1
|
Liang H, Hu S, Shi S, Zhang Y, He T, Zheng Y, Huang S. Radical Fluorosulfonylation/Double Diels-Alder Sequence to Access Tricyclo[3.2.1.0 2,7]octanes. Org Lett 2025. [PMID: 40397861 DOI: 10.1021/acs.orglett.5c01782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
A cascade strategy for the rapid construction of tricyclo[3.2.1.02,7]octanes is reported. This one-pot, two-step sequence can be efficiently accomplished by utilizing readily available propargylic alcohols as the starting materials and FSO2Cl as the fluorosulfonyl radical precursor. The FSO2-functionalized tricyclooctane products, bearing multiple reactive sites, are poised for postderivatizations. Based on mechanism studies, a cascade sequence involving radical hydro-fluorosulfonylation, dehydration, and a double Diels-Alder reaction has been proposed.
Collapse
Affiliation(s)
- Hui Liang
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shengchun Hu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Shuai Shi
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yingyin Zhang
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Tianyu He
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zheng
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shenlin Huang
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Luo J, Lv Y, Tang K, Ding H. Cooperative Iodine and Nitrate Catalyzed Oxidation of Stilbenes to α-Diketones in Water. Chem Asian J 2025; 20:e202401557. [PMID: 39585180 DOI: 10.1002/asia.202401557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 11/26/2024]
Abstract
An efficient oxidation of stilbenes to α-diketones co-catalyzed by bismuth nitrate and iodine is reported. The utilization of molecular oxygen as a terminal oxidant and water as the reaction solvent provides a low-cost and environmentally friendly approach to preparing the α-diketone derivatives from readily available stilbenes. Isotope labeling experiments suggest that the two oxygen atoms of the α- diketone products mainly originate from water. The method displays high functional group tolerance and we have demonstrated a concise route for preparing trifenagrel and HIV-1 integrase inhibitors from 1,2-diphenylethene.
Collapse
Affiliation(s)
- Junfei Luo
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Yue Lv
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Keqi Tang
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Gao ZX, Wang H, Su AH, Li QY, Liang Z, Zhang YQ, Liu XY, Zhu MZ, Zhang HX, Hou YT, Li X, Sun LR, Li J, Xu ZJ, Lou HX. Asymmetric Synthesis and Biological Evaluation of Platensilin, Platensimycin, Platencin, and Their Analogs via a Bioinspired Skeletal Reconstruction Approach. J Am Chem Soc 2024; 146:18967-18978. [PMID: 38973592 DOI: 10.1021/jacs.4c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Platensilin, platensimycin, and platencin are potent inhibitors of β-ketoacyl-acyl carrier protein synthase (FabF) in the bacterial and mammalian fatty acid synthesis system, presenting promising drug leads for both antibacterial and antidiabetic therapies. Herein, a bioinspired skeleton reconstruction approach is reported, which enables the unified synthesis of these three natural FabF inhibitors and their skeletally diverse analogs, all stemming from a common ent-pimarane core. The synthesis features a diastereoselective biocatalytic reduction and an intermolecular Diels-Alder reaction to prepare the common ent-pimarane core. From this intermediate, stereoselective Mn-catalyzed hydrogen atom-transfer hydrogenation and subsequent Cu-catalyzed carbenoid C-H insertion afford platensilin. Furthermore, the intramolecular Diels-Alder reaction succeeded by regioselective ring opening of the newly formed cyclopropane enables the construction of the bicyclo[3.2.1]-octane and bicyclo[2.2.2]-octane ring systems of platensimycin and platencin, respectively. This skeletal reconstruction approach of the ent-pimarane core facilitates the preparation of analogs bearing different polycyclic scaffolds. Among these analogs, the previously unexplored cyclopropyl analog 47 exhibits improved antibacterial activity (MIC80 = 0.0625 μg/mL) against S. aureus compared to platensimycin.
Collapse
Affiliation(s)
- Zong-Xu Gao
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hongliang Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery System, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Rd, Jinan 250117, P. R. China
| | - Ai-Hong Su
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Qian-Ying Li
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Zhen Liang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Yue-Qing Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Xu-Yuan Liu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Ming-Zhu Zhu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hai-Xia Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Yue-Tong Hou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Xin Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery System, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Rd, Jinan 250117, P. R. China
| | - Long-Ru Sun
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Jian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, No. 429, Zhangheng Rd, Shanghai 200213, P. R. China
| | - Ze-Jun Xu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| |
Collapse
|
4
|
Papidocha SM, Bulthaupt HH, Carreira EM. Synthesis of Neocaesalpin A, AA, and Nominal Neocaesalpin K. Angew Chem Int Ed Engl 2023; 62:e202310149. [PMID: 37681486 DOI: 10.1002/anie.202310149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
The first total synthesis of heavily oxidized cassane-type diterpenoid neocaesalpin A (1) is disclosed. At the heart of the synthesis lies an intermolecular Diels-Alder reaction that rapidly assembles the target framework from commercial materials. A carefully orchestrated sequence of oxidations secured the desired oxygenation pattern. Late-stage release of the characteristic butenolide occurred through a novel mercury(II)-mediated furan oxidation. Successful extension of the route allowed preparation of neocaesalpin AA (2) as well as nominal neocaesalpin K (3) and suggested structural revision of neocaesalpin K, leading to the hypothesis that the two are likely the same natural product with correct assignment as 2.
Collapse
Affiliation(s)
- Sven M Papidocha
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Hendrik H Bulthaupt
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Erick M Carreira
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
5
|
Bakanas I, Lusi RF, Wiesler S, Hayward Cooke J, Sarpong R. Strategic application of C-H oxidation in natural product total synthesis. Nat Rev Chem 2023; 7:783-799. [PMID: 37730908 DOI: 10.1038/s41570-023-00534-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/22/2023]
Abstract
The oxidation of unactivated C-H bonds has emerged as an effective tactic in natural product synthesis and has altered how chemists approach the synthesis of complex molecules. The use of C-H oxidation methods has simplified the process of synthesis planning by expanding the choice of starting materials, limiting functional group interconversion and protecting group manipulations, and enabling late-stage diversification. In this Review, we propose classifications for C-H oxidations on the basis of their strategic purpose: type 1, which installs functionality that is used to establish the carbon skeleton of the target; type 2, which is used to construct a heterocyclic ring; and type 3, which installs peripheral functional groups. The reactions are further divided based on whether they are directed or undirected. For each classification, examples from recent literature are analysed. Finally, we provide two case studies of syntheses from our laboratory that were streamlined by the judicious use of C-H oxidation reactions.
