1
|
Uppalapati B, Aubry MA, Wang Q, Abdelhamid D, Gill MA, Beauchemin AM. Development and Applications of an Amide Linchpin Reagent. Angew Chem Int Ed Engl 2025; 64:e202421258. [PMID: 39576874 DOI: 10.1002/anie.202421258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Linchpin reagents are building blocks that can be chemoselectively functionalized to afford products with a common, useful functional group. In this work, we describe the development and validation of the first amide linchpin reagent and demonstrate its use as a doubly electrophilic building block for the synthesis of a variety of amides, including challenging classes. The linchpin reagent was first functionalized via rhodium-catalyzed electrophilic amination. Selected masked C-isocyanate products were then further derivatized with Grignard reagents to produce secondary amides, or tertiary amides if an alkylating agent was added subsequently. The success of this sequence relies on fully controlled reactivity at each electrophilic site, first exploiting the weak N-O bond and then, the ability to form the free isocyanate intermediate in situ. The overall transformation proceeds with high chemoselectivity, demonstrating the ability of this new linchpin reagent to form amides through atypical bond construction. Finally, the potential of this reagent as a more broadly applicable NCO linchpin is demonstrated by the formation of lactams and unsymmetrical ureas.
Collapse
Affiliation(s)
- Bhavana Uppalapati
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Maxime A Aubry
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Qiang Wang
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Dalia Abdelhamid
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, Ottawa, ON, K1N 6N5, Canada
- Present Address: D.A. Raabe College of Pharmacy, Ohio Northern University, 525 S Main St, Ada, OH, 45810, United States
| | - Monica A Gill
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - André M Beauchemin
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
2
|
Hirano M, Kiyota S. Ru(0)-catalysed synthesis of borylated polyene building blocks by cross-dimerisation toward cross-coupling. Chem Commun (Camb) 2024; 60:7672-7686. [PMID: 38962873 DOI: 10.1039/d4cc02566k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Conjugated and non-conjugated polyenes are important substructures and are often found in biologically active compounds and natural products. Their preparation often needs multiple steps or iterative reactions and as a result, they have poor step economies. In this feature article, we show a new methodology to prepare these substructures by combinations of cross-dimerisation giving borylated polyenes and subsequent cross-coupling reactions. This divergent reaction strategy allows for the opportunity to access many bioactive compounds and natural products as well as some electronic materials.
Collapse
Affiliation(s)
- Masafumi Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Sayori Kiyota
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
3
|
Yu P, Gu T, Rao Y, Liang W, Zhang X, Jiang H, Lu J, She J, Guo J, Yang W, Liu Y, Tu Y, Tang L, Zhou X. A novel marine-derived anti-acute kidney injury agent targeting peroxiredoxin 1 and its nanodelivery strategy based on ADME optimization. Acta Pharm Sin B 2024; 14:3232-3250. [PMID: 39027260 PMCID: PMC11252462 DOI: 10.1016/j.apsb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 07/20/2024] Open
Abstract
Insufficient therapeutic strategies for acute kidney injury (AKI) necessitate precision therapy targeting its pathogenesis. This study reveals the new mechanism of the marine-derived anti-AKI agent, piericidin glycoside S14, targeting peroxiredoxin 1 (PRDX1). By binding to Cys83 of PRDX1 and augmenting its peroxidase activity, S14 alleviates kidney injury efficiently in Prdx1-overexpression (Prdx1-OE) mice. Besides, S14 also increases PRDX1 nuclear translocation and directly activates the Nrf2/HO-1/NQO1 pathway to inhibit ROS production. Due to the limited druggability of S14 with low bioavailability (2.6%) and poor renal distribution, a pH-sensitive kidney-targeting dodecanamine-chitosan nanoparticle system is constructed to load S14 for precise treatment of AKI. l-Serine conjugation to chitosan imparts specificity to kidney injury molecule-1 (Kim-1)-overexpressed cells. The developed S14-nanodrug exhibits higher therapeutic efficiency by improving the in vivo behavior of S14 significantly. By encapsulation with micelles, the AUC0‒t , half-life time, and renal distribution of S14 increase 2.5-, 1.8-, and 3.1-fold, respectively. The main factors contributing to the improved druggability of S14 nanodrugs include the lower metabolic elimination rate and UDP-glycosyltransferase (UGT)-mediated biotransformation. In summary, this study identifies a new therapeutic target for the marine-derived anti-AKI agent while enhancing its ADME properties and druggability through nanotechnology, thereby driving advancements in marine drug development for AKI.
