1
|
Wang J, Yue L, Wei M, Li B, Wu L. Cluster-directed ionic framework supramolecular hydrogel with high-temperature tolerability and enhanced water evaporation. SOFT MATTER 2025; 21:3941-3945. [PMID: 40178812 DOI: 10.1039/d5sm00004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Supramolecular hydrogels have been constructed with flexible 2D ionic framework assemblies comprised of a stick-shaped di-cationic pseudo-rotaxane and polyanionic nanoclusters through electrostatic interactions. This type of small-molecule hydrogel exhibits excellent thermal stability at high temperature and shows an efficient reduction of water evaporation enthalpy.
Collapse
Affiliation(s)
- Jiaxu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Liang Yue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Mingfeng Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
2
|
Li J, Kim JS, Fan J, Peng X, Matějíček P. Boron cluster leveraged polymeric building blocks. Chem Soc Rev 2025; 54:4104-4134. [PMID: 40202815 DOI: 10.1039/d4cs01288g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Boron cluster compounds (BCCs) are inorganic molecules characterized by their unique physical and chemical properties. Polymeric materials incorporating BCCs exhibit significant chemical and thermal stability, making them valuable for applications in biomedical fields, energy storage, ultrahigh stability materials, and π-conjugated luminochromic polymers. This review article aims to explore the primary methods for integrating these distinctive clusters into traditional carbon-based polymers. Both boron and carbon atoms possess catenation abilities, enabling the formation of extensive macromolecular structures. While carbon forms long linear chains, boron typically leads to three-dimensional polyhedral clusters. We first examine hybrid nanostructures, focusing on weak non-covalent interactions such as dihydrogen bonding, hydrophobic, and chaotropic effects between boron clusters and polymer chains. We then discuss classical chemical bonding approaches. Despite their inorganic nature, boron clusters can undergo exoskeletal substitution akin to organic counterparts, allowing their attachment as side groups to polymer repeating units. Additionally, polyhedral boron clusters can be incorporated into polymer backbones primarily through polycondensation reactions, resulting in hybrid macromolecules with exceptional physical and chemical attributes. Finally, we summarize the applications of BCC-containing polymeric materials, including their use in boron neutron capture therapy (BNCT), solid polymer electrolytes (SPEs) for metal ion batteries, and as electron acceptor groups in stimuli-responsive luminescent materials. In summary, BCC-containing polymeric materials are increasingly considered viable alternatives to traditional hydrocarbon-based polymers for biomedical applications, ion-conducting materials, luminescent materials, and temperature-resistant materials.
Collapse
Affiliation(s)
- Jianwei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo 315016, China
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague 2, Czech Republic.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague 2, Czech Republic.
| |
Collapse
|
3
|
Bhattacharjee S, Aswal VK, Seth D. Unraveling the Role of Polyoxometalates-Based Superchaotropes on the Photophysics of Organic Molecules and Modulation of Water Dynamics in a Hydrophilic Block Copolymer Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2331-2346. [PMID: 39842039 DOI: 10.1021/acs.langmuir.4c03990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Polyoxometalates (POMs) are composed of nanometric metal-oxide anions and have rich solution chemistry. In this class, Keggin POMs have been identified as the most influential inorganic additives for aqueous nonionic soft matter systems. POMs being at the borderline of classical ions and charged colloids possess fascinating solution properties; the present work aims to delve deeper into the interactions between nanoions and nonionic soft matters from a spectroscopic point of view. Our studies reveal that although of the same structural makeup, silicotungstic acid hydrate (SiW) and phosphotungstic acid hydrate (PW) affect the photophysics of Coumarin-480 (C-480) in poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) ((PEO)76-(PPO)30-(PEO)76, F-68) copolymeric media in a dissimilar manner. From time-resolved studies, we find a preference for SiW toward the intramolecular charge transfer state of C-480, whereas PW favors the locally emissive state of the probe. Further, from rotational relaxation studies, it appears that SiW renders a rigid environment around the probe molecule, while PW relaxes the copolymeric environment. Finally, the dynamic quenching mechanism of the added nanoions was unraveled, which showed a straightforward Förster mechanism for SiW but a short-range interaction was operative for PW. From Fourier transform infrared and 1H NMR, it can be concluded that both the nanoions interacted with the PPO moiety of the copolymer; yet, their contrasting effect on the photophysics has been rationalized as a consequence of charge density on the ions.