Collapse
Affiliation(s)
- Ian Bakanas
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Robert F Lusi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Stefan Wiesler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jack Hayward Cooke
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Ji J, Chen J, Qin S, Li W, Zhao J, Li G, Song H, Liu XY, Qin Y. Total Synthesis of Vilmoraconitine. J Am Chem Soc 2023; 145:3903-3908. [PMID: 36779887 DOI: 10.1021/jacs.3c00318] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Vilmoraconitine belongs to one of the most complex skeleton types in the C19-diterpenoid alkaloids, which architecturally features an unprecedented heptacyclic core possessing a rigid cyclopropane unit. Here, we report the first total synthesis of vilmoraconitine relying on strategic use of efficient ring-forming reactions. Key steps include an oxidative dearomatization-induced Diels-Alder cycloaddition, a hydrodealkenylative fragmentation/Mannich sequence, and an intramolecular Diels-Alder cycloaddition.
Collapse
Affiliation(s)
- Jiujian Ji
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiajun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Sixun Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wanye Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jun Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Guozhao Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Hao Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Zhao XH, Meng LL, Liu XT, Shu PF, Yuan C, An XT, Jia TX, Yang QQ, Zhen X, Fan CA. Asymmetric Divergent Synthesis of ent-Kaurane-, ent-Atisane-, ent-Beyerane-, ent-Trachylobane-, and ent-Gibberellane-type Diterpenoids. J Am Chem Soc 2023; 145:311-321. [PMID: 36538760 DOI: 10.1021/jacs.2c09985] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A unified strategy toward asymmetric divergent syntheses of nine C8-ethano-bridged diterpenoids A1-A9 (candol A, powerol, sicanadiol, epi-candol A, atisirene, ent-atisan-16α-ol, 4-decarboxy-4-methyl-GA12, trachinol, and ent-beyerane) has been developed based on late-stage transformations of common synthons having ent-kaurane and ent-trachylobane cores. The expeditious assembly of crucial advanced ent-kaurane- and ent-trachylobane-type building blocks is strategically explored through a regioselective and diastereoselective Fe-mediated hydrogen atom transfer (HAT) 6-exo-trig cyclization of the alkene/enone and 3-exo-trig cyclization of the alkene/ketone, showing the multi-reactivity of densely functionalized polycyclic substrates with πC═C and πC═O systems in HAT-initiated reactions. Following the rapid construction of five major structural skeletons (ent-kaurane-, ent-atisane-, ent-beyerane-, ent-trachylobane-, and ent-gibberellane-type), nine C8-ethano-bridged diterpenoids A1-A9 could be accessed in the longest linear 8 to 11 steps starting from readily available chiral γ-cyclogeraniol 1 and known chiral γ-substituted cyclohexenone 2, in which enantioselective total syntheses of candol A (A1, 8 steps), powerol (A2, 9 steps), sicanadiol (A3, 10 steps), epi-candol A (A4, 8 steps), ent-atisan-16α-ol (A6, 11 steps), and trachinol (A8, 10 steps) are achieved for the first time.
Collapse
Affiliation(s)
- Xian-He Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Le-Le Meng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Tao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Shu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Cheng Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xian-Tao An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tian-Xi Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qi-Qiong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiang Zhen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Zeng J, Li J, Huang B, Li J, Cai M. A practical access to 1,2-dicarbonyls via oxidation of alkynes catalyzed by gold(I) immobilized on MCM-41. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Reek JNH, de Bruin B, Pullen S, Mooibroek TJ, Kluwer AM, Caumes X. Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chem Rev 2022; 122:12308-12369. [PMID: 35593647 PMCID: PMC9335700 DOI: 10.1021/acs.chemrev.1c00862] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metal catalysis is of utmost importance for the development of sustainable processes in academia and industry. The activity and selectivity of metal complexes are typically the result of the interplay between ligand and metal properties. As the ligand can be chemically altered, a large research focus has been on ligand development. More recently, it has been recognized that further control over activity and selectivity can be achieved by using the "second coordination sphere", which can be seen as the region beyond the direct coordination sphere of the metal center. Hydrogen bonds appear to be very useful interactions in this context as they typically have sufficient strength and directionality to exert control of the second coordination sphere, yet hydrogen bonds are typically very dynamic, allowing fast turnover. In this review we have highlighted several key features of hydrogen bonding interactions and have summarized the use of hydrogen bonding to program the second coordination sphere. Such control can be achieved by bridging two ligands that are coordinated to a metal center to effectively lead to supramolecular bidentate ligands. In addition, hydrogen bonding can be used to preorganize a substrate that is coordinated to the metal center. Both strategies lead to catalysts with superior properties in a variety of metal catalyzed transformations, including (asymmetric) hydrogenation, hydroformylation, C-H activation, oxidation, radical-type transformations, and photochemical reactions.
Collapse
Affiliation(s)
- Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tiddo J Mooibroek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | - Xavier Caumes
- InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
10
|
Abstract
Terpenoids constitute a broad class of natural compounds with tremendous variability in structure and bioactivity, which resulted in a strong interest of the chemical community to this class of natural products over the last 150 years. The presence of strained small rings renders the terpenoid targets interesting for chemical synthesis, due to limited number of available methods and stability issues. In this feature article, a number of recent examples of total syntheses of terpenoids with complex carbon frameworks featuring small rings are discussed. Specific emphasis is given to the new developments in strategical and tactical approaches to construction of such systems.
