DOI: 10.1021/acs.analchem.1c00395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diethylpyrocarbonate (DEPC) labeling analyzed with mass spectrometry can provide important insights into higher order protein structures. It has been previously shown that neighboring hydrophobic residues promote a local increase in DEPC concentration such that serine, threonine, and tyrosine residues are more likely to be labeled despite low solvent exposure. In this work, we developed a Rosetta algorithm that used the knowledge of labeled and unlabeled serine, threonine, and tyrosine residues and assessed their local hydrophobic environment to improve protein structure prediction. Additionally, DEPC-labeled histidine and lysine residues with higher relative solvent accessible surface area values (i.e., more exposed) were scored favorably. Application of our score term led to reductions of the root-mean-square deviations (RMSDs) of the lowest scoring models. Additionally, models that scored well tended to have lower RMSDs. A detailed tutorial describing our protocol and required command lines is included. Our work demonstrated the considerable potential of DEPC covalent labeling data to be used for accurate higher order structure determination.
Collapse
Affiliation(s)
- Sarah E Biehn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Patanachai Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Tajoddin NN, Konermann L. Analysis of Temperature-Dependent H/D Exchange Mass Spectrometry Experiments. Anal Chem 2020; 92:10058-10067. [DOI: 10.1021/acs.analchem.0c01828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nastaran N. Tajoddin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Martens C, Shekhar M, Lau AM, Tajkhorshid E, Politis A. Integrating hydrogen-deuterium exchange mass spectrometry with molecular dynamics simulations to probe lipid-modulated conformational changes in membrane proteins. Nat Protoc 2019; 14:3183-3204. [PMID: 31605097 PMCID: PMC7058097 DOI: 10.1038/s41596-019-0219-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Biological membranes define the boundaries of cells and are composed primarily of phospholipids and membrane proteins. It has become increasingly evident that direct interactions of membrane proteins with their surrounding lipids play key roles in regulating both protein conformations and function. However, the exact nature and structural consequences of these interactions remain difficult to track at the molecular level. Here, we present a protocol that specifically addresses this challenge. First, hydrogen-deuterium exchange mass spectrometry (HDX-MS) of membrane proteins incorporated into nanodiscs of controlled lipid composition is used to obtain information on the lipid species that are involved in modulating the conformational changes in the membrane protein. Then molecular dynamics (MD) simulations in lipid bilayers are used to pinpoint likely lipid-protein interactions, which can be tested experimentally using HDX-MS. By bringing together the MD predictions with the conformational readouts from HDX-MS, we have uncovered key lipid-protein interactions implicated in stabilizing important functional conformations. This protocol can be applied to virtually any integral membrane protein amenable to classic biophysical studies and for which a near-atomic-resolution structure or homology model is available. This protocol takes ~4 d to complete, excluding the time for data analysis and MD simulations, which depends on the size of the protein under investigation.
Collapse
Affiliation(s)
- Chloe Martens
- Department of Chemistry, King's College London, London, UK
- Department of Chemistry, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Mrinal Shekhar
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andy M Lau
- Department of Chemistry, King's College London, London, UK
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | |
Collapse
|
10
|
Ahdash Z, Pyle E, Allen WJ, Corey RA, Collinson I, Politis A. HDX-MS reveals nucleotide-dependent, anti-correlated opening and closure of SecA and SecY channels of the bacterial translocon. eLife 2019; 8:47402. [PMID: 31290743 PMCID: PMC6639072 DOI: 10.7554/elife.47402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/09/2019] [Indexed: 01/28/2023] Open
Abstract
The bacterial Sec translocon is a multi-protein complex responsible for translocating diverse proteins across the plasma membrane. For post-translational protein translocation, the Sec-channel – SecYEG – associates with the motor protein SecA to mediate the ATP-dependent transport of pre-proteins across the membrane. Previously, a diffusional-based Brownian ratchet mechanism for protein secretion has been proposed; the structural dynamics required to facilitate this mechanism remain unknown. Here, we employ hydrogen-deuterium exchange mass spectrometry (HDX-MS) to reveal striking nucleotide-dependent conformational changes in the Sec protein-channel from Escherichia coli. In addition to the ATP-dependent opening of SecY, reported previously, we observe a counteracting, and ATP-dependent, constriction of SecA around the pre-protein. ATP binding causes SecY to open and SecA to close; while, ADP produced by hydrolysis, has the opposite effect. This alternating behaviour could help impose the directionality of the Brownian ratchet for protein transport through the Sec machinery.
Collapse
Affiliation(s)
- Zainab Ahdash
- Department of Chemistry, King's College London, London, United Kingdom
| | - Euan Pyle
- Department of Chemistry, King's College London, London, United Kingdom.,Department of Chemistry, Imperial College London, London, United Kingdom
| | | | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Argyris Politis
- Department of Chemistry, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Marklund EG, Benesch JL. Weighing-up protein dynamics: the combination of native mass spectrometry and molecular dynamics simulations. Curr Opin Struct Biol 2019; 54:50-58. [PMID: 30743182 DOI: 10.1016/j.sbi.2018.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022]
Abstract
Structural dynamics underpin biological function at the molecular level, yet many biophysical and structural biology approaches give only a static or averaged view of proteins. Native mass spectrometry yields spectra of the many states and interactions in the structural ensemble, but its spatial resolution is limited. Conversely, molecular dynamics simulations are innately high-resolution, but have a limited capacity for exploring all structural possibilities. The two techniques hence differ fundamentally in the information they provide, returning data that reflect different length scales and time scales, making them natural bedfellows. Here we discuss how the combination of native mass spectrometry with molecular dynamics simulations is enabling unprecedented insights into a range of biological questions by interrogating the motions of proteins, their assemblies, and interactions.
Collapse
Affiliation(s)
- Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, 75 123, Uppsala, Sweden.
| | - Justin Lp Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|