1
|
Luo H, Zhang M, Xing ZQ, Wang XC. Enantioselective Vinylogous Addition of Enones to Allenes Enabled by Synergistic Borane/Palladium Catalysis. J Am Chem Soc 2025; 147:104-110. [PMID: 39718898 DOI: 10.1021/jacs.4c16214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Herein, we report a method for enantioselective vinylogous addition of enones to alkoxyallenes enabled by synergistic borane/palladium catalysis. The inductive effect provided by borane coordination to the ketone was essential for closing the gap between the conditions needed for the generation of a dienolate and those needed for initiation of the palladium catalytic cycle by protonation of the metal catalyst. Furthermore, we accomplished the first example of stereodivergent synthesis with chiral borane/transition-metal catalysts.
Collapse
Affiliation(s)
- Heng Luo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ze-Qun Xing
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Mei P, Ma Z, Chen Y, Wu Y, Hao W, Fan QH, Zhang WX. Chiral bisphosphine Ph-BPE ligand: a rising star in asymmetric synthesis. Chem Soc Rev 2024; 53:6735-6778. [PMID: 38826108 DOI: 10.1039/d3cs00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chiral 1,2-bis(2,5-diphenylphospholano)ethane (Ph-BPE) is a class of optimal organic bisphosphine ligands with C2-symmetry. Ph-BPE with its excellent catalytic performance in asymmetric synthesis has attracted much attention of chemists with increasing popularity and is growing into one of the most commonly used organophosphorus ligands, especially in asymmetric catalysis. Over two hundred examples have been reported since 2012. This review presents how Ph-BPE is utilized in asymmetric synthesis and how powerful it is as a chiral ligand or even a catalyst in a wide range of reactions including applications in the total synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Peifeng Mei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zibin Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wei Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Xia T, Wu W, Wu X, Qu J, Chen Y. Cobalt-Catalyzed Enantioselective Reductive α-Chloro-Carbonyl Addition of Ketimine to Construct the β-Tertiary Amino Acid Analogues. Angew Chem Int Ed Engl 2024; 63:e202318991. [PMID: 38252658 DOI: 10.1002/anie.202318991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
β-Tertiary amino acid derivatives constitute one of the most frequently occurring units in natural products and bioactive molecules. However, the efficient asymmetric synthesis of this motif still remains a significant challenge. Herein, we disclose a cobalt-catalyzed enantioselective reductive addition reaction of ketimine using α-chloro carbonyl compound as a radical precursor, providing expedient access to a diverse array of enantioenriched β-quaternary amino acid analogues. This protocol exhibits outstanding enantioselectivity and broad substrate scope with excellent functional group tolerance. Preliminary mechanism studies rule out the possibility of Reformatsky-type addition and confirm the involvement of radical species in stereoselective addition process. The synthetic utility has been demonstrated through the rapid assembly of iterative amino acid units and oligopeptide, showcasing its versatile platform for late-stage modification of drug candidates.
Collapse
Affiliation(s)
- Tingting Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenwen Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
4
|
Li Z, Ma C, Wu J, Wang X, Zheng C, Wu X. Copper-Catalyzed Direct Asymmetric Vinylogous Mannich Reaction between β,γ-Alkynyl-α-ketimino Esters and β,γ-Unsaturated N-Acylpyrazoles. Org Lett 2024; 26:1376-1381. [PMID: 38349071 DOI: 10.1021/acs.orglett.3c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
We report a Cu(I)-Ph-BPE-catalyzed asymmetric vinylogous Mannich reaction of β,γ-alkynyl-α-ketimino esters with β,γ-unsaturated N-acylpyrazoles. In this process, the Cu(I)-Ph-BPE catalyst activates the β,γ-alkynyl-α-ketimino ester through N,O-coordination, enabling the subsequent nucleophilic addition of a dienolate generated from the β,γ-unsaturated N-acylpyrazole via α-position deprotonation with a catalytic amount of tertiary amine. The reactions gave useful products with very high enantioselectivities. A broad range of substrates with various substituents are tolerated in this reaction. The versatility of this method was demonstrated by a gram-scale reaction, and subsequent elaboration of the Mannich adducts was also provided.