Collapse
Affiliation(s)
- Gleb A Chesnokov
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
11
|
Wein LA, Wurst K, Magauer T. Total Synthesis and Late-Stage C-H Oxidations of ent-Trachylobane Natural Products. Angew Chem Int Ed Engl 2022; 61:e202113829. [PMID: 34762359 PMCID: PMC7612322 DOI: 10.1002/anie.202113829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 11/23/2022]
Abstract
Herein, we present our studies to construct seven ent-trachylobane diterpenoids by employing a bioinspired two-phase synthetic strategy. The first phase provided enantioselective and scalable access to five ent-trachylobanes, of which methyl ent-trachyloban-19-oate was produced on a 300 mg scale. During the second phase, chemical C-H oxidation methods were employed to enable selective conversion to two naturally occurring higher functionalized ent-trachylobanes. The formation of regioisomeric analogs, which are currently inaccessible via enzymatic methods, reveals the potential as well as limitations of established chemical C-H oxidation protocols for complex molecule synthesis.
Collapse
Affiliation(s)
- Lukas Anton Wein
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Klaus Wurst
- Institute of GeneralInorganic and Theoretical ChemistryLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Thomas Magauer
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
12
|
Wein LA, Wurst K, Magauer T. Total Synthesis and Late-Stage C-H Oxidations of ent-Trachylobane Natural Products. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202113829. [PMID: 38505342 PMCID: PMC10947344 DOI: 10.1002/ange.202113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 03/21/2024]
Abstract
Herein, we present our studies to construct seven ent-trachylobane diterpenoids by employing a bioinspired two-phase synthetic strategy. The first phase provided enantioselective and scalable access to five ent-trachylobanes, of which methyl ent-trachyloban-19-oate was produced on a 300 mg scale. During the second phase, chemical C-H oxidation methods were employed to enable selective conversion to two naturally occurring higher functionalized ent-trachylobanes. The formation of regioisomeric analogs, which are currently inaccessible via enzymatic methods, reveals the potential as well as limitations of established chemical C-H oxidation protocols for complex molecule synthesis.
Collapse
Affiliation(s)
- Lukas Anton Wein
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Klaus Wurst
- Institute of GeneralInorganic and Theoretical ChemistryLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Thomas Magauer
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
13
|
Hui C, Brieger L, Strohmann C, Antonchick AP. Stereoselective Synthesis of Cyclobutanes by Contraction of Pyrrolidines. J Am Chem Soc 2021; 143:18864-18870. [PMID: 34748319 PMCID: PMC8603356 DOI: 10.1021/jacs.1c10175] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here we report a contractive synthesis of multisubstituted cyclobutanes containing multiple stereocenters from readily accessible pyrrolidines using iodonitrene chemistry. Mediated by a nitrogen extrusion process, the stereospecific synthesis of cyclobutanes involves a radical pathway. Unprecedented unsymmetrical spirocyclobutanes were prepared successfully, and a concise, formal synthesis of the cytotoxic natural product piperarborenine B is reported.
Collapse
Affiliation(s)
- Chunngai Hui
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Lukas Brieger
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Andrey P Antonchick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany.,Nottingham Trent University, School of Science and Technology, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, United Kingdom
| |
Collapse
|
14
|
Malarney KP, Kc S, Schmidt VA. Recent strategies used in the synthesis of saturated four-membered heterocycles. Org Biomol Chem 2021; 19:8425-8441. [PMID: 34546272 DOI: 10.1039/d1ob00988e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The importance and prevalance of O-, N-, and S-atom containing saturated four-membered ring motifs in biologically active molecules and potential therapeutics continues to drive efforts in their efficient synthetic preparation. In this review, general and recent strategies for the synthesis of these heterocycles are presented. Due to the limited potential bond disconnections, retrosynthetic strategies are broadly limited to cyclizations and cycloadditions. Nonetheless, diverse approaches for accessing cyclization precursors have been developed, ranging from nucleophilic substitution to C-H functionalization. Innovative methods for substrate activation have been developed for cycloadditions under photochemical and thermal conditions. Advances in accessing oxetanes, azetidines, and thietanes remain active areas of research with continued breakthroughs anticipated to enable future applications.
Collapse
Affiliation(s)
- Kien P Malarney
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92071, USA.
| | - Shekhar Kc
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92071, USA.
| | - Valerie A Schmidt
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92071, USA.
| |
Collapse
|
15
|
Wang N, Wu Z, Wang J, Ullah N, Lu Y. Recent applications of asymmetric organocatalytic annulation reactions in natural product synthesis. Chem Soc Rev 2021; 50:9766-9793. [PMID: 34286704 DOI: 10.1039/d0cs01124j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The past two decades have witnessed remarkable growth of asymmetric organocatalysis, which is now a firmly established synthetic tool, serving as a powerful platform for the production of chiral molecules. Ring structures are ubiquitous in organic compounds, and, in the context of natural product synthesis, strategic construction of ring motifs is often crucial, fundamentally impacting the eventual fate of the whole synthetic plan. In this review, we provide a comprehensive and updated summary of asymmetric organocatalytic annulation reactions; in particular, the application of these annulation strategies in natural product synthesis will be highlighted.
Collapse
Affiliation(s)
- Nengzhong Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | | | | | | | | |
Collapse
|
16
|
Liu Z, Hu J, Ding H. Electrochemical ODI-[5+2] Cascade for the Syntheses of Diversely Functionalized Bicyclo[3.2.1]octane Frameworks. Org Lett 2021; 23:6745-6749. [PMID: 34402626 DOI: 10.1021/acs.orglett.1c02321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A metal- and hypervalent iodine reagent-free electrochemical oxidative dearomatization-induced [5+2] cycloaddition/pinacol rearrangement cascade reaction was described. The electrosynthetic method showed strong tolerance for vinylphenols, ethynylphenols, and allenylphenols, which thus enabled the rapid assembly of diversely functionalized bicyclo[3.2.1]octanes in 41-95% yields and up to >20:1 dr. This protocol could be scaled up to gram amounts and should find wide application in complex natural product synthesis.
