1
|
Devi T, Mebs S, Barman DJ, Opis-Basilio A, Haumann M, Ray K. Reinvestigation of the mechanism of dioxygen activation at a Mn II(cyclam) center. J Inorg Biochem 2025; 264:112809. [PMID: 39705751 DOI: 10.1016/j.jinorgbio.2024.112809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/19/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
This study deals with the unprecedented reactivity of a [(cyclam)MnII(OTf)2] (3-cis; OTf = CF3SO3-) with O2, which, depending on the presence or absence of a hydrogen atom donor like 1-hydroxy-2,2,6,6-tetramethyl-piperidine (TEMPO-H), selectively generates di-μ-oxo Mn(III)Mn(IV) (1) or MnIV2 (2) complexes, respectively. Both dimers have been characterized by different techniques including single-crystal X-ray diffraction, X-ray absorption spectroscopy, and electron paramagnetic resonance. Oxygenation reactions carried out with labeled 18O2 and Resonance Raman spectroscopy unambiguously show that the oxygen atoms present in the MnIVMnIII dimer originate from O2. Experimental evidences are provided for a novel method of dioxygen activation involving three Mn ions or two Mn ions and TEMPO-H to generate the bis(μ-oxo)dimanganese(IV) or bis(μ-oxo) dimanganese(III, IV) cores, respectively.
Collapse
Affiliation(s)
- Tarali Devi
- Indian Institute of Technology Hyderabad, Telangana 502284, India; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Stefan Mebs
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Dibya Jyoti Barman
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Amanda Opis-Basilio
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
2
|
Keshari K, Santra A, Velasco L, Sauvan M, Kaur S, Ugale AD, Munshi S, Marco JF, Moonshiram D, Paria S. Functional Model of Compound II of Cytochrome P450: Spectroscopic Characterization and Reactivity Studies of a Fe IV-OH Complex. JACS AU 2024; 4:1142-1154. [PMID: 38559734 PMCID: PMC10976569 DOI: 10.1021/jacsau.3c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Herein, we show that the reaction of a mononuclear FeIII(OH) complex (1) with N-tosyliminobenzyliodinane (PhINTs) resulted in the formation of a FeIV(OH) species (3). The obtained complex 3 was characterized by an array of spectroscopic techniques and represented a rare example of a synthetic FeIV(OH) complex. The reaction of 1 with the one-electron oxidizing agent was reported to form a ligand-oxidized FeIII(OH) complex (2). 3 revealed a one-electron reduction potential of -0.22 V vs Fc+/Fc at -15 °C, which was 150 mV anodically shifted than 2 (Ered = -0.37 V vs Fc+/Fc at -15 °C), inferring 3 to be more oxidizing than 2. 3 reacted spontaneously with (4-OMe-C6H4)3C• to form (4-OMe-C6H4)3C(OH) through rebound of the OH group and displayed significantly faster reactivity than 2. Further, activation of the hydrocarbon C-H and the phenolic O-H bond by 2 and 3 was compared and showed that 3 is a stronger oxidant than 2. A detailed kinetic study established the occurrence of a concerted proton-electron transfer/hydrogen atom transfer reaction of 3. Studying one-electron reduction of 2 and 3 using decamethylferrocene (Fc*) revealed a higher ket of 3 than 2. The study established that the primary coordination sphere around Fe and the redox state of the metal center is very crucial in controlling the reactivity of high-valent Fe-OH complexes. Further, a FeIII(OMe) complex (4) was synthesized and thoroughly characterized, including X-ray structure determination. The reaction of 4 with PhINTs resulted in the formation of a FeIV(OMe) species (5), revealing the presence of two FeIV species with isomer shifts of -0.11 mm/s and = 0.17 mm/s in the Mössbauer spectrum and showed FeIV/FeIII potential at -0.36 V vs Fc+/Fc couple in acetonitrile at -15 °C. The reactivity studies of 5 were investigated and compared with the FeIV(OH) complex (3).