Collapse
Affiliation(s)
- Ping Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tanwei Gu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yueyang Rao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weimin Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xi Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huanguo Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jindi Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jianmin Guo
- Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou 510990, China
| | - Wei Yang
- Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou 510990, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Takahashi S, Hama T, Nogawa T, Ogawa N, Koshino H. Total Synthesis of Clostrienose. ACS OMEGA 2023; 8:35382-35392. [PMID: 37779990 PMCID: PMC10536848 DOI: 10.1021/acsomega.3c05277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
This paper considers the total synthesis of a cellular differentiation regulator of Clostridium acetobutylicum, clostrienose, which is a unique fatty-acid glycosyl ester consisting of clostrienoic acid, (3R,5E,8E,10E)-3-hydroxy-tetradeca-5,8,10-trienoic acid and α-d-galactofuranosyl-(1 → 2)-α-l-rhamnose. The key features of our synthesis include stereoselective construction of a skipped-triene system in clostrienoic acid and its esterification with a disaccharide residue. The partially protected clostrienoic acid employed for the coupling also served for the preparation of l-rhamnosyl clostrienoate, thus leading to confirmation of the proposed structure unambiguously.
Collapse
Affiliation(s)
- Shunya Takahashi
- RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takenori Hama
- RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department
of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Toshihiko Nogawa
- RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Narihito Ogawa
- Department
of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Hiroyuki Koshino
- RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Wang R, Wang Y, Ding R, Staub PB, Zhao CZ, Liu P, Wang YM. Designed Iron Catalysts for Allylic C-H Functionalization of Propylene and Simple Olefins. Angew Chem Int Ed Engl 2023; 62:e202216309. [PMID: 36622129 PMCID: PMC9974915 DOI: 10.1002/anie.202216309] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
Propylene gas is produced worldwide by steam cracking on million-metric-ton scale per year. It serves as a valuable starting material for π-bond functionalization but is rarely applied in transition metal-catalyzed allylic C-H functionalization for fine chemical synthesis. Herein, we report that a newly-developed cationic cyclopentadienyliron dicarbonyl complex allows for the conversion of propylene to its allylic C-C bond coupling products under catalytic conditions. This approach was also found applicable to the allylic functionalization of simple α-olefins with distinctive branched selectivity. Experimental and computational mechanistic studies supported the allylic deprotonation of the metal-coordinated alkene as the turnover-limiting step and led to insights into the multifaceted roles of the newly designed ligand in promoting allylic C-H functionalization with enhanced reactivity and stereoselectivity.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ruiqi Ding
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Parker B Staub
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Christopher Z Zhao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
6
|
Chen J, Ying J, Lu Z. Cobalt-catalyzed branched selective hydroallylation of terminal alkynes. Nat Commun 2022; 13:4518. [PMID: 35922446 PMCID: PMC9349270 DOI: 10.1038/s41467-022-32291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022] Open
Abstract
Here, we reported a cobalt-hydride-catalyzed Markovnikov-type hydroallylation of terminal alkynes with allylic electrophile to access valuable and branched skipped dienes (1,4-dienes) with good regioselectivity. This operationally simple protocol exhibits excellent functional group tolerance and exceptional substrate scope. The reactions could be carried out in gram-scale with TON (turn over number) up to 1160, and the products could be easily derivatized. The preliminary mechanism of electrophilic allylation of α-selective cobalt alkenyl intermediate was proposed based on deuterium labeling experiment and kinetic studies. Selectively generating “skipped” dienes, where two carbon–carbon double bonds are separated by a saturated carbon center, is an interesting problem in organic chemistry, with few reliable, catalytic methods currently available. Here, the authors report branched selective hydroallylation of terminal alkynes with allylic bromides to form skipped dienes, via cobalt catalysis.