Collapse
Affiliation(s)
- Sanyukta Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| |
Collapse
|
4
|
Cui P, Yu Q, Chen J, Chen K, Yin P. Enhancing adhesive performance of polyvinyl alcohol with sub-nanoscale polyoxotungstate clusters under extreme conditions. NANO RESEARCH 2025; 18:94907126. [DOI: 10.26599/nr.2025.94907126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
5
|
Chazapi I, Merhi T, Pasquier C, Diat O, Almunia C, Bauduin P. Controlling Protein Assembly with Superchaotropic Nano-Ions. Angew Chem Int Ed Engl 2024; 63:e202412588. [PMID: 39082437 DOI: 10.1002/anie.202412588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Indexed: 10/26/2024]
Abstract
In living systems, protein assemblies have essential functions, serving as structural supports, transport highways for molecular cargo, and containers of genetic material. The construction of protein assemblies, which involves control over space and time, remains a significant challenge in biotechnology. Here, we show that anionic boron clusters, 3,3'-commo-bis[closo-1,2-dicarba-3-cobaltadodecaborane] (COSAN-), and halogenated closo-dodecarboranes (B12X12 2-, X=H, Cl, or I), described as super-chaotropic nano-ions, induce the formation of 2D assemblies of model proteins, myoglobin, carbonic anhydrase, and trypsin inhibitor. We found that the nano-ion concentration reversibly controls the size of the protein assemblies. Furthermore, the secondary structures of the proteins are only slightly affected by assembly formation. For myoglobin, the formation of these assemblies even prevents temperature denaturation, highlighting a preservation effect of nano-ions. Our study reveals that inorganic boron-based nano-ions act as a reversible molecular glue for proteins, providing a potential starting point for the further development of controlled protein assemblies.
Collapse
Affiliation(s)
- Ioanna Chazapi
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| | - Tania Merhi
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| | - Coralie Pasquier
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| | - Olivier Diat
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| | - Christine Almunia
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, Université Paris-Saclay, Bagnols-sur-Cèze, France
| | - Pierre Bauduin
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| |
Collapse
|
6
|
Zhang L, Hou L, Cai HH, Sun B, Han DM, Chen FZ. Cascading CRISPR/Cas and Nanozyme for Enhanced Organic Photoelectrochemical Transistor Detection with Triple Signal Amplification. Anal Chem 2024; 96:14283-14290. [PMID: 39176473 DOI: 10.1021/acs.analchem.4c03220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Innovative signal amplification and transduction play pivotal roles in bioanalysis. Herein, cascading CRISPR/Cas and the nanozyme are integrated with electronic amplification in an organic photoelectrochemical transistor (OPECT) to enable triple signal amplification, which is exemplified by the miRNA-triggered CRISPR/Cas13a system and polyoxometalate nanozyme for OPECT detection of miRNA-21. The CRISPR/Cas13a-enabled release of glucose oxidase could synergize with peroxidase-like SiW12 to induce catalytic precipitation on the photogate, inhibiting the interfacial mass transfer and thus the significant suppression of the channel current. The as-developed OPECT sensor demonstrates good sensitivity and selectivity for miRNA-21 detection, with a linear range from 1 fM to 10 nM and an ultralow detection limit of 0.53 fM. This study features the integration of bio- and nanoenzyme cascade and electronic triple signal amplification for OPECT detection.
Collapse
Affiliation(s)
- Lin Zhang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Lu Hou
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Hui-Hui Cai
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Bing Sun
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - De-Man Han
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Feng-Zao Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| |
Collapse
|
7
|
Datta LP, Dutta D, Mukherjee R, Das TK, Biswas S. Polyoxometalate-Polymer Directed Macromolecular Architectonics of Silver Nanoparticles as Effective Antimicrobials. Chem Asian J 2024; 19:e202400344. [PMID: 38822687 DOI: 10.1002/asia.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
A novel inorganic-organic-inorganic ternary bioactive material formulated on antimicrobial peptide-based polymer has been reported. Supramolecular approach has been employed to incorporate molecularly crowded tyrosine-based polymer stabilized silver nanoparticles into membrane bound vesicles exploiting polyoxometalate-triggered surface templating strategy. Utilizing the covalent reversible addition fragmentation chain transfer (RAFT) polymerization and exploiting templated supramolecular architectonics at biopolymer interface, the bioactive ternary polymeric nanohybrids have been designed against Shigellosis leveraging the antibacterial activities of silver nanoparticle, cationic amphiphilic tyrosine polymer and inorganic polyoxometalate. The detail investigation against Shigella flexneri 2a cell line demonstrates that the collaborative mechanism of the ternary hybrid composite enhances the bactericidal activity in comparison to only polyoxometalate and polymer stabilized silver nanoparticle with an altered mechanism of action which is established via detailed biological analysis.