Collapse
Affiliation(s)
- Kritika Keshari
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Aakash Santra
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Lucía Velasco
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Maxime Sauvan
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Simarjeet Kaur
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashok D. Ugale
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sandip Munshi
- School
of Chemical Science, Indian Association
for the Cultivation of Science, Raja S C Mulliick Road, Kolkata 700032, India
| | - J. F. Marco
- Instituto
de Quimica Fisica Blas Cabrera, Consejo
Superior de Investigaciones Científicas, C. de Serrano, 119, Serrano, Madrid 28006, Spain
| | - Dooshaye Moonshiram
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayantan Paria
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Yadav V, Wen L, Yadav S, Siegler MA, Goldberg DP. Selective Radical Transfer in a Series of Nonheme Iron(III) Complexes. Inorg Chem 2023; 62:17830-17842. [PMID: 37857315 PMCID: PMC11296666 DOI: 10.1021/acs.inorgchem.3c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A series of nonheme iron complexes, FeIII(BNPAPh2O)(Lax)(Leq) (Lax/eq = N3-, NCS-, NCO-, and Cl-) have been synthesized using the previously reported BNPAPh2O- ligand. The ferrous analogs FeII(BNPAPh2O)(Lax) (Lax = N3-, NCS-, and NCO-) were also prepared. The complexes were structurally characterized using single crystal X-ray diffraction, which shows that all the FeIII complexes are six-coordinate, with one anionic ligand (Lax) in the H-bonding axial site and the other anionic ligand (Leq) in the equatorial plane, cis to the Lax ligand. The reaction of FeIII(BNPAPh2O-)(Lax)(Leq) with Ph3C• shows that one ligand is selectively transferred in each case. A selectivity trend emerges that shows •N3 is the most favored for transfer in each case to the carbon radical, whereas Cl• is the least favored. The NCO and NCS ligands showed an intermediate propensity for radical transfer, with NCS > NCO. The overall order of selectivity is N3 > NCS > NCO > Cl. In addition, we also demonstrated that H-bonding has a small effect on governing product selectivity by using a non-H-bonded ligand (DPAPh2O-). This study demonstrates the inherent radical transfer selectivity of nonhydroxo-ligated nonheme iron(III) complexes, which could be useful for efforts in synthetic and (bio)catalytic C-H functionalization.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lyupeng Wen
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Yadav V, Wen L, Rodriguez RJ, Siegler MA, Goldberg DP. Nonheme Iron(III) Azide and Iron(III) Isothiocyanate Complexes: Radical Rebound Reactivity, Selectivity, and Catalysis. J Am Chem Soc 2022; 144:20641-20652. [PMID: 36382466 PMCID: PMC10226418 DOI: 10.1021/jacs.2c07224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The new nonheme iron complexes FeII(BNPAPh2O)(N3) (1), FeIII(BNPAPh2O)(OH)(N3) (2), FeII(BNPAPh2O)(OH) (3), FeIII(BNPAPh2O)(OH)(NCS) (4), FeII(BNPAPh2O)(NCS) (5), FeIII(BNPAPh2O)(NCS)2 (6), and FeIII(BNPAPh2O)(N3)2 (7) (BNPAPh2O = 2-(bis((6-(neopentylamino)pyridin-2-yl) methyl)amino)-1,1-diphenylethanolate) were synthesized and characterized by single crystal X-ray diffraction (XRD), as well as by 1H NMR, 57Fe Mössbauer, and ATR-IR spectroscopies. Complex 2 was reacted with a series of carbon radicals, ArX3C· (ArX = p-X-C6H4), analogous to the proposed radical rebound step for nonheme iron hydroxylases and halogenases. The results show that for ArX3C· (X = Cl, H, tBu), only OH· transfer occurs to give ArX3COH. However, when X = OMe, a mixture of alcohol (ArX3COH) (30%) and azide (ArX3CN3) (40%) products was obtained. These data indicate that the rebound selectivity is influenced by the electron-rich nature of the carbon radicals for the azide complex. Reaction of 2 with Ph3C· in the presence of Sc3+ or H+ reverses the selectivity, giving only the azide product. In contrast to the mixed selectivity seen for 2, the reactivity of cis-FeIII(OH)(NCS) with the X = OMe radical derivative leads only to hydroxylation. Catalytic azidation was achieved with 1 as catalyst, λ3-azidoiodane as oxidant and azide source, and Ph3CH as test substrate, giving Ph3CN3 in 84% (TON = 8). These studies show that hydroxylation is favored over azidation for nonheme iron(III) complexes, but the nature of the carbon radical can alter this selectivity. If an OH· transfer pathway can be avoided, the FeIII(N3) complexes are capable of mediating both stoichiometric and catalytic azidation.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Lyupeng Wen