Collapse
Affiliation(s)
- Jieping Chen
- Center of chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jiale Ying
- Center of chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Lu
- Center of chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China. .,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y, Zhu Y, Zhou X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 2022; 230:114117. [PMID: 35063731 DOI: 10.1016/j.ejmech.2022.114117] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
The mangrove forests are a complex ecosystem, and the microbial communities in mangrove sediments play a critical role in the biogeochemical cycles of mangrove ecosystems. Mangrove sediments-derived microbes (MSM), as a rich reservoir of natural product diversity, could be utilized in the exploration of new antibiotics or drugs. To understand the structural diversity and bioactivities of the metabolites of MSM, this review for the first time provides a comprehensive overview of 519 natural products isolated from MSM with their bioactivities, up to 2021. Most of the structural types of these compounds are alkaloids, lactones, xanthones, quinones, terpenoids, and steroids. Among them, 210 compounds are obtained from bacteria, most of which are from Streptomyces, while 309 compounds are from fungus, especially genus Aspergillus and Penicillium. The pharmacological mechanisms of some representative lead compounds are well studied, revealing that they have important medicinal potentials, such as piericidins with anti-renal cell cancer effects, azalomycins with anti-MRSA activities, and ophiobolins as antineoplastic agents. The biosynthetic pathways of representative natural products from MSM have also been summarized, especially ikarugamycin, piericidins, divergolides, and azalomycins. In addition, the total synthetic strategies of representative secondary metabolites from MSM are also reviewed, such as piericidin A and borrelidin. This review provides an important reference for the research status of natural products isolated from MSM and the lead compounds worthy of further development, and reveals that MSM have important medicinal values and are worthy of further development.
Collapse
Affiliation(s)
- Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinya Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
8
|
Petruncio G, Shellnutt Z, Elahi-Mohassel S, Alishetty S, Paige M. Skipped dienes in natural product synthesis. Nat Prod Rep 2021; 38:2187-2213. [PMID: 34913051 DOI: 10.1039/d1np00012h] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Covering: 2000-2020The 1,4-diene motif, also known as a skipped diene, is widespread across various classes of natural products including alkaloids, fatty acids, terpenoids, and polyketides as part of either the finalized structure or a biosynthetic intermediate. The prevalence of this nonconjugated diene system in nature has resulted in numerous encounters in the total synthesis literature. However, skipped dienes have not been extensively reviewed, which could be attributed to overshadowing by the more recognized 1,3-diene system. In this review, we aim to highlight the relevance of skipped dienes in natural products through the lens of total synthesis. Subjects that will be covered include nomenclature, structural properties, prevalence in natural products, synthetic strategies and the future direction of the field.
Collapse
Affiliation(s)
- Greg Petruncio
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, Virginia 20110, USA.
| | - Zachary Shellnutt
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, Virginia 20110, USA.
| | - Synah Elahi-Mohassel
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, Virginia 20110, USA.
| | - Suman Alishetty
- Department of Bioengineering, George Mason University, 10920 George Mason Circle, Manassas, Virginia 20110, USA
| | - Mikell Paige
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, Virginia 20110, USA.
| |
Collapse
|
9
|
Sato T, Suto T, Nagashima Y, Mukai S, Chida N. Total Synthesis of Skipped Diene Natural Products. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Takaaki Sato
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takahiro Suto
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Yoshiyuki Nagashima
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Shori Mukai
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Noritaka Chida
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
10
|
Kuramochi A, Komine N, Kiyota S, Hirano M. Ru(0)-Catalyzed Synthesis of Borylated-Conjugated Triene Building Blocks by Cross-Dimerization and Their Use in Cross-Coupling Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ayumi Kuramochi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Nobuyuki Komine
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Sayori Kiyota
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Masafumi Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
11
|
Abstract
We designed a cooperative catalytic system by combining commercially available Ca(NTf2)PF6 and Pd(PPh3)4 to address the dehydrative allylation of alkenyl sp2 C-H bonds in an environmentally benign manner. A novel C-OH bond cleavage method was found to be crucial for this practical protocol. A variety of alkenes and allylic alcohols equipped with wide-spectrum functional groups can be successfully incorporated into the desired cross-coupling, affording 1,4-dienes with moderate to excellent yields and high stereo- and regioselectivity.