Collapse
Affiliation(s)
- Zhiming Li
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chicheng Ma
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiangbo Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xuan Wang
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Luo LS, Hou SM, Lu J, Zhang Q, Sha F, Wu XY. Cu-Catalyzed Direct Enantioselective Vinylogous Mannich Reaction between β,γ-Unsaturated Pyrazoleamides and Ketimines. J Org Chem 2024; 89:2582-2587. [PMID: 38284164 DOI: 10.1021/acs.joc.3c02602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A catalytic asymmetric vinylogous Mannich-type reaction between β,γ-unsaturated amides and ketimines has been developed in excellent regio-, diastereo-, and enantioselectivities. The methodology provides an efficient approach to construct chiral homoallylic amines with a 3-amino-2-oxindole scaffold. Moreover, the transformations of the chiral products, including the removal of the pyrazole group or Boc group, the reduction of the C-C double bond, and Suzuki coupling, have been investigated.
Collapse
Affiliation(s)
- Ling-Shan Luo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Si-Meng Hou
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian Lu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
6
|
Zhong F, Yue WJ, Yin XH, Zhang HM, Yin L. Copper(I)-Catalyzed Asymmetric Synthesis of α-Allenylamines and β-Lactams through Regioselective Mannich-Type Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feng Zhong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen-Jun Yue
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xing-Hao Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hong-Ming Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
7
|
Lin H, Jiao W, Chen Z, Han J, Fang D, Wang M, Liao J. Enantioselective Cu-Catalyzed Nucleophilic Addition of Fluorinated Reagents: C–C Bond Formation for the Synthesis of Chiral Vicinal Difluorides. Org Lett 2022; 24:2197-2202. [DOI: 10.1021/acs.orglett.2c00518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huaxin Lin
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Jiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Han
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Dongmei Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Min Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Zheng Y, Zhang S, Low KH, Zi W, Huang Z. A Unified and Desymmetric Approach to Chiral Tertiary Alkyl Halides. J Am Chem Soc 2022; 144:1951-1961. [DOI: 10.1021/jacs.1c12404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yin Zheng
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Suihan Zhang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Kam-Hung Low
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongxing Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Li H, Yin L. Research Progress of Copper-Catalyzed Direct Vinylogous Reactions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Zhang H, He J, Chen Y, Zhuang C, Jiang C, Xiao K, Su Z, Ren X, Wang T. Regio‐ and Stereoselective Cascade of β,γ‐Unsaturated Ketones by Dipeptided Phosphonium Salt Catalysis: Stereospecific Construction of Dihydrofuro‐Fused [2,3‐b] Skeletons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yayun Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China
| | - Cheng Zhuang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610064 P. R. China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
11
|
Zhang H, He J, Chen Y, Zhuang C, Jiang C, Xiao K, Su Z, Ren X, Wang T. Regio- and Stereoselective Cascade of β,γ-Unsaturated Ketones by Dipeptided Phosphonium Salt Catalysis: Stereospecific Construction of Dihydrofuro-Fused [2,3-b] Skeletons. Angew Chem Int Ed Engl 2021; 60:19860-19870. [PMID: 34213051 DOI: 10.1002/anie.202106046] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Chiral (dihydro)furo-fused heterocycles are significant structural motifs in numerous natural products, functional materials and pharmaceuticals. Therefore, developing efficient methods for preparing compounds with these privileged scaffolds is an important endeavor in synthetic chemistry. Herein, we develop an effective, modular method by a dipeptide-phosphonium salt-catalyzed regio- and stereoselective cascade reaction of readily available linear β,γ-unsaturated ketones with aromatic alkenes, affording a wide variety of structurally fused heterocyclic molecules in high yields with excellent stereoselectivities. Moreover, mechanistic investigations revealed that the bifunctional phosphonium salt controlled the regio- and stereoselectivities of this cascade reaction, particularly proceeding through the initial ketone α-addition followed by O-participated substitution; and the multiple hydrogen-bonding interactions between Brønsted acid moieties of catalyst and nitro group of aromatic alkene were crucial in asymmetric induction. Given the generality, versatility, and high efficiency of this method, we anticipate that it will have broad synthetic utilities.