Collapse
Affiliation(s)
- Zhaobo Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jialei Hu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Ding
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Elkin PK, Durfee ND, Rawal VH. Diels-Alder Reactions of 1-Alkoxy-1-amino-1,3-butadienes: Direct Synthesis of 6-Substituted and 6,6-Disubstituted 2-Cyclohexenones and 6-Substituted 5,6-Dihydropyran-2-ones. Org Lett 2021; 23:5288-5293. [PMID: 34062059 PMCID: PMC9078830 DOI: 10.1021/acs.orglett.1c01031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the cycloaddition reactions of 1-alkoxy-1-amino-1,3-butadienes. These doubly activated dienes are prepared on a multigram scale from crotonic acid chloride and its derivatives. The dienes undergo Diels-Alder (DA) and hetero-Diels-Alder (HDA) reactions under mild reaction conditions with a variety of electron-deficient dienophiles to afford cycloadducts in good yields with excellent regioselectivities. The hydrolysis of the DA cycloadducts provides 6-substituted and 6,6-disubstituted 2-cylohexenones, which are versatile building blocks for complex molecule synthesis. The corresponding HDA cycloadducts afford 6-substituted 5,6-dihydropyran-2-ones.
Collapse
Affiliation(s)
- Pavel K Elkin
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Nathaniel D Durfee
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Viresh H Rawal
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
18
|
Wu H, Ding Y, Hu K, Long X, Qu C, Puno PT, Deng J. Bioinspired Network Analysis Enabled Divergent Syntheses and Structure Revision of Pentacyclic Cytochalasans. Angew Chem Int Ed Engl 2021; 60:15963-15971. [PMID: 33860618 DOI: 10.1002/anie.202102831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 12/11/2022]
Abstract
We accomplished the divergent total syntheses of ten pentacyclic cytochalasans (aspergillin PZ, trichodermone, trichoderones, flavipesines, and flavichalasines) from a common precursor aspochalasin D and revised the structures of trichoderone B, spicochalasin A, flavichalasine C, aspergilluchalasin based on structure network analysis of the cytochalasans biosynthetic pathways and DFT calculations. The key steps of the syntheses include transannular alkene/epoxyalkene and carbonyl-ene cyclizations to establish the C/D ring of pentacyclic aspochalasans. Our bioinspired approach to these pentacyclic cytochalasans validate the proposed biosynthetic speculation from a chemical view and provide a platform for the synthesis of more than 400 valuable cytochalasans bearing different macrocycles and amino-acid residues.
Collapse
Affiliation(s)
- Hai Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yiming Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xianwen Long
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chunlei Qu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Jun Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
19
|
Wu H, Ding Y, Hu K, Long X, Qu C, Puno P, Deng J. Bioinspired Network Analysis Enabled Divergent Syntheses and Structure Revision of Pentacyclic Cytochalasans. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hai Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yiming Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xianwen Long
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Chunlei Qu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Pema‐Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Jun Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
20
|
Cao L, Luo J, Yao J, Wang D, Dong Y, Zheng C, Zhuo C. Molybdenum‐Catalyzed Deoxygenative Cyclopropanation of 1,2‐Dicarbonyl or Monocarbonyl Compounds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Li‐Ya Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jian‐Nan Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jia‐Sheng Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - De‐Ku Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Yuan‐Qing Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Chun‐Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
21
|
Yang D, Wu X, Zheng XJ, Xie JH, Zhou QL. Dynamic Kinetic Resolution of γ-Substituted Cyclic β-Ketoesters via Asymmetric Hydrogenation: Constructing Chiral Cyclic β-Hydroxyesters with Three Contiguous Stereocenters. Org Lett 2021; 23:5153-5157. [PMID: 34152152 DOI: 10.1021/acs.orglett.1c01689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An efficient asymmetric hydrogenation of racemic γ-substituted cyclic β-ketoesters via dynamic kinetic resolution to provide chiral cyclic β-hydroxy esters with three contiguous stereocenters is reported. Using a chiral spiro iridium catalyst (R)-5 (Ir-SpiroSAP), a series of racemic γ-aryl/alkyl substituted cyclic β-ketoesters were hydrogenated to the corresponding chiral cyclic β-hydroxy esters in high yields (84-97%) with good to excellent enantioselectivities (69->99% ee) and cis,cis-selectivities (up to >99:1).
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiong Wu
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Jie Zheng
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Cao LY, Luo JN, Yao JS, Wang DK, Dong YQ, Zheng C, Zhuo CX. Molybdenum-Catalyzed Deoxygenative Cyclopropanation of 1,2-Dicarbonyl or Monocarbonyl Compounds. Angew Chem Int Ed Engl 2021; 60:15254-15259. [PMID: 33901340 DOI: 10.1002/anie.202103429] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Indexed: 12/26/2022]
Abstract
The transition-metal-catalyzed cyclopropanation of alkenes by the decomposition of diazo compounds is a powerful and straightforward strategy to produce cyclopropanes, but is tempered by the potentially explosive nature of diazo substrates. Herein we report the Mo-catalyzed regiospecific deoxygenative cyclopropanation of readily available and bench-stable 1,2-dicarbonyl compounds, in which one of the two carbonyl groups acts as a carbene equivalent upon deoxygenation and engages in the subsequent cyclopropanation process. The use of a commercially available Mo catalyst afforded an array of valuable cyclopropanes with exclusive regioselectivity in up to 90 % yield. The synthetic utility of this method was further demonstrated by gram-scale syntheses, late-stage functionalization, and the cyclopropanation of a simple monocarbonyl compound. Preliminary mechanistic studies suggest that phosphine (or silane) acts as both a mild reductant and a good oxygen acceptor that efficiently regenerates the catalytically active Mo catalyst through reduction of the Mo-oxo complexes.