Collapse
Affiliation(s)
- Lakshmi Priya Datta
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Debanjan Dutta
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Riya Mukherjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Tapan Kumar Das
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Subharanjan Biswas
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| |
Collapse
|
8
|
Su P, Zhu X, Wilson SM, Feng Y, Samayoa-Oviedo HY, Sonnendecker C, Smith AJ, Zimmermann W, Laskin J. The effect of host size on binding in host-guest complexes of cyclodextrins and polyoxometalates. Chem Sci 2024; 15:11825-11836. [PMID: 39092096 PMCID: PMC11290418 DOI: 10.1039/d4sc01061b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/07/2024] [Indexed: 08/04/2024] Open
Abstract
Harnessing flexible host cavities opens opportunities for the design of novel supramolecular architectures that accommodate nanosized guests. This research examines unprecedented gas-phase structures of Keggin-type polyoxometalate PW12O40 3- (WPOM) and cyclodextrins (X-CD, X = α, β, γ, δ, ε, ζ) including previously unexplored large, flexible CDs. Using ion mobility spectrometry coupled to mass spectrometry (IM-MS) in conjunction with molecular dynamics (MD) simulations, we provide first insights into the binding modes between WPOM and larger CD hosts as isolated structures. Notably, γ-CD forms two distinct structures with WPOM through binding to its primary and secondary faces. We also demonstrate that ε-CD forms a deep inclusion complex, which encapsulates WPOM within its annular inner cavity. In contrast, ζ-CD adopts a saddle-like conformation in its complex with WPOM, which resembles its free form in solution. More intriguingly, the gas-phase CD-WPOM structures are highly correlated with their counterparts in solution as characterized by nuclear magnetic resonance (NMR) spectroscopy. The strong correlation between the gas- and solution phase structures of CD-WPOM complexes highlight the power of gas-phase IM-MS for the structural characterization of supramolecular complexes with nanosized guests, which may be difficult to examine using conventional approaches.
Collapse
Affiliation(s)
- Pei Su
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Xiao Zhu
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
- Rosen Center for Advanced Computing, Purdue University West Lafayette Indiana 47907 USA
| | - Solita M Wilson
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
| | - Yuanning Feng
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
- Department of Chemistry and Biochemistry, The University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Hugo Y Samayoa-Oviedo
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
| | - Christian Sonnendecker
- Institute of Analytical Chemistry, Universität Leipzig Johannisallee 29 Leipzig 04103 Germany
| | - Andrew J Smith
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
| | - Wolfgang Zimmermann
- Institute of Analytical Chemistry, Universität Leipzig Johannisallee 29 Leipzig 04103 Germany
| | - Julia Laskin
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
| |
Collapse
|
9
|
Bruckschlegel C, Pasquier C, Toquer G, Girard L, Odorico M, Lautru J, Diat O, Bauduin P. Toward Distinguishing between the Superchaotropic and Hydrophobic Characters of Nanometric-Sized Ions in Interaction with PEGylated Surfaces. J Phys Chem Lett 2024; 15:4229-4236. [PMID: 38634114 DOI: 10.1021/acs.jpclett.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
In this study, we explore the superchaotropic effect of various polyoxometalate or boron cluster nano-ions on hydrophilic neutral surfaces. Nano-ions, characterized by low charge densities, exhibit strong adsorption on non-ionic hydrophilic surfaces like PEGylated micelles. This adsorption phenomenon was attributed to the enthalpically favorable dehydration of nano-ions, the so-called superchaotropic effect. Here, we investigate the adsorption of three nano-ions, α-SiW12O404-, α-PW12O403-, and B12I122-, with decreasing charge density or increasing superchaotropicity (or hydrophobicity), on hydrophilic solid surfaces, PEGylated gold nanoparticles, and PEGylated gold-coated quartz crystal. Solid surfaces are devoid of hydrophobic regions, enabling the study of the subtle nuance between hydrophobic and superchaotropic effects. Unlike adsorption on PEGylated micelles, the adsorption constant decreases with a reduced charge density, aligning with the well-established principle that hydrophobic ions do not adsorb on hydrophilic surfaces. This research improves our understanding of the subtle difference between superchaotropic and hydrophobic effects in nano-ion adsorption phenomena.