Collapse
Affiliation(s)
- Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yayun Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.,School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Cheng Zhuang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610064, P. R. China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
12
|
Oiarbide M, Palomo C. Extended Enolates: Versatile Intermediates for Asymmetric C-H Functionalization via Noncovalent Catalysis. Chemistry 2021; 27:10226-10246. [PMID: 33961323 PMCID: PMC8361983 DOI: 10.1002/chem.202100756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/22/2022]
Abstract
Catalyst-controlled functionalization of unmodified carbonyl compounds is a relevant operation in organic synthesis, especially when high levels of site- and stereoselectivity can be attained. This objective is now within reach for some subsets of enolizable substrates using various types of activation mechanisms. Recent contributions to this area include enantioselective transformations that proceed via transiently generated noncovalent di(tri)enolate-catalyst coordination species. While relatively easier to form than simple enolate congeners, di(tri)enolates are ambifunctional in nature and so control of the reaction regioselectivity becomes an issue. This Minireview discusses in some detail this and other problems, and how noncovalent activation approaches based on metallic and metal free catalysts have been developed to advance the field.
Collapse
Affiliation(s)
- Mikel Oiarbide
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHUManuel Lardizabal 320018San SebastiánSpain
| | - Claudio Palomo
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHUManuel Lardizabal 320018San SebastiánSpain
| |
Collapse
|
13
|
Dabiri M, Lehi NF, Mohammadian R. Catalytic stereoselective Mannich-type reactions for construction of fluorinated compounds. Mol Divers 2021; 26:1267-1310. [PMID: 34228344 DOI: 10.1007/s11030-021-10235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/13/2021] [Indexed: 10/20/2022]
Abstract
For its unique role in developing and designing new bioactive materials and healthcare products, fluoro-organic compounds have attracted remarkable interest. Along with ever-increasing demand for a wider availability of fluorine-containing structural units, a large diversity of methods has been introduced to incorporate fluorine atoms specially in a stereoselective fashion. Among them, catalytic Mannich reaction can proceed with a broad variety of reactants and open clear paths for the synthesis of versatile amine synthons in the synthesis of natural product and pharmaceutical molecules. This review provides an overview of the employment of catalytic asymmetric Mannich reactions in the synthesis of fluorine-containing amine compounds and highlights the conceivable distinct mechanisms.
Collapse
Affiliation(s)
- Minoo Dabiri
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Islamic Republic of Iran.
| | - Noushin Farajinia Lehi
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Islamic Republic of Iran
| | - Reza Mohammadian
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Islamic Republic of Iran
| |
Collapse
|
14
|
Tian Y, Shang Y, Su W. DBU‐Catalyzed Regioselective
α
‐Alkylation of Enones Using the Vinylogous Strategy. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yawei Tian
- College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou Fujian 350108 P. R. China
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou Fujian 350002 P. R. China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou Fujian 350002 P. R. China
| | - Weiping Su
- College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou Fujian 350108 P. R. China
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
15
|
Lecachey B, Palais L, de Courcy B, Bouauli S, Durandetti M, Oulyadi H, Harisson-Marchand A, Maddaluno J, Gérard H, Vrancken E, Campagne JM. Intertwined Analytical, Experimental and Theoretical Studies on the Formation and Structure of a Copper Dienolate. Chemistry 2021; 27:7942-7950. [PMID: 33780058 DOI: 10.1002/chem.202100596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 11/06/2022]
Abstract
The reaction of a silyl dienolate, a Cu(II) salt and TBAT yielding the corresponding copper dienolate is addressed. A combined NMR and cyclic voltammetry analysis first highlight the role of TBAT in the Cu(II) to Cu(I) reduction and the structure of the precatalytic species. From these first results a second set of NMR and theoretical studies enable the determination of the structure and the mechanism of formation of the copper dienolate catalytic species. Finally, we showed that that the copper catalyst promote the E/Z s-cis/s-trans equilibration of the silyl dienolate precursor through a copper dienolate intermediate. All of these results unveil some peculiarities of the catalytic and asymmetric vinylogous Mukaiyama reaction.