Collapse
Affiliation(s)
- Li-Ya Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jian-Nan Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jia-Sheng Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - De-Ku Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuan-Qing Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
23
|
Hugentobler KM, Carreira EM. Discovery and Surprises with Cyclizations, Cycloadditions, Fragmentations, and Rearrangements in Complex Settings. Acc Chem Res 2021; 54:890-902. [PMID: 33533583 DOI: 10.1021/acs.accounts.0c00814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We discuss a number of synthesis routes to complex natural products recently reported from our group. Although the structures are quite varied, we demonstrate the research endeavor as a setting to examine the implementation of cyclizations, cycloadditions, rearrangements, and fragmentations. We showcase how the various transformations enabled access to key core structures and thereby allowed the rapid introduction of complexity. Two different routes to (-)-mitrephorone A, the first case discussed, led to the use of Koser's reagent to effect oxetane formation from diosphenol derivatives. Even though the Diels-Alder cycloaddition reaction represents one of the workhorses of complex molecule synthesis, there are opportunities provided by the complexity of secondary metabolites for discovery, study, and development. In our first approach to (-)-mitrephorone A, Diels-Alder cycloaddition provided access to fused cyclopropanes, while the second synthesis underscored the power of diastereoselective nitrile oxide cycloadditions to access hydroxy ketones. The successful implementation of the second approach required the rigorous stereocontrolled synthesis of tetrasubstituted olefins; this was accomplished by a highly stereoselective Cr-mediated reduction of dienes. The diterpenoid (+)-sarcophytin provided a stage for examining the Diels-Alder cycloaddition of two electron-deficient partners. The study revealed that in the system this unusual combination works optimally with the E,Z-dienoate and proceeds through an exo transition state to provide the desired cycloadduct. Our reported pallambin synthesis showcased the use of fulvene as a versatile building block for the core structure. Fulvene decomposition could be outcompeted by employing it as a diene and using a highly reactive dienophile, which affords a bicyclic product that can in turn be subjected to chemo- and stereoselective manipulations. The synthesis route proceeds with a C-H insertion providing the core structure en route to pallambin A and B. The studies resulting in our synthesis of gelsemoxonine highlight the use of the acid-catalyzed rearrangement/chelotropic extrusion of oxazaspiro[2.4]heptanes to access complex β-lactams, which are otherwise not readily prepared by extant methods in common use. Mechanistic investigations of the intriguing ring contraction supported by computational studies indicate that the reaction involves a concerted cleavage of the N-O bond and cyclopropane ring opening under the extrusion of ethylene. The synthesis of guanacastepenes focused on the use of cyclohexyne in [2+2]-cycloadditions with enolates. The resulting cyclobutene can be enticed to undergo ring opening to give a fused six-seven ring system. The cycloinsertion reaction of cyclohexyne developed for the first time proves useful as a general approach to complex fused ring systems.
Collapse
Affiliation(s)
- Karina M. Hugentobler
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Erick M. Carreira
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
24
|
Abstract
The focus article discusses the innovation of hypervalent(iii) iodine regarding skeletal rearrangement, cycloaddition and cyclization, and sp3 C–H functionalization in natural product synthesis.
Collapse
Affiliation(s)
- Zhuo Wang
- Southern University of Science and Technology
- School of Medicine
- Shenzhen
- People's Republic of China
| |
Collapse
|
25
|
Qu C, Long X, Sang Y, Zhang M, Zhao X, Xue XS, Deng J. Biomimetic Total Synthesis of (±)-Carbocyclinone-534 Reveals Its Biosynthetic Pathway. Org Lett 2020; 22:9421-9426. [PMID: 33086787 DOI: 10.1021/acs.orglett.0c02865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbocyclinone-534 is a new antibiotic produced after the metabolism of tapinarof. We identify a biomimetic total synthesis of carbocyclinone-534 in eight steps by taking advantage of an intermolecular Diels-Alder homodimerization/dehydrogenation/intramolecular Diels-Alder cycloaddition cascade. This synthetic sequence provides direct experimental evidence for revealing the biosynthetic pathway of carbocyclinone-534.
Collapse
Affiliation(s)
- Chunlei Qu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianwen Long
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueqian Sang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Song Xue
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 100049, China
| |
Collapse
|
26
|
Fernandes RA, Kumar P, Choudhary P. Evolution of Strategies in Protecting‐Group‐Free Synthesis of Natural Products: A Recent Update. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rodney A. Fernandes
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| | - Praveen Kumar
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| | - Priyanka Choudhary
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| |
Collapse
|
27
|
Schneider M, Richter MJR, Carreira EM. Total Synthesis of (-)-Mitrephorone A Enabled by Stereoselective Nitrile Oxide Cycloaddition and Tetrasubstituted Olefin Synthesis. J Am Chem Soc 2020; 142:17802-17809. [PMID: 33021371 PMCID: PMC7564100 DOI: 10.1021/jacs.0c09520] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
A highly enantioselective and
diastereoselective total
synthesis of the diterpenoid (−)-mitrephorone A is presented.
Key to the synthesis are stereocontrolled 1,4-semihydrogenation
of a 1,3-diene to a tetrasubstituted double bond, enzyme-catalyzed
malonate desymmetrization, and highly diastereoselective nitrile
oxide cycloaddition. The streamlined strategy is a considerable improvement
to those reported earlier in terms of diastereo- and enantioselectivity.
For the first time, the combination of modern Pd-cross-coupling with
Cr-catalyzed reduction allows for rapid access to tetrasubstituted
olefins with full stereocontrol.