Collapse
Affiliation(s)
- Xinying Cai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Huicong Xing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Ju Qiu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Bowen Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| |
Collapse
|
12
|
Mata G, Kalnmals CA. Total Synthesis in the Trost Laboratories: Selected Milestones From the Past Twenty Years. Isr J Chem 2021. [DOI: 10.1002/ijch.202100022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guillaume Mata
- Arcus Biosciences, Inc. 3928 Point Eden Way Hayward CA 94545 USA
| | - Christopher A. Kalnmals
- Crop Protection Discovery Corteva Agriscience 9330 Zionsville Road Indianapolis IN 46268 USA
| |
Collapse
|
13
|
Wang CG, Zhang Y, Wang S, Chen B, Li Y, Ni HL, Gao Y, Hu P, Wang BQ, Cao P. Nickel-Catalyzed Carboalkenylation of 1,3-Dienes with Aldehydes and Alkenylzirconium Reagents: Access to Skipped Dienes. Org Lett 2021; 23:535-541. [DOI: 10.1021/acs.orglett.0c04059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheng-Gang Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Yunxing Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Simin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Bin Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Yang Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Yuanji Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
14
|
Velappan AB, Kesamsetty D, Datta D, Ma R, Hari N, Franzblau SG, Debnath J. 1,3-Oxazine-2-one derived dual-targeted molecules against replicating and non-replicating forms of Mycobacterium tuberculosis. Eur J Med Chem 2020; 208:112835. [PMID: 32977201 DOI: 10.1016/j.ejmech.2020.112835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/02/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
The high mortality rate and increasing prevalence of resistant Mtb are the major concerns for the Tuberculosis (TB) treatment in this century. To curtail the prevalence of resistant Mtb, we have prepared 1,3-oxazine-2-one based dual targeted molecules. Compound 67 and 68 were found to be equally active against replicating and non-replicatiing form of Mtb (MICMABA 3.48 and 2.97 μg/ml; MICLORA 2.94 and 2.15 μg/ml respectively). They had found to suppress the biosynthesis of alfa, methoxy and keto-mycolate completely, as well as inhibit enzymatic activity of MenG (IC50 = 9.11 and 6.25 μg/ml respectively for H37Ra; IC50 = 11.76 and 10.88 μg/ml respectively for M smegmatis).
Collapse
Affiliation(s)
- Anand Babu Velappan
- Department of Chemistry, SCBT, SASTRA Deemed to Be University, Tamilnadu, 613401, India
| | - Dhanunjaya Kesamsetty
- Department of Chemistry, SCBT, SASTRA Deemed to Be University, Tamilnadu, 613401, India
| | - Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Rui Ma
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St, Chicago, IL, 60612, USA
| | - Natarajan Hari
- NMR Laboratory, SCBT, SASTRA Deemed to Be University, Tamilnadu, 613401, India
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St, Chicago, IL, 60612, USA
| | - Joy Debnath
- Department of Chemistry, SCBT, SASTRA Deemed to Be University, Tamilnadu, 613401, India.