Collapse
Affiliation(s)
| | - Laetitia Palais
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000, Rouen, France
| | - Benoît de Courcy
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, 75005, Paris, France
| | - Samira Bouauli
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, 75005, Paris, France
| | - Muriel Durandetti
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000, Rouen, France
| | - Hassan Oulyadi
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000, Rouen, France
| | - Anne Harisson-Marchand
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000, Rouen, France
| | - Jacques Maddaluno
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000, Rouen, France
| | - Hélène Gérard
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, 75005, Paris, France
| | | | | |
Collapse
|
16
|
Zhang Y, Yang JH, Xia YQ, Dong L, Chen FE. Diastereo- and Enantioselective Mannich/Cyclization Cascade Reaction Access to Chiral Benzothiazolopyrimidine Derivatives. Chemistry 2021; 27:6183-6186. [PMID: 33751688 DOI: 10.1002/chem.202005509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Indexed: 01/03/2023]
Abstract
An efficient asymmetric Mannich/cyclization cascade strategy was established from 2-benzothiazolimines with N-acylpyrazoles to provide optical active benzothiazolopyrimidine derivatives using a copper-based complex. The mild cascade process constructed various structurally diverse products with broad scope of substrates together with excellent enantioselectivities (up to 99 % ee) and diastereoselectivities (up to 99:1 d.r.).
Collapse
Affiliation(s)
- Yan Zhang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jia-Hui Yang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Ying-Qi Xia
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Lin Dong
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Fen-Er Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China.,Shanghai Engineering Center of, Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, P. R. China
| |
Collapse
|
17
|
Meninno S, Franco F, Benaglia M, Lattanzi A. Pyrazoleamides in Catalytic Asymmetric Reactions: Recent Advances. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Francesca Franco
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Maurizio Benaglia
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132 84084 Fisciano Italy
| |
Collapse
|
18
|
Tian JJ, Liu N, Liu QF, Sun W, Wang XC. Borane-Catalyzed Direct Asymmetric Vinylogous Mannich Reactions of Acyclic α,β-Unsaturated Ketones. J Am Chem Soc 2021; 143:3054-3059. [DOI: 10.1021/jacs.1c00006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun-Jie Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ning Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Fei Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Dong G, Bao M, Xie X, Jia S, Hu W, Xu X. Asymmetric Allylation by Chiral Organocatalyst‐Promoted Formal Hetero‐Ene Reactions of Alkylgold Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Guizhi Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ming Bao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiongda Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Shikun Jia
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
20
|
Zhang Y, Wang D, Tong X. Phosphine-catalysed (4+1) annulations of β′-acetoxy allenoate with β,γ-unsaturated carbonyl compounds. Chem Commun (Camb) 2021; 57:3488-3491. [DOI: 10.1039/d1cc00368b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While β,γ-unsaturated carbonyl compounds have been widely used as γC- or αC-nucleophiles, their potential αC,αC-bisnucleophilic reactivity is still underdeveloped.