Collapse
Affiliation(s)
| | | | - Erick M Carreira
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| |
Collapse
|
28
|
Zhang X, King-Smith E, Dong LB, Yang LC, Rudolf JD, Shen B, Renata H. Divergent synthesis of complex diterpenes through a hybrid oxidative approach. Science 2020; 369:799-806. [PMID: 32792393 DOI: 10.1126/science.abb8271] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Polycyclic diterpenes exhibit many important biological activities, but de novo synthetic access to these molecules is highly challenging because of their structural complexity. Semisynthetic access has also been limited by the lack of chemical tools for scaffold modifications. We report a chemoenzymatic platform to access highly oxidized diterpenes by a hybrid oxidative approach that strategically combines chemical and enzymatic oxidation methods. This approach allows for selective oxidations of previously inaccessible sites on the parent carbocycles and enables abiotic skeletal rearrangements to additional underlying architectures. We synthesized a total of nine complex natural products with rich oxygenation patterns and skeletal diversity in 10 steps or less from ent-steviol.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Emma King-Smith
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Li-Cheng Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA.,Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, Jupiter, FL 33458, USA
| | - Hans Renata
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
29
|
Xu Z, Zong Y, Qiao Y, Zhang J, Liu X, Zhu M, Xu Y, Zheng H, Fang L, Wang X, Lou H. Divergent Total Synthesis of Euphoranginol C, Euphoranginone D,
ent
‐Trachyloban‐3β‐ol,
ent
‐Trachyloban‐3‐one, Excoecarin E, and
ent
‐16α‐Hydroxy‐atisane‐3‐one. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ze‐Jun Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yan Zong
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ya‐Nan Qiao
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Jiao‐Zhen Zhang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xuyuan Liu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ming‐Zhu Zhu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yuliang Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hongbo Zheng
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Liyuan Fang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xiao‐ning Wang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hong‐Xiang Lou
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| |
Collapse
|
30
|
Xu Z, Zong Y, Qiao Y, Zhang J, Liu X, Zhu M, Xu Y, Zheng H, Fang L, Wang X, Lou H. Divergent Total Synthesis of Euphoranginol C, Euphoranginone D,
ent
‐Trachyloban‐3β‐ol,
ent
‐Trachyloban‐3‐one, Excoecarin E, and
ent
‐16α‐Hydroxy‐atisane‐3‐one. Angew Chem Int Ed Engl 2020; 59:19919-19923. [PMID: 32696611 DOI: 10.1002/anie.202009128] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Ze‐Jun Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yan Zong
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ya‐Nan Qiao
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Jiao‐Zhen Zhang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xuyuan Liu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ming‐Zhu Zhu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yuliang Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hongbo Zheng
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Liyuan Fang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xiao‐ning Wang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hong‐Xiang Lou
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| |
Collapse
|
31
|
Tan J, Zhu W, Xu W, Jing Y, Ke Z, Liu Y, Maruoka K. Hypervalent Iodine-Mediated Diastereoselective α-Acetoxylation of Cyclic Ketones. Front Chem 2020; 8:467. [PMID: 32754572 PMCID: PMC7365914 DOI: 10.3389/fchem.2020.00467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/04/2020] [Indexed: 01/14/2023] Open
Abstract
A binary hybrid system comprising a hypervalent iodine(III) reagent and BF3•OEt2 Lewis acid was found to be effective for the diastereoselective α-acetoxylation of cyclic ketones. In this hybrid system, BF3•OEt2 Lewis acid allowed the activation of the hypervalent iodine(III) reagent and cyclic ketones for smooth α-acetoxylation reaction, achieving high diastereoselectivity. This hypervalent iodine-mediated α-acetoxylation of the cyclic ketone reaction plausibly undergoes an SN2 substitution mechanism via an α-C-bound hypervalent iodine intermediate. The diastereoselectivity of the reaction mainly originates from thermodynamic control.
Collapse
Affiliation(s)
- Jiashen Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Weiqin Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Weiping Xu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Yaru Jing
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China.,PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zhuofeng Ke
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China.,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Lisnyak VG, Snyder SA. A Concise, Enantiospecific Total Synthesis of Chilocorine C Fueled by a Reductive Cyclization/Mannich Reaction Cascade. J Am Chem Soc 2020; 142:12027-12033. [PMID: 32551575 DOI: 10.1021/jacs.0c04914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Among defensive alkaloids isolated from ladybugs, the heterodimeric member chilocorine C possesses an alluring monomeric unit that combines quinolizidine and indolizidine substructures. Indeed, the overall stereochemical disposition of its ring fusions is distinct from those of related natural products. Herein we show that a carefully orchestrated sequence with several chemoselective transformations, including a designed cascade that accomplishes nine distinct chemical reactions in one-pot, can smoothly forge that domain and ultimately enable a 15-step, 11-pot enantiospecific synthesis of the natural product. Mechanistic studies, density functional theory calculations, and the delineation of several other unsuccessful approaches highlight its unique elements.
Collapse
Affiliation(s)
- Vladislav G Lisnyak
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Scott A Snyder
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
33
|
|
34
|
Guo J, Li B, Ma W, Pitchakuntla M, Jia Y. Total Synthesis of (−)‐Glaucocalyxin A. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiuzhou Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Weihao Ma
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Mallesham Pitchakuntla
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
35
|
Guo J, Li B, Ma W, Pitchakuntla M, Jia Y. Total Synthesis of (−)‐Glaucocalyxin A. Angew Chem Int Ed Engl 2020; 59:15195-15198. [DOI: 10.1002/anie.202005932] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/17/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Jiuzhou Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Weihao Ma
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Mallesham Pitchakuntla
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
36
|
Bao RLY, Yin J, Shi L, Zheng L. Rh(i)-Catalyzed enantioselective and scalable [4 + 2] cycloaddition of 1,3-dienes with dialkyl acetylenedicarboxylates. Org Biomol Chem 2020; 18:2956-2961. [PMID: 32242602 DOI: 10.1039/d0ob00361a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An asymmetric intermolecular [4 + 2] cycloaddition of 1,3-dienes with dialkyl acetylenedicarboxylates, which was catalyzed by a rhodium(i)-chiral phosphoramidite complex, was developed. This protocol provided a highly enantioselective access to prepare carbonyl substituted cyclohexa-1,4-dienes with up to 96% yield and >99% ee. Notably, a cycloaddition on the 10 g scale gave the product in 92% yield and with 99% ee, which showed great potential for the scale-up synthesis of carbonyl substituted cyclohexa-1,4-dienes. In addition, oxidative aromatizations and hydrolysis of the products were also investigated.