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Rodolfo J. Rodriguez
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Maxime A. Siegler
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| |
Collapse
|
5
|
Johnston HM, Freire DM, Mantsorov C, Jamison N, Green KN. Manganese (III/IV) μ-Oxo Dimers and Manganese (III) Monomers with Tetraaza Macrocyclic Ligands and Historically Relevant Open-Chain Ligands. Eur J Inorg Chem 2022; 2022:e202200039. [PMID: 36277657 PMCID: PMC9585891 DOI: 10.1002/ejic.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/11/2022]
Abstract
The oxygen-evolving complex (OEC) located in photosystem II (PSII) of green plants is one of the best-known examples of a manganese-containing enzyme in nature, but it is also used in a range of other biological processes. OEC models incorporate two multi-dentate nitrogen-containing ligands coordinated to a bis-μ-oxo Mn(III,IV) core. Open-chain ligands were the initial scaffold used for biomimetic studies, but their macrocyclic counterparts have proven to be particularly appropriate due to their enhanced stability. Dimer and monomer complexes with such ligands have shown to be useful for a wide range of applications, which will be reviewed herein. The purpose of this review is to state with some clarity the different spectroscopic and structural characteristics of the Mn complexes formed with tetraaza macrocyclic ligands both in solution and solid-state that allow the reader to successfully identified the species involved when dealing with similar complexes of Mn.
Collapse
Affiliation(s)
- Hannah M Johnston
- Texas Christian University, Department of Chemistry and Biochemistry,2950 W. Bowie, Fort Worth, TX 76129, USA
| | - David M Freire
- Texas Christian University, Department of Chemistry and Biochemistry,2950 W. Bowie, Fort Worth, TX 76129, USA
| | - Christina Mantsorov
- Texas Christian University, Department of Chemistry and Biochemistry,2950 W. Bowie, Fort Worth, TX 76129, USA
| | - Nena Jamison
- Texas Christian University, Department of Chemistry and Biochemistry,2950 W. Bowie, Fort Worth, TX 76129, USA
| | - Kayla N Green
- Texas Christian University, Department of Chemistry and Biochemistry,2950 W. Bowie, Fort Worth, TX 76129, USA
| |
Collapse
|
6
|
Agarwal RG, Coste SC, Groff BD, Heuer AM, Noh H, Parada GA, Wise CF, Nichols EM, Warren JJ, Mayer JM. Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications. Chem Rev 2021; 122:1-49. [PMID: 34928136 DOI: 10.1021/acs.chemrev.1c00521] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present an update and revision to our 2010 review on the topic of proton-coupled electron transfer (PCET) reagent thermochemistry. Over the past decade, the data and thermochemical formalisms presented in that review have been of value to multiple fields. Concurrently, there have been advances in the thermochemical cycles and experimental methods used to measure these values. This Review (i) summarizes those advancements, (ii) corrects systematic errors in our prior review that shifted many of the absolute values in the tabulated data, (iii) provides updated tables of thermochemical values, and (iv) discusses new conclusions and opportunities from the assembled data and associated techniques. We advocate for updated thermochemical cycles that provide greater clarity and reduce experimental barriers to the calculation and measurement of Gibbs free energies for the conversion of X to XHn in PCET reactions. In particular, we demonstrate the utility and generality of reporting potentials of hydrogenation, E°(V vs H2), in almost any solvent and how these values are connected to more widely reported bond dissociation free energies (BDFEs). The tabulated data demonstrate that E°(V vs H2) and BDFEs are generally insensitive to the nature of the solvent and, in some cases, even to the phase (gas versus solution). This Review also presents introductions to several emerging fields in PCET thermochemistry to give readers windows into the diversity of research being performed. Some of the next frontiers in this rapidly growing field are coordination-induced bond weakening, PCET in novel solvent environments, and reactions at material interfaces.