Collapse
Affiliation(s)
- Christoph Bruckschlegel
- Institute of Analytical Chemistry, Chemo- and Biosensors University of Regensburg, 93053 Regensburg, Germany
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| | - Coralie Pasquier
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| | - Guillaume Toquer
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| | - Luc Girard
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| | - Michael Odorico
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| | - Joseph Lautru
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| | - Olivier Diat
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| | - Pierre Bauduin
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| |
Collapse
|
10
|
Simons J, Hazra N, Petrunin AV, Crassous JJ, Richtering W, Hohenschutz M. Nonionic Microgels Adapt to Ionic Guest Molecules: Superchaotropic Nanoions. ACS NANO 2024; 18:7546-7557. [PMID: 38417118 DOI: 10.1021/acsnano.3c12357] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Microgels are commonly applied as solute carriers, where the size, density, and functionality of the microgels depend on solute binding. As representatives for ionic solutes with high affinity for the microgel, we study here the effect of superchaotropic Keggin polyoxometalates (POMs) PW12O403- (PW) and SiW12O404- (SiW) on the aqueous swelling and internal structure of nonionic poly(N-isopropylacrylamide) (pNiPAM) microgels by light scattering techniques and small-angle X-ray scattering. Due to their weak hydration, these POMs bind spontaneously to the microgels at millimolar concentrations. The microgels thus become charged and swell at low POM concentration, surprisingly without strongly increasing the volume phase transition temperature, and deswell at higher POM concentration. The swelling arises because of the osmotic pressure of dissociated counterions of the POMs, while the deswelling is due to POMs acting as physical cross-links in the microgels under screened electrostatics in NaCl or excess POM solution. This swelling/deswelling transition is sharper for PW than for SiW related to the lower charge density, weaker hydration, and stronger binding of PW. The POMs elicit qualitatively and quantitatively different swelling effects from ionic surfactants and classical salts. Moreover, the network softness and topology govern the swelling response upon POM binding. The softer the microgel, the stronger is the swelling response, while, inside the microgel, regions of high polymer density swell/contract more upon electric charging/cross-linking than regions with low polymer density. POM binding thus enables fine-tuning of microgel properties and highlights the role of network topology in microgel swelling. Because POMs decompose at an alkaline pH, these POM/microgel systems also exhibit pH-responsive swelling in addition to the typical temperature responsiveness of pNiPAM microgels.
Collapse
Affiliation(s)
- Jasmin Simons
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Nabanita Hazra
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Alexander V Petrunin
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Max Hohenschutz
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| |
Collapse
|
11
|
Abstract
Large water-soluble anions with chaotropic character display surprisingly strong supramolecular interactions in water, for example, with macrocyclic receptors, polymers, biomembranes, and other hydrophobic cavities and interfaces. The high affinity is traced back to a hitherto underestimated driving force, the chaotropic effect, which is orthogonal to the common hydrophobic effect. This review focuses on the binding of large anions with water-soluble macrocyclic hosts, including cyclodextrins, cucurbiturils, bambusurils, biotinurils, and other organic receptors. The high affinity of large anions to molecular receptors has been implemented in several lines of new applications, which are highlighted herein.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117 Al-Salt, Jordan.
| | - Werner M Nau
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
12
|
Wei W. Hofmeister Effects Shine in Nanoscience. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302057. [PMID: 37211703 PMCID: PMC10401134 DOI: 10.1002/advs.202302057] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Hofmeister effects play a crucial role in nanoscience by affecting the physicochemical and biochemical processes. Thus far, numerous wonderful applications from various aspects of nanoscience have been developed based on the mechanism of Hofmeister effects, such as hydrogel/aerogel engineering, battery design, nanosynthesis, nanomotors, ion sensors, supramolecular chemistry, colloid and interface science, nanomedicine, and transport behaviors, etc. In this review, for the first time, the progress of applying Hofmeister effects is systematically introduced and summarized in nanoscience. It is aimed to provide a comprehensive guideline for future researchers to design more useful Hofmeister effects-based nanosystems.