Collapse
Affiliation(s)
- Robert Li-Yuan Bao
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Junjie Yin
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Lei Shi
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China. and Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Limin Zheng
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
37
|
Lautié E, Russo O, Ducrot P, Boutin JA. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front Pharmacol 2020; 11:397. [PMID: 32317969 PMCID: PMC7154113 DOI: 10.3389/fphar.2020.00397] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The screening and testing of extracts against a variety of pharmacological targets in order to benefit from the immense natural chemical diversity is a concern in many laboratories worldwide. And several successes have been recorded in finding new actives in natural products, some of which have become new drugs or new sources of inspiration for drugs. But in view of the vast amount of research on the subject, it is surprising that not more drug candidates were found. In our view, it is fundamental to reflect upon the approaches of such drug discovery programs and the technical processes that are used, along with their inherent difficulties and biases. Based on an extensive survey of recent publications, we discuss the origin and the variety of natural chemical diversity as well as the strategies to having the potential to embrace this diversity. It seemed to us that some of the difficulties of the area could be related with the technical approaches that are used, so the present review begins with synthetizing some of the more used discovery strategies, exemplifying some key points, in order to address some of their limitations. It appears that one of the challenges of natural product-based drug discovery programs should be an easier access to renewable sources of plant-derived products. Maximizing the use of the data together with the exploration of chemical diversity while working on reasonable supply of natural product-based entities could be a way to answer this challenge. We suggested alternative ways to access and explore part of this chemical diversity with in vitro cultures. We also reinforced how important it was organizing and making available this worldwide knowledge in an "inventory" of natural products and their sources. And finally, we focused on strategies based on synthetic biology and syntheses that allow reaching industrial scale supply. Approaches based on the opportunities lying in untapped natural plant chemical diversity are also considered.
Collapse
Affiliation(s)
- Emmanuelle Lautié
- Centro de Valorização de Compostos Bioativos da Amazônia (CVACBA)-Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Olivier Russo
- Institut de Recherches Internationales SERVIER, Suresnes, France
| | - Pierre Ducrot
- Molecular Modelling Department, 'PEX Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes, France
| |
Collapse
|
38
|
Wang Q, May JA. Synthesis of Bridged Azacycles and Propellanes via Nitrene/Alkyne Cascades. Org Lett 2020; 22:3039-3044. [PMID: 32243170 DOI: 10.1021/acs.orglett.0c00798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A nitrene/alkyne cascade reaction terminating in C-H bond insertion to form functionalized bridged azacycles from carbonazidates is presented. Due to an initial Huisgen cyclization, all carbonazidates reacted with the alkyne in an exo mode in contrast to the use of sulfamate esters, which react predominately in an endo mode. Substrates with different ring sizes as well as different aryl and heteroaryl groups were also explored. Variation of the nitrene tether showed that 7-membered rings were the maximum ring size to be formed by nitrene attack on the alkyne. Examples incorporating stereocenters on the carbonazidate's tether induced diasteroselectivity in the formation of the bridged ring and two new stereocenters. Additionally, propellanes containing aminals, hemiaminals, and thioaminals formed from the bridged azacycles in the same reaction via an acid-promoted rearrangement.
Collapse
Affiliation(s)
- Qinxuan Wang
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Fleming Building Room 112, Houston, Texas 77204-5003, United States
| | - Jeremy A May
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Fleming Building Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
39
|
Dubovtsev AY, Shcherbakov NV, Dar’in DV, Kukushkin VY. Nature of the Nucleophilic Oxygenation Reagent Is Key to Acid-Free Gold-Catalyzed Conversion of Terminal and Internal Alkynes to 1,2-Dicarbonyls. J Org Chem 2019; 85:745-757. [DOI: 10.1021/acs.joc.9b02785] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexey Yu. Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Nikolay V. Shcherbakov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitry V. Dar’in
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
40
|
Wein LA, Wurst K, Angyal P, Weisheit L, Magauer T. Synthesis of (-)-Mitrephorone A via a Bioinspired Late Stage C-H Oxidation of (-)-Mitrephorone B. J Am Chem Soc 2019; 141:19589-19593. [PMID: 31770485 DOI: 10.1021/jacs.9b11646] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We present a bioinspired late-stage C-H oxidation of the ent-trachylobane natural product mitrephorone B to mitrephorone A. The realization of this unprecedented transformation was accomplished by either an iron-catalyzed or electrochemical oxidation and enabled access to the densely substituted oxetane in one step. Formation of mitrephorone C, which is lacking the central oxetane unit but features a keto-function at C2, was not formed under these conditions.
Collapse
Affiliation(s)
- Lukas Anton Wein
- Institute of Organic Chemistry and Center for Molecular Biosciences , Leopold-Franzens-University Innsbruck , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry , Leopold-Franzens-University Innsbruck , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Peter Angyal
- Institute of Organic Chemistry , Research Centre for Natural Sciences , Magyar tudósok körútja 2 , 1117 Budapest , Hungary
| | - Lara Weisheit
- Institute of Organic Chemistry and Center for Molecular Biosciences , Leopold-Franzens-University Innsbruck , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Thomas Magauer
- Institute of Organic Chemistry and Center for Molecular Biosciences , Leopold-Franzens-University Innsbruck , Innrain 80-82 , 6020 Innsbruck , Austria
| |
Collapse
|
41
|
Sohail M, Tanaka F. Control of Chemical Reactions by Using Molecules that Buffer Non‐aqueous Solutions. Chemistry 2019; 26:222-229. [DOI: 10.1002/chem.201903552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Muhammad Sohail
- Chemistry and Chemical Bioengineering Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| |
Collapse
|
42
|
Schneider M, Richter MJR, Krautwald S, Carreira EM. Asymmetric Synthesis of the Tricyclooctane Core of Trachylobane Natural Products and Related Terpenoids. Org Lett 2019; 21:8705-8707. [PMID: 31603687 DOI: 10.1021/acs.orglett.9b03303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enantioselective synthesis of a highly versatile building block en route to trachylobanes and related terpenoids is presented. The synthesis features diastereoselective Diels-Alder cycloaddition reaction, a cyclopropanation/homoquadricyclane rearrangement cascade, and palladium-catalyzed C-H acetoxylation. The targeted tricyclooctane was obtained in 20% yield over 8 steps and in 95% ee. The ketone and alcohol functional groups serve as handles for further elaboration.