Collapse
Affiliation(s)
- Rishi G Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott C Coste
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Benjamin D Groff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Abigail M Heuer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hyunho Noh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Giovanny A Parada
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Catherine F Wise
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Eva M Nichols
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
7
|
Li XX, Lu X, Park JW, Cho KB, Nam W. Nonheme Iron Imido Complexes Bearing a Non-Innocent Ligand: A Synthetic Chameleon Species in Oxidation Reactions. Chemistry 2021; 27:17495-17503. [PMID: 34590742 DOI: 10.1002/chem.202103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 11/07/2022]
Abstract
High-valent iron-imido complexes can perform C-H activation and sulfimidation reactions, but are far less studied than the more ubiquitous iron-oxo species. As case studies, we have looked at a recently published iron(V)-imido ligand π-cation radical complex, which is formally an iron(VI)-imido complex [FeV (NTs)(TAML+. )] (1; NTs=tosylimido), and an iron(V)-imido complex [FeV (NTs)(TAML)]- (2). Using a theoretical approach, we found that they have multiple energetically close-lying electromers, sometimes even without changing spin states, reminiscent of the so-called Compound I in Cytochrome P450. When studying their reactivity theoretically, it is indeed found that their electronic structures may change to perform efficient oxidations, emulating the multi-spin state reactivity in FeIV O systems. This is actually in contrast to the known [FeV (O)(TAML)]- species (3), where the reactions occur only on the ground spin state. We also looked into the whole reaction pathway for the C-H bond activation of 1,4-cyclohexadiene by these intermediates to reproduce the experimentally observed products, including steps that usually attract no interest (neither theoretically nor experimentally) due to their non-rate-limiting status and fast reactivity. A new "clustering non-rebound mechanism" is presented for this C-H activation reaction.
Collapse
Affiliation(s)
- Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Xiaoyan Lu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Jae Woo Park
- Department of Chemistry, Chungbuk National University, Cheongju, 28644, Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju, 54896, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
8
|
Li S, Zhou R, Zhao W, Du H. Synthesis of novel acyclic and multiple phenyl iron tetraamino ligand catalysts and its catalytic activity for degradation of dye wastewater by H
2
O
2. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shun‐Lai Li
- College of Chemistry Beijing University of Chemical Technology Beijing China
| | - Run Zhou
- College of Chemistry Beijing University of Chemical Technology Beijing China
| | - Wei‐Jing Zhao
- College of Chemistry Beijing University of Chemical Technology Beijing China
| | - Hong‐Guang Du
- College of Chemistry Beijing University of Chemical Technology Beijing China
| |
Collapse
|
9
|
Li XX, Xue SS, Lu X, Seo MS, Lee YM, Kim WS, Cho KB, Nam W. Ligand Architecture Perturbation Influences the Reactivity of Nonheme Iron(V)-Oxo Tetraamido Macrocyclic Ligand Complexes: A Combined Experimental and Theoretical Study. Inorg Chem 2021; 60:4058-4067. [PMID: 33645218 DOI: 10.1021/acs.inorgchem.1c00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron(V)-oxo complexes bearing negatively charged tetraamido macrocyclic ligands (TAMLs) have provided excellent opportunities to investigate the chemical properties and the mechanisms of oxidation reactions of mononuclear nonheme iron(V)-oxo intermediates. Herein, we report the differences in chemical properties and reactivities of two iron(V)-oxo TAML complexes differing