Collapse
Affiliation(s)
- Yueqi Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Xiaofeng Tong
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| |
Collapse
|
21
|
Fu X, Hao Y, Bai HY, Duan A, Zhang SY. Co-Catalyzed Direct Regio- and Enantioselective Intermolecular γ-Amination of N-Acylpyrazoles. Org Lett 2020; 23:25-30. [DOI: 10.1021/acs.orglett.0c03522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xin Fu
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Environmental Science & Technology, Hunan University, Changsha 410082, China
| | - Yu Hao
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - He-Yuan Bai
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Abing Duan
- College of Environmental Science & Technology, Hunan University, Changsha 410082, China
| | - Shu-Yu Zhang
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Zhang H, Zhong F, Xie Y, Yin L. Catalytic Asymmetric
Mannich‐Type
Reaction Enabled by Efficient Dienolization of α,
β‐Unsaturated
Pyrazoleamides†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hai‐Jun Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Feng Zhong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yan‐Cheng Xie
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
23
|
Dong G, Bao M, Xie X, Jia S, Hu W, Xu X. Asymmetric Allylation by Chiral Organocatalyst‐Promoted Formal Hetero‐Ene Reactions of Alkylgold Intermediates. Angew Chem Int Ed Engl 2020; 60:1992-1999. [DOI: 10.1002/anie.202012678] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/30/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Guizhi Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ming Bao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiongda Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Shikun Jia
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
24
|
Li D, Zhang M, Yang Y, Peng T, Yang D, Gao W, Wang R. Desymmetrization Process by Mg(II)-Catalyzed Intramolecular Vinylogous Michael Reaction. Org Lett 2020; 22:9229-9233. [DOI: 10.1021/acs.orglett.0c03417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Minmin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Yuling Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Tianyu Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Wei Gao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
25
|
Zhang XY, You Y, Wang ZH, Zhao JQ, Yuan WC. Organocatalytic asymmetric tandem α-functionalization/1,3-proton shift reaction of benzylidene succinimides with β-trifluoromethyl enones. Chem Commun (Camb) 2020; 56:13449-13452. [PMID: 33043913 DOI: 10.1039/d0cc05474g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A bifunctional thiourea-catalyzed asymmetric tandem α-functionalization/1,3-proton shift reaction of benzylidene succinimides with β-trifluoromethyl enones has been developed. A series of F3C-containing chiral Rauhut-Currier type products were obtained in moderate to high yields (up to 98%) with excellent enantioselectivities (up to >99% ee). This represents the first example of benzylidene succinimides undergoing tandem α-functionalization/1,3-proton shift in catalytic enantioselective transformation.
Collapse
Affiliation(s)
- Xia-Yan Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Scences, Chengdu 610041, China.
| | | | | | | | | |
Collapse
|
26
|
Fu JH, Zhang ZG, Zhou XY, Fu CW, Sha F, Wu XY. Enantioselective vinylogous aldol/lactonization cascade reaction between β,γ-unsaturated amides and trifluoromethyl ketones: facile access to chiral trifluoromethyl dihydropyranones. Org Biomol Chem 2020; 18:7848-7851. [PMID: 33001115 DOI: 10.1039/d0ob01746a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An efficient asymmetric vinylogous aldol/lactonization cascade reaction between β,γ-unsaturated amides and trifluoromethyl ketones has been developed. Using a chiral cyclohexanediamine-based tertiary amine-thiourea catalyst, optically active trifluoromethyl dihydropyranones have been constructed in moderate-to-excellent yields (up to 99%) with excellent stereoselectivities (96-> 99.5% ee).