Collapse
Affiliation(s)
| | | | - Simon Krautwald
- ETH Zürich , Vladimir-Prelog-Weg 3 , HCI, 8093 Zürich , Switzerland
| | - Erick M Carreira
- ETH Zürich , Vladimir-Prelog-Weg 3 , HCI, 8093 Zürich , Switzerland
| |
Collapse
|
43
|
Lu Q, Harmalkar DS, Choi Y, Lee K. An Overview of Saturated Cyclic Ethers: Biological Profiles and Synthetic Strategies. Molecules 2019; 24:molecules24203778. [PMID: 31640154 PMCID: PMC6833478 DOI: 10.3390/molecules24203778] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/18/2022] Open
Abstract
Saturated oxygen heterocycles are widely found in a broad array of natural products and other biologically active molecules. In medicinal chemistry, small and medium rings are also important synthetic intermediates since they can undergo ring-opening and -expansion reactions. These applications have driven numerous studies on the synthesis of oxygen-containing heterocycles and considerable effort has been devoted toward the development of methods for the construction of saturated oxygen heterocycles. This paper provides an overview of the biological roles and synthetic strategies of saturated cyclic ethers, covering some of the most studied and newly discovered related natural products in recent years. This paper also reports several promising and newly developed synthetic methods, emphasizing 3-7 membered rings.
Collapse
Affiliation(s)
- Qili Lu
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea.
| | - Dipesh S Harmalkar
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea.
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea.
| |
Collapse
|
44
|
Novak AJE, Grigglestone CE, Trauner D. A Biomimetic Synthesis Elucidates the Origin of Preuisolactone A. J Am Chem Soc 2019; 141:15515-15518. [PMID: 31518120 DOI: 10.1021/jacs.9b08892] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A short, biomimetic synthesis of the fungal metabolite preuisolactone A is described. Its key steps are a purpurogallin-type (5 + 2)-cycloaddition, followed by fragmentation, vinylogous aldol addition, oxidative lactonization, and a final benzilic acid rearrangement. Our work explains why preuisolactone A has been isolated as a racemate and suggests that the natural product is not a sesquiterpenoid but a phenolic polyketide.
Collapse
Affiliation(s)
- Alexander J E Novak
- Department of Chemistry , New York University , Silver Center, 100 Washington Square East, Room 712 , New York , New York 10002 , United States
| | - Claire E Grigglestone
- Department of Chemistry , New York University , Silver Center, 100 Washington Square East, Room 712 , New York , New York 10002 , United States
| | - Dirk Trauner
- Department of Chemistry , New York University , Silver Center, 100 Washington Square East, Room 712 , New York , New York 10002 , United States
| |
Collapse
|
45
|
Kutateladze AG, Holt T, Reddy DS. Natural Products Containing the Oxetane and Related Moieties Present Additional Challenges for Structure Elucidation: A DU8+ Computational Case Study. J Org Chem 2019; 84:7575-7586. [DOI: 10.1021/acs.joc.9b01005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Andrei G. Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Tina Holt
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - D. Sai Reddy
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
46
|
Wu H, Saltzberg DJ, Kratochvil HT, Jo H, Sali A, DeGrado WF. Glutamine Side Chain 13C═ 18O as a Nonperturbative IR Probe of Amyloid Fibril Hydration and Assembly. J Am Chem Soc 2019; 141:7320-7326. [PMID: 30998340 DOI: 10.1021/jacs.9b00577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infrared (IR) spectroscopy has provided considerable insight into the structures, dynamics, and formation mechanisms of amyloid fibrils. IR probes, such as main chain 13C═18O, have been widely employed to obtain site-specific structural information, yet only secondary structures and strand-to-strand arrangements can be probed. Very few nonperturbative IR probes are available to report on the side-chain conformation and environments, which are critical to determining sheet-to-sheet arrangements in steric zippers within amyloids. Polar residues, such as glutamine, contribute significantly to the stability of amyloids and thus are frequently found in core regions of amyloid peptides/proteins. Furthermore, polyglutamine (polyQ) repeats form toxic aggregates in several neurodegenerative diseases. Here we report the synthesis and application of a new nonperturbative IR probe-glutamine side chain 13C═18O. We use side chain 13C═18O labeling and isotope dilution to detect the presence of intermolecularly hydrogen-bonded arrays of glutamine side chains (Gln ladders) in amyloid-forming peptides. Moreover, the line width of the 13C═18O peak is highly sensitive to its local hydration environment. The IR data from side chain labeling allows us to unambiguously determine the sheet-to-sheet arrangement in a short amyloid-forming peptide, GNNQQNY, providing insight that was otherwise inaccessible through main chain labeling. With several different fibril samples, we also show the versatility of this IR probe in studying the structures and aggregation kinetics of amyloids. Finally, we demonstrate the capability of modeling amyloid structures with IR data using the integrative modeling platform (IMP) and the potential of integrating IR with other biophysical methods for more accurate structural modeling. Together, we believe that side chain 13C═18O will complement main chain isotope labeling in future IR studies of amyloids and integrative modeling using IR data will significantly expand the power of IR spectroscopy to elucidate amyloid assemblies.
Collapse
|
47
|
Ushakov PY, Tabolin AA, Ioffe SL, Sukhorukov AY. In Situ Generated Magnesium Cyanide as an Efficient Reagent for Nucleophilic Cyanation of Nitrosoalkenes and Parent Nitronates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pavel Yu. Ushakov
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
- Department of Chemistry; M. V. Lomonosov Moscow State University; 119991 Moscow Russian Federation
| | - Andrey A. Tabolin
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
| | - Sema L. Ioffe
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
| | - Alexey Yu. Sukhorukov
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
- Plekhanov Russian University of Economics; Stremyanny per. 36 117997 Moscow Russia
| |
Collapse
|
48
|
Chan WC, Koide K. Total Synthesis of the Reported Structure of Stresgenin B Enabled by the Diastereoselective Cyanation of an Oxocarbenium. Org Lett 2018; 20:7798-7802. [PMID: 30525686 DOI: 10.1021/acs.orglett.8b03219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the first total synthesis of the reported structure of the heat shock protein expression inhibitor stresgenin B. The synthesis features (1) diastereoselective cyanation of an oxocarbenium intermediate en route to the synthetically challenging α-amido dioxolane, (2) Pd-catalyzed hydration of an unstable nitrile, and (3) late-stage Au-catalyzed Meyer-Schuster rearrangement or Ce-mediated Peterson olefination to furnish the exocyclic α,β-unsaturated ester. Our synthetic endeavors allowed us to conclude that the structure of stresgenin B requires revision.
Collapse
Affiliation(s)
- Wei Chuen Chan
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Kazunori Koide
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|