by modification on the "Head" part of the TAML framework; one has a phenyl group at the "Head" part (1), whereas the other has four methyl groups replacing the phenyl ring (2). The reactivities of 1 and 2 in both C-H bond activation reactions, such as hydrogen atom transfer (HAT) of 1,4-cyclohexadiene, and oxygen atom transfer (OAT) reactions, such as the oxidation of thioanisole and its derivatives, were compared experimentally. Under identical reaction conditions, 1 showed much greater reactivity than 2, such as a 102-fold decrease in HAT and a 105-fold decrease in OAT by replacing the phenyl group (i.e., 1) with four methyl groups (i.e., 2). Then, density functional theory calculations were performed to rationalize the reactivity differences between 1 and 2. Computations reproduced the experimental findings well and revealed that the replacement of the phenyl group in 1 with four methyl groups in 2 not only increased the steric hindrance but also enlarged the energy gap between the electron-donating orbital and the electron-accepting orbital. These two factors, steric hindrance and the orbital energy gap, resulted in differences in the reduction potentials of 1 and 2 and their reactivities in oxidation reactions.
Collapse
Affiliation(s)
- Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shan-Shan Xue
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiaoyan Lu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
10
|
Yadav V, Siegler MA, Goldberg DP. Temperature-Dependent Reactivity of a Non-heme Fe III(OH)(SR) Complex: Relevance to Isopenicillin N Synthase. J Am Chem Soc 2021; 143:46-52. [PMID: 33356198 DOI: 10.1021/jacs.0c09688] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Non-heme iron complexes with cis-FeIII(OH)(SAr/OAr) coordination were isolated and examined for their reactivity with a tertiary carbon radical. The sulfur-ligated complex shows a temperature dependence on •OH versus ArS• transfer, whereas the oxygen-ligated complex does not. These results provide the first working model for C-S bond formation in isopenicillin N synthase and indicate that kinetic control may be a key factor in the selectivity of non-heme iron "rebound" processes.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Zhang X, Feng M, Luo C, Nesnas N, Huang CH, Sharma VK. Effect of Metal Ions on Oxidation of Micropollutants by Ferrate(VI): Enhancing Role of Fe IV Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:623-633. [PMID: 33326216 DOI: 10.1021/acs.est.0c04674] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper investigated the oxidation of recalcitrant micropollutants [i.e., atenolol (ATL), flumequine, aspartame, and diatrizoic acid] by combining ferrate(VI) (FeVIO42-, FeVI) with a series of metal ions [i.e., Fe(III), Ca(II), Al(III), Sc(III), Co(II), and Ni(II)]. An addition of Fe(III) to FeVI enhanced the oxidation of micropollutants compared solely to FeVI. The enhanced oxidation of studied micropollutants increased with increasing [Fe(III)]/[FeVI] to 2.0. The complete conversion of phenyl methyl sulfoxide (PMSO), as a probe agent, to phenyl methyl sulfone (PMSO2) by the FeVI-Fe(III) system suggested that the highly reactive intermediate FeIV/FeV species causes the increased oxidation of all four micropollutants. A kinetic modeling of the oxidation of ATL demonstrated that the major species causing the increase in ATL removal was FeIV, which had an estimated rate constant as (6.3 ± 0.2) × 104 M-1 s-1, much higher than that of FeVI [(5.0 ± 0.4) × 10-1 M-1 s-1]. Mechanisms of the formed oxidation products of ATL by FeIV, which included aromatic and/or benzylic oxidation, are delineated. The presence of natural organic matter significantly inhibited the removal of four pollutants by the FeVI-Fe(III) system. The enhanced effect of the FeVI-Fe(III) system was also seen in the oxidation of the micropollutants in river water and lake water.