Collapse
Affiliation(s)
- Jun-Hao Fu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | | | | | | | | | | |
Collapse
|
27
|
Chen Y, Wang Y, Wang S, Ma YY, Zhao DG, Zhan R, Huang H. Asymmetric Construction of Cyclobutanes via Direct Vinylogous Michael Addition/Cyclization of β,γ-Unsaturated Amides. Org Lett 2020; 22:7135-7140. [DOI: 10.1021/acs.orglett.0c02488] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yichen Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shuzhong Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yan-Yan Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Deng-Gao Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huicai Huang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
28
|
Kang T, Hou L, Ruan S, Cao W, Liu X, Feng X. Lewis acid-catalyzed asymmetric reactions of β,γ-unsaturated 2-acyl imidazoles. Nat Commun 2020; 11:3869. [PMID: 32747706 PMCID: PMC7398931 DOI: 10.1038/s41467-020-17681-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/06/2020] [Indexed: 11/09/2022] Open
Abstract
The investigation of diverse reactivity of β,γ-unsaturated carbonyl compounds is of great value in asymmetric catalytic synthesis. Numerous enantioselective transformations have been well developed with β,γ-unsaturated carbonyl compounds as nucleophiles, however, few example were realized by utilizing them as not only nucleophiles but also electrophiles under a same catalytic system. Here we report a regioselective catalytic asymmetric tandem isomerization/α-Michael addition of β,γ-unsaturated 2-acyl imidazoles in the presence of chiral N,N′-dioxide metal complexes, delivering a broad range of optically pure 1,5-dicarbonyl compounds with two vicinal tertiary carbon stereocenters in up to >99% ee under mild conditions. Meanwhile, stereodivergent synthesis is disclosed to yield all four stereoisomers of products. Control experiments suggest an isomerization process involved in the reaction and give an insight into the role of NEt3. In addition, Mannich reaction and sulfur-Michael addition of β,γ-unsaturated 2-acyl imidazoles proceed smoothly as well under the same catalytic system. The investigation of reactivity of β,γ-unsaturated carbonyl compounds is of great synthetic value, especially in asymmetric transformations. Here, the authors report a catalytic asymmetric tandem isomerization/α-Michael addition of β,γ-unsaturated 2-acyl imidazoles in presence of chiral N,N′-dioxide metal catalysts.
Collapse
Affiliation(s)
- Tengfei Kang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Sai Ruan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
29
|
Li D, Yang Y, Zhang M, Wang L, Xu Y, Yang D, Wang R. Activation of allylic esters in an intramolecular vinylogous kinetic resolution reaction with synergistic magnesium catalysts. Nat Commun 2020; 11:2559. [PMID: 32444612 PMCID: PMC7244749 DOI: 10.1038/s41467-020-16486-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 11/29/2022] Open
Abstract
Kinetic resolution (KR) of racemic starting materials is a powerful and practical alternative to prepare valuable enantiomerically enriched compounds. A magnesium-catalyzed kinetic resolution based on a designed intramolecular vinylogous Michael reaction is disclosed. Here we show a synergistic catalytic strategy based on the development of chiral ligands. Substrates containing linear allylic ester structures are designed and synthesized to construct key [6.6.5]-tricyclic chiral skeletons via this kinetic resolution process. Detailed mechanistic studies reveal a rational mechanism for the current intramolecular vinylogous KR reaction. The desired direct intramolecular asymmetric vinylogous Michael reaction of linear allylic esters is realized in high efficiency and enantioselectivity with the synergistic catalytic system. Kinetic resolution allows to obtain enantioenriched compounds from racemic mixtures. Here, the authors report a synergistic magnesium catalyst promoting kinetic resolution of an intramolecular vinylogous Michael reaction to access [6.6.5]-tricyclic chiral skeletons.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuling Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Minmin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingfan Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
30
|
Curti C, Battistini L, Sartori A, Zanardi F. New Developments of the Principle of Vinylogy as Applied to π-Extended Enolate-Type Donor Systems. Chem Rev 2020; 120:2448-2612. [PMID: 32040305 PMCID: PMC7993750 DOI: 10.1021/acs.chemrev.9b00481] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/19/2022]
Abstract
The principle of vinylogy states that the electronic effects of a functional group in a molecule are possibly transmitted to a distal position through interposed conjugated multiple bonds. As an emblematic case, the nucleophilic character of a π-extended enolate-type chain system may be relayed from the legitimate α-site to the vinylogous γ, ε, ..., ω remote carbon sites along the chain, provided that suitable HOMO-raising strategies are adopted to transform the unsaturated pronucleophilic precursors into the reactive polyenolate species. On the other hand, when "unnatural" carbonyl ipso-sites are activated as nucleophiles (umpolung), vinylogation extends the nucleophilic character to "unnatural" β, δ, ... remote sites. Merging the principle of vinylogy with activation modalities and concepts such as iminium ion/enamine organocatalysis, NHC-organocatalysis, cooperative organo/metal catalysis, bifunctional organocatalysis, dicyanoalkylidene activation, and organocascade reactions represents an impressive step forward for all vinylogous transformations. This review article celebrates this evolutionary progress, by collecting, comparing, and critically describing the achievements made over the nine year period 2010-2018, in the generation of vinylogous enolate-type donor substrates and their use in chemical synthesis.