| |
Collapse
|
15
|
Trost BM, Hung C(J, Mata G. Zweikernige Metall‐ProPhenol‐Katalysatoren: Entwicklung und Anwendungen in der Synthese. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Barry M. Trost
- Department of ChemistryStanford University 333 Campus Drive Stanford CA 94305 USA
| | - Chao‐I (Joey) Hung
- Department of ChemistryStanford University 333 Campus Drive Stanford CA 94305 USA
| | - Guillaume Mata
- Department of ChemistryStanford University 333 Campus Drive Stanford CA 94305 USA
| |
Collapse
|
16
|
Trost BM, Tracy JS, Yusoontorn T, Hung CJ. Acyclic Branched α‐Fluoro Ketones for the Direct Asymmetric Mannich Reaction Leading to the Synthesis of β‐Tetrasubstituted β‐Fluoro Amines. Angew Chem Int Ed Engl 2020; 59:2370-2374. [DOI: 10.1002/anie.201913927] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Barry M. Trost
- Department of ChemistryStanford University 333 Campus Dr Stanford CA 94305 USA
| | - Jacob S. Tracy
- Department of ChemistryStanford University 333 Campus Dr Stanford CA 94305 USA
| | - Tas Yusoontorn
- Department of ChemistryStanford University 333 Campus Dr Stanford CA 94305 USA
| | - Chao‐I Joey Hung
- Department of ChemistryStanford University 333 Campus Dr Stanford CA 94305 USA
| |
Collapse
|
17
|
Trost BM, Tracy JS, Yusoontorn T, Hung CJ. Acyclic Branched α‐Fluoro Ketones for the Direct Asymmetric Mannich Reaction Leading to the Synthesis of β‐Tetrasubstituted β‐Fluoro Amines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Barry M. Trost
- Department of ChemistryStanford University 333 Campus Dr Stanford CA 94305 USA
| | - Jacob S. Tracy
- Department of ChemistryStanford University 333 Campus Dr Stanford CA 94305 USA
| | - Tas Yusoontorn
- Department of ChemistryStanford University 333 Campus Dr Stanford CA 94305 USA
| | - Chao‐I Joey Hung
- Department of ChemistryStanford University 333 Campus Dr Stanford CA 94305 USA
| |
Collapse
|
18
|
Affiliation(s)
- Anton V. Yadykov
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 47 Leninsky prosp., 119991 Moscow Russian Federation
| | - Valerii Z. Shirinian
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 47 Leninsky prosp., 119991 Moscow Russian Federation
| |
Collapse
|
19
|
Trost BM, Hung C(J, Mata G. Dinuclear Metal‐ProPhenol Catalysts: Development and Synthetic Applications. Angew Chem Int Ed Engl 2019; 59:4240-4261. [DOI: 10.1002/anie.201909692] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Barry M. Trost
- Department of ChemistryStanford University 333 Campus Drive Stanford CA 94305 USA
| | - Chao‐I (Joey) Hung
- Department of ChemistryStanford University 333 Campus Drive Stanford CA 94305 USA
| | - Guillaume Mata
- Department of ChemistryStanford University 333 Campus Drive Stanford CA 94305 USA
| |
Collapse
|
20
|
Kobayashi T, Abe H, Ito H. Synthetic Studies of Polycyclic Terpenoids Using the Intramolecular Aldol-Type Cyclization Reaction. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.1086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hideki Abe
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University
| | - Hisanaka Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
21
|
Xie P, Fu W, Cai X, Sun Z, Wu Y, Li S, Gao C, Yang X, Loh TP. A Ba/Pd Catalytic System Enables Dehydrative Cross-Coupling and Excellent E-Selective Wittig Reactions. Org Lett 2019; 21:7055-7059. [PMID: 31430163 DOI: 10.1021/acs.orglett.9b02623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A Ba/Pd cooperative catalysis system was developed to enable the dehydrative cross-coupling of allylic alcohols with P-ylides to occur directly and promote a subsequent Wittig reaction in one pot. A variety of multisubstituted 1,4-dienes were isolated in good to excellent yields with broad P-ylides (stabilized by both ester and ketone carbonyl groups) and aldehyde (aliphatic and aromatic) substrates with excellent E selectivity.