Collapse
Affiliation(s)
- Xianbing Zhang
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
- National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Nan'an District, Chongqing 400074, China
| | - Mingbao Feng
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Cong Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nasri Nesnas
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
12
|
Kumar R, Pandey B, Sen A, Ansari M, Sharma S, Rajaraman G. Role of oxidation state, ferryl-oxygen, and ligand architecture on the reactivity of popular high-valent FeIV=O species: A theoretical perspective. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Xue SS, Li XX, Lee YM, Seo MS, Kim Y, Yanagisawa S, Kubo M, Jeon YK, Kim WS, Sarangi R, Kim SH, Fukuzumi S, Nam W. Enhanced Redox Reactivity of a Nonheme Iron(V)-Oxo Complex Binding Proton. J Am Chem Soc 2020; 142:15305-15319. [PMID: 32786748 DOI: 10.1021/jacs.0c05108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acid effects on the chemical properties of metal-oxygen intermediates have attracted much attention recently, such as the enhanced reactivity of high-valent metal(IV)-oxo species by binding proton(s) or Lewis acidic metal ion(s) in redox reactions. Herein, we report for the first time the proton effects of an iron(V)-oxo complex bearing a negatively charged tetraamido macrocyclic ligand (TAML) in oxygen atom transfer (OAT) and electron-transfer (ET) reactions. First, we synthesized and characterized a mononuclear nonheme Fe(V)-oxo TAML complex (1) and its protonated iron(V)-oxo complexes binding two and three protons, which are denoted as 2 and 3, respectively. The protons were found to bind to the TAML ligand of the Fe(V)-oxo species based on spectroscopic characterization, such as resonance Raman, extended X-ray absorption fine structure (EXAFS), and electron paramagnetic resonance (EPR) measurements, along with density functional theory (DFT) calculations. The two-protons binding constant of 1 to produce 2 and the third protonation constant of 2 to produce 3 were determined to be 8.0(7) × 108 M-2 and 10(1) M-1, respectively. The reactivities of the proton-bound iron(V)-oxo complexes were investigated in OAT and ET reactions, showing a dramatic increase in the rate of sulfoxidation of thioanisole derivatives, such as 107 times increase in reactivity when the oxidation of p-CN-thioanisole by 1 was performed in the presence of HOTf (i.e., 200 mM). The one-electron reduction potential of 2 (Ered vs SCE = 0.97 V) was significantly shifted to the positive direction, compared to that of 1 (Ered vs SCE = 0.33 V). Upon further addition of a proton to a solution of 2, a more positive shift of the Ered value was observed with a slope of 47 mV/log([HOTf]). The sulfoxidation of thioanisole derivatives by 2 was shown to proceed via ET from thioanisoles to 2 or direct OAT from 2 to thioanisoles, depending on the ET driving force.