Collapse
Affiliation(s)
| | | | | | - Franca Zanardi
- Dipartimento di Scienze degli
Alimenti e del Farmaco, Università
di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| |
Collapse
|
31
|
Futaki E, Takeda N, Yasui M, Shinada T, Miyata O, Ueda M. γ-C (sp 3)-H bond functionalisation of α,β-unsaturated amides through an umpolung strategy. Org Biomol Chem 2020; 18:1563-1566. [PMID: 32030394 DOI: 10.1039/d0ob00125b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nucleophilic γ-phenylation and γ-alkylation of α,β-unsaturated amides have been developed. This umpolung reaction allows the regioselective introduction of phenyl and alkyl groups to a vinylketene N,O-acetal, which is generated in situ from an α,β-unsaturated N-alkoxyamide, followed by N-O bond cleavage in a two-step, one-pot process.
Collapse
Affiliation(s)
- Erika Futaki
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Norihiko Takeda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Motohiro Yasui
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Okiko Miyata
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan. and Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Masafumi Ueda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| |
Collapse
|
32
|
Karabiyikoglu S, Brethomé AV, Palacin T, Paton RS, Fletcher SP. Enantiomerically enriched tetrahydropyridine allyl chlorides. Chem Sci 2020. [DOI: 10.1039/d0sc00377h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enantiomerically enriched allyl halides are rare due to their configurational lability. Stable piperidine-based allyl chloride enantiomers can be produced via kinetic resolution, and undergo highly enantiospecific catalyst-free substitutions.
Collapse
Affiliation(s)
- Sedef Karabiyikoglu
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
| | | | - Thomas Palacin
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
| | - Robert S. Paton
- Department of Chemistry
- Colorado State University Fort Collins
- USA
| | - Stephen P. Fletcher
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
| |
Collapse
|
33
|
Zhao G, Canterbury DP, Taylor AP, Cheng X, Mikochik P, Bagley SW, Tong R. Synthesis of 2-Arylpiperidines via Pd-Catalyzed Arylation of Aza-Achmatowicz Rearrangement Products with Arylboronic Acids. Org Lett 2019; 22:458-463. [PMID: 31880455 DOI: 10.1021/acs.orglett.9b04220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first Pd-catalyzed arylation of aza-Achmatowicz rearrangement products with arylboronic acids is achieved, providing versatile 2-aryldihydropyridinones for facile synthesis of highly functionalized 2-arylpiperidines. Key to this arylation is the use of non-phosphine-ligand palladium precatalyst. The substrate scope is demonstrated with >26 examples, and the utility of 2-aryldihydropyridinones is illustrated by the synthesis of a small collection of 2-arylpiperidines with substituents or functional groups at any carbon (C2-C6) as well as two NK1 receptor antagonists (+)-CP-999,94 and (+)-L-733,060.