Collapse
Affiliation(s)
- Peizhong Xie
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Weishan Fu
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xinying Cai
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zuolian Sun
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ying Wu
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Shuangshuang Li
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Cuiqing Gao
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaobo Yang
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
22
|
Li K, Liang Z, Chen W, Luo X, Fang W, Liao S, Lin X, Yang B, Wang J, Tang L, Liu Y, Zhou X. Iakyricidins A–D, Antiproliferative Piericidin Analogues Bearing a Carbonyl Group or Cyclic Skeleton from Streptomyces iakyrus SCSIO NS104. J Org Chem 2019; 84:12626-12631. [DOI: 10.1021/acs.joc.9b01270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Liang
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weihao Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Fang
- Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shengrong Liao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou 510301, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou 510301, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou 510301, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou 510301, China
| | - Lan Tang
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Mirzaei A, Peng XS, Wong HNC. PtCl 2-Catalyzed Cycloisomerization of 1,8-Enynes: Synthesis of Tetrahydropyridine Species. Org Lett 2019; 21:3795-3798. [PMID: 31042044 DOI: 10.1021/acs.orglett.9b01250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cycloisomerization of 1,8-enynes in the presence of platinum(II) chloride was developed to generate bicyclic nitrogen-containing heterocycle species via 6- endo-dig cyclization and [3,3]-sigmatropic rearrangement in acceptable to good yields. The related control experiments and preliminary mechanistic studies indicate a plausible mechanism involving 1,6- endo-dig aminoplatination of the alkyne and allylic [3,3]-sigmatropic rearrangement with total inversion of the allylic moiety.
Collapse
Affiliation(s)
- Anvar Mirzaei
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong SAR, China
| | - Xiao-Shui Peng
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong SAR, China.,Shenzhen Center of Novel Functional Molecules, Shenzhen Research Institute , The Chinese University of Hong Kong , No.10, Second Yuexing Road , Shenzhen 518507 , P.R. China
| | - Henry N C Wong
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong SAR, China.,Shenzhen Center of Novel Functional Molecules, Shenzhen Research Institute , The Chinese University of Hong Kong , No.10, Second Yuexing Road , Shenzhen 518507 , P.R. China
| |
Collapse
|
24
|
McGeough CP, Strom AE, Jamison TF. Ni-Catalyzed Cross-Electrophile Coupling for the Synthesis of Skipped Polyenes. Org Lett 2019; 21:3606-3609. [PMID: 31046296 DOI: 10.1021/acs.orglett.9b01019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Skipped polyenes featuring high ( E)-selectivity and varying methyl substitution patterns are synthesized using a nickel-catalyzed cross-coupling reaction between allyl trifluoroacetates and vinyl bromides. The utility of this cross-electrophile coupling is showcased in part by the synthesis of the RST fragment of the marine ladder polyether, maitotoxin. Construction of this fragment is particularly challenging due to the alternating methyl substitution pattern.
Collapse
Affiliation(s)
- Catherine P McGeough
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Alexandra E Strom
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Timothy F Jamison
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
25
|
Affiliation(s)
- Masafumi Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
26
|
Shen C, Lu X, Zhang J, Ding L, Sun Y, Zhong G. Bidentate auxiliary-directed alkenyl C–H allylation via exo-palladacycles: synthesis of branched 1,4-dienes. Chem Commun (Camb) 2019; 55:13582-13585. [DOI: 10.1039/c9cc07466j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An alkenyl C–H allylation by exo-palladacycle is demonstrated to produce branched skipped dienes, employing alkenyl amides and allyl carbonates.
Collapse
Affiliation(s)
- Cong Shen
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Xiunan Lu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Jian Zhang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Liyuan Ding
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Yaling Sun
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Guofu Zhong
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|
27
|
Chen ZZ, Li SQ, Zhang YJ, Tang DY, Meng JP, Lei J, Li HY, Xu ZG. Synthesis of Pyridodiindoles with Anticancer Activity by a Three-Component Cascade Condensation. Org Lett 2018; 20:7811-7815. [DOI: 10.1021/acs.orglett.8b03245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhong-Zhu Chen
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences. 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Shi-Qiang Li
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences. 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Ya-Jun Zhang
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences. 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Dian-Yong Tang
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences. 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Jiang-Ping Meng
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences. 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Jie Lei
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences. 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Zhi-Gang Xu
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences. 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| |
Collapse
|