Collapse
Affiliation(s)
- Shan-Shan Xue
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yujeong Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Minoru Kubo
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Young-Kyo Jeon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, California 94025, United States
| | - Sun Hee Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
14
|
Panda C, Sarkar A, Sen Gupta S. Coordination chemistry of carboxamide ‘Nx’ ligands to metal ions for bio-inspired catalysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Yadav V, Rodriguez RJ, Siegler MA, Goldberg DP. Determining the Inherent Selectivity for Carbon Radical Hydroxylation versus Halogenation with Fe III(OH)(X) Complexes: Relevance to the Rebound Step in Non-heme Iron Halogenases. J Am Chem Soc 2020; 142:7259-7264. [PMID: 32281794 DOI: 10.1021/jacs.0c00493] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first structural models of the proposed cis-FeIII(OH)(halide) intermediate in the non-heme iron halogenases were synthesized and examined for their inherent reactivity with tertiary carbon radicals. Selective hydroxylation occurs for these cis-FeIII(OH)(X) (X = Cl, Br) complexes in a radical rebound-like process. In contrast, a cis-FeIII(Cl)2 complex reacts with carbon radicals to give halogenation. These results are discussed in terms of the inherent reactivity of the analogous rebound intermediate in both enzymes and related catalysts.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rodolfo J Rodriguez
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
16
|
Lu X, Li XX, Lee YM, Jang Y, Seo MS, Hong S, Cho KB, Fukuzumi S, Nam W. Electron-Transfer and Redox Reactivity of High-Valent Iron Imido and Oxo Complexes with the Formal Oxidation States of Five and Six. J Am Chem Soc 2020; 142:3891-3904. [DOI: 10.1021/jacs.9b11682] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaoyan Lu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yuri Jang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Graduate School of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
17
|
Bhunia S, Rana A, Dey SG, Ivancich A, Dey A. A designed second-sphere hydrogen-bond interaction that critically influences the O-O bond activation for heterolytic cleavage in ferric iron-porphyrin complexes. Chem Sci 2020; 11:2681-2695. [PMID: 34084327 PMCID: PMC8157560 DOI: 10.1039/c9sc04388h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/26/2020] [Indexed: 12/18/2022] Open
Abstract
Heme hydroperoxidases catalyze the oxidation of substrates by H2O2. The catalytic cycle involves the formation of a highly oxidizing species known as Compound I, resulting from the two-electron oxidation of the ferric heme in the active site of the resting enzyme. This high-valent intermediate is formed upon facile heterolysis of the O-O bond in the initial FeIII-OOH complex. Heterolysis is assisted by the histidine and arginine residues present in the heme distal cavity. This chemistry has not been successfully modeled in synthetic systems up to now. In this work, we have used a series of iron(iii) porphyrin complexes (FeIIIL2(Br), FeIIIL3(Br) and FeIIIMPh(Br)) with covalently attached pendent basic groups (pyridine and primary amine) mimicking the histidine and arginine residues in the distal-pocket of natural heme enzymes. The presence of pendent basic groups, capable of 2nd sphere hydrogen bonding interactions, leads to almost 1000-fold enhancement in the rate of Compound I formation from peracids relative to analogous complexes without these residues. The short-lived Compound I intermediate formed at cryogenic temperatures could be detected using UV-vis electronic absorption spectroscopy and also trapped to be unequivocally identified by 9 GHz EPR spectroscopy at 4 K. The broad (2000 G) and axial EPR spectrum of an exchange-coupled oxoferryl-porphyrin radical species, [FeIV[double bond, length as m-dash]O Por˙+] with g eff ⊥ = 3.80 and g eff ‖ = 1.99, was observed upon a reaction of the FeIIIL3(Br) porphyrin complex with m-CPBA. The characterization of the reactivity of the FeIII porphyrin complexes with a substrate in the presence of an oxidant like m-CPBA by UV-vis electronic absorption spectroscopy showed that they are capable of oxidizing two equivalents of inorganic and organic substrate(s) like ferrocene, 2,4,6-tritertiary butyl phenol and o-phenylenediamine. These oxidations are catalytic with a turnover number (TON) as high as 350. Density Functional Theory (DFT) calculations show that the mechanism of O-O bond activation by 2nd sphere hydrogen bonding interaction from these pendent basic groups, which are protonated by a peracid, involves polarization of the O-O σ-bond, leading to lowering of the O-O σ*-orbital allowing enhanced back bonding from the iron center. These results demonstrate how inclusion of 2nd sphere hydrogen bonding interaction can play a critical role in O-O bond heterolysis.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Atanu Rana