Collapse
Affiliation(s)
- Guodong Zhao
- Department of Chemistry , The Hong Kong University of Science and Technology , Clearwater Bay, Kowloon , Hong Kong, China
| | - Daniel P Canterbury
- Worldwide Research & Development, Groton Laboratories , Pfizer, Inc. , Groton , Connecticut 06340 , United States
| | - Alexandria P Taylor
- Worldwide Research & Development, Groton Laboratories , Pfizer, Inc. , Groton , Connecticut 06340 , United States
| | - Xiayun Cheng
- Worldwide Research & Development, Groton Laboratories , Pfizer, Inc. , Groton , Connecticut 06340 , United States
| | - Peter Mikochik
- Worldwide Research & Development, Groton Laboratories , Pfizer, Inc. , Groton , Connecticut 06340 , United States
| | - Scott W Bagley
- Worldwide Research & Development, Groton Laboratories , Pfizer, Inc. , Groton , Connecticut 06340 , United States
| | - Rongbiao Tong
- Department of Chemistry , The Hong Kong University of Science and Technology , Clearwater Bay, Kowloon , Hong Kong, China
| |
Collapse
|
34
|
Zhang Y, Lu X, Wang Y, Xu H, Zhan R, Chen W, Huang H. Regiodivergent Vinylogous–Cyclization Reactions of Cyclic α-Amide Enone Acceptors: Synthesis of Highly Enantioenriched Heterobicyclic Structures. Org Lett 2019; 21:10069-10074. [DOI: 10.1021/acs.orglett.9b04032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yili Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xue Lu
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yichen Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hui Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Weiwen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huicai Huang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
35
|
Krishna Y, Shilpa K, Tanaka F. Intramolecular Mannich and Michael Annulation Reactions of Lactam Derivatives Bearing Enals To Afford Bicyclic N-Heterocycles. Org Lett 2019; 21:8444-8448. [DOI: 10.1021/acs.orglett.9b03210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yarkali Krishna
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Kola Shilpa
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
36
|
Xiao BX, Shi CH, Liang SY, Jiang B, Du W, Chen YC. Remote Friedel–Crafts Reaction with α-Heteroaryl-Substituted Cyclic Ketones via HOMO Activation of Lewis Bases. Org Lett 2019; 21:7554-7557. [PMID: 31469571 DOI: 10.1021/acs.orglett.9b02827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ben-Xian Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chong-Hui Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shu-Yuan Liang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bo Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
37
|
Qin J, Zhang Y, Liu C, Zhou J, Zhan R, Chen W, Huang H. Asymmetric Inverse-Electron-Demand Diels–Alder Reaction of β,γ-Unsaturated Amides through Dienolate Catalysis. Org Lett 2019; 21:7337-7341. [DOI: 10.1021/acs.orglett.9b02629] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jialiang Qin
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yili Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou 510515, China
| | - Jun Zhou
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Weiwen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huicai Huang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
38
|
Chevis PJ, Wangngae S, Thaima T, Carroll AW, Willis AC, Pattarawarapan M, Pyne SG. Highly diastereoselective synthesis of enantioenriched anti-α-allyl-β-fluoroamines. Chem Commun (Camb) 2019; 55:6050-6053. [PMID: 31065637 DOI: 10.1039/c9cc02765c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A highly diastereoselective synthesis of anti-α-allyl-β-fluoroamines has been developed involving enantioselective α-fluorination of aldehydes followed by a diastereoselective Petasis allyl borono-Mannich reaction. The products are obtained generally in good overall yields for the two steps and with drs of 97 : 3-99 : 1 and ees of 86-92%. Selected products were converted to 3-, 5- and 6-membered ring heterocycles, the latter two types incorporating an exo-cyclic fluorine.
Collapse
Affiliation(s)
- Philip J Chevis
- School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, New South Wales 2522, Australia.
| | - Sirilak Wangngae
- School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, New South Wales 2522, Australia. and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanaphat Thaima
- School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, New South Wales 2522, Australia.
| | - Anthony W Carroll
- School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, New South Wales 2522, Australia.
| | - Anthony C Willis
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Mookda Pattarawarapan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Stephen G Pyne
- School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, New South Wales 2522, Australia.
| |
Collapse
|
39
|
Zou S, Li W, Fu K, Cao W, Lin L, Feng X. Chiral
N
,
N
′‐Dioxide/Tm(OTf)
3
Complex‐Catalyzed Asymmetric Bisvinylogous Mannich Reaction of Silyl Ketene Acetal with Aldimines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sijia Zou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Weiwei Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Kai Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| |
Collapse
|
40
|
Lu J, Fan Y, Sha F, Li Q, Wu XY. Copper-catalyzed enantioselective Mannich reaction between N-acylpyrazoles and isatin-derived ketimines. Org Chem Front 2019. [DOI: 10.1039/c9qo00575g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A copper-catalyzed enantioselective Mannich reaction between N-acylpyrazoles and isatin-derived ketimines is developed.
Collapse
Affiliation(s)
- Jian Lu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Ying Fan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Qiong Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|