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Anabella Ivancich
- CNRS, Aix-Marseille Univ, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR 7281), IMM FR3479 Marseille France
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| |
Collapse
|
18
|
Lu X, Lee YM, Seo MS, Nam W. Proton-promoted disproportionation of iron(v)-imido TAML to iron(v)-imido TAML cation radical and iron(iv) TAML. Chem Commun (Camb) 2020; 56:11207-11210. [DOI: 10.1039/d0cc05145d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An iron(v)-imido TAML complex is disproportionated to give an iron(v)-imido TAML cation radical and an iron(iv) TAML upon addition of acids.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| |
Collapse
|
19
|
Sabenya G, Gamba I, Gómez L, Clémancey M, Frisch JR, Klinker EJ, Blondin G, Torelli S, Que L, Martin-Diaconescu V, Latour JM, Lloret-Fillol J, Costas M. Octahedral iron(iv)-tosylimido complexes exhibiting single electron-oxidation reactivity. Chem Sci 2019; 10:9513-9529. [PMID: 32055323 PMCID: PMC6979323 DOI: 10.1039/c9sc02526j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/17/2019] [Indexed: 11/28/2022] Open
Abstract
High valent iron species are very reactive molecules involved in oxidation reactions of relevance to biology and chemical synthesis. Herein we describe iron(iv)-tosylimido complexes [FeIV(NTs)(MePy2tacn)](OTf)2 (1(IV)[double bond, length as m-dash]NTs) and [FeIV(NTs)(Me2(CHPy2)tacn)](OTf)2 (2(IV)[double bond, length as m-dash]NTs), (MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane, and Me2(CHPy2)tacn = 1-(di(2-pyridyl)methyl)-4,7-dimethyl-1,4,7-triazacyclononane, Ts = Tosyl). 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs are rare examples of octahedral iron(iv)-imido complexes and are isoelectronic analogues of the recently described iron(iv)-oxo complexes [FeIV(O)(L)]2+ (L = MePy2tacn and Me2(CHPy2)tacn, respectively). 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs are metastable and have been spectroscopically characterized by HR-MS, UV-vis, 1H-NMR, resonance Raman, Mössbauer, and X-ray absorption (XAS) spectroscopy as well as by DFT computational methods. Ferric complexes [FeIII(HNTs)(L)]2+, 1(III)-NHTs (L = MePy2tacn) and 2(III)-NHTs (L = Me2(CHPy2)tacn) have been isolated after the decay of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs in solution, spectroscopically characterized, and the molecular structure of [FeIII(HNTs)(MePy2tacn)](SbF6)2 determined by single crystal X-ray diffraction. Reaction of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs with different p-substituted thioanisoles results in the transfer of the tosylimido moiety to the sulphur atom producing sulfilimine products. In these reactions, 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs behave as single electron oxidants and Hammett analyses of reaction rates evidence that tosylimido transfer is more sensitive than oxo transfer to charge effects. In addition, reaction of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs with hydrocarbons containing weak C-H bonds results in the formation of 1(III)-NHTs and 2(III)-NHTs respectively, along with the oxidized substrate. Kinetic analyses indicate that reactions proceed via a mechanistically unusual HAT reaction, where an association complex precedes hydrogen abstraction.
Collapse
Affiliation(s)
- Gerard Sabenya
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| | - Ilaria Gamba
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| | - Laura Gómez
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| | - Martin Clémancey
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Jonathan R Frisch
- Department of Chemistry , University of Minnesota , Pleasant Str 207 , Minneapolis , Minnesota , USA
| | - Eric J Klinker
- Department of Chemistry , University of Minnesota , Pleasant Str 207 , Minneapolis , Minnesota , USA
| | - Geneviève Blondin
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Stéphane Torelli
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Lawrence Que
- Department of Chemistry , University of Minnesota , Pleasant Str 207 , Minneapolis , Minnesota , USA
| | - Vlad Martin-Diaconescu
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain .
| | - Jean-Marc Latour
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Julio Lloret-Fillol
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain .
- Catalan Institution for Research and Advanced Studies (ICREA) , Passeig Lluïs Companys, 23 , 08010 , Barcelona , Spain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| |
Collapse
|