Collapse
Affiliation(s)
- Weichen Wei
- Department of NanoengineeringUniversity of California San DiegoLa JollaSan DiegoCA92093USA
| |
Collapse
|
13
|
Hohenschutz M, Dufrêche JF, Diat O, Bauduin P. When Ions Defy Electrostatics: The Case of Superchaotropic Nanoion Adsorption. J Phys Chem Lett 2023; 14:3602-3608. [PMID: 37022948 DOI: 10.1021/acs.jpclett.3c00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanometer-sized anions, like polyoxometalates and borate clusters, bind to nonionic hydrated matter driven by the chaotropic effect, which arises from the favorable dehydration of the ions. Herein, we evaluate the adsorption and activity coefficient of the superchaotropic Keggin polyoxometalate SiW12O404- (SiW) on nonionic surfactant (C8E4) micelles by modeling small-angle X-ray and neutron-scattering spectra. Neither hard sphere nor electrostatic repulsion models reproduce the experimental activity coefficient of adsorbed SiW ions on the micelles. However, the activity and binding of SiW on the micelles is well-described by a Langmuir adsorption isotherm. These results imply that adsorbed SiW ions are non-interacting and "create" around themselves adsorption sites on the micelle. The temperature dependence of the adsorption constant showed that the SiW adsorption is enthalpically driven and entropically unfavorable, in line with the typical chaotropic thermochemical signature. The adsorption enthalpy can be split into an electrostatic term and a water-recovery term to evaluate and qualitatively predict the superchaotropicity of a nanoion.
Collapse
Affiliation(s)
- Max Hohenschutz
- ICSM, CEA, CNRS, ENSCM, Univ. Montpellier, Marcoule, France, Centre de Marcoule, 30207 Bagnols-sur-Cèze, France
| | - Jean-François Dufrêche
- ICSM, CEA, CNRS, ENSCM, Univ. Montpellier, Marcoule, France, Centre de Marcoule, 30207 Bagnols-sur-Cèze, France
| | - Olivier Diat
- ICSM, CEA, CNRS, ENSCM, Univ. Montpellier, Marcoule, France, Centre de Marcoule, 30207 Bagnols-sur-Cèze, France
| | - Pierre Bauduin
- ICSM, CEA, CNRS, ENSCM, Univ. Montpellier, Marcoule, France, Centre de Marcoule, 30207 Bagnols-sur-Cèze, France
| |
Collapse
|
14
|
Braun L, Hohenschutz M, Diat O, von Klitzing R, Bauduin P. Repulsive, but sticky - Insights into the non-ionic foam stabilization mechanism by superchaotropic nano-ions. J Colloid Interface Sci 2023; 641:437-448. [PMID: 36948099 DOI: 10.1016/j.jcis.2023.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
HYPOTHESIS The superchaotropic Keggin polyoxometalate α-SiW12O404- (SiW) was recently shown to stabilize non-ionic surfactant (C18:1E10) foams owing to electrostatic repulsion that arises from the adsorption of SiW-ions to the foam interfaces. The precise mechanism of foam stabilization by SiW however remained unsolved. EXPERIMENTS Imaging and conductimetry were used on macroscopic foams to monitor the foam collapse under free drainage and small angle neutron scattering (SANS) at a given foam height allowed for the tracking of the evolution of film thickness under quasi-stationary conditions. Thin film pressure balance (TFPB) measurements enabled to quantify the resistance of single foam films to external pressure and to identify intra-film forces. FINDINGS At low SiW/surfactant ratios, the adsorption of SiW induces electrostatic repulsion within foam films. Above a concentration threshold corresponding to an adsorption saturation, excess of SiW screens the electrostatic repulsion that leads to thinner foam films. Despite screened electrostatics, the foam and single foam films remain very stable caused by an additional steric stabilizing force consistent with the presence of trapped micelles inside the foam films that bridge between the interfaces. These trapped micelles can serve as a surfactant reservoir, which promotes self-healing of the interface leading to much more resilient foam films in comparison to bare surfactant foams/films.
Collapse
Affiliation(s)
- Larissa Braun
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Max Hohenschutz
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France; RWTH Aachen University, Institute of Physical Chemistry, Landoltweg 2, 52074 Aachen, Germany
| | - Olivier Diat
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| | - Regine von Klitzing
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Darmstadt, Germany.
| | - Pierre Bauduin
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France.
| |
Collapse
|
15
|
Xue B, Lai Y, Liu Y, Li M, Li X, Yin P. The Counterion-Mediated Controllable Coacervation of Nano-Ions with Polyelectrolytes. J Colloid Interface Sci 2023; 641:853-860. [PMID: 36966574 DOI: 10.1016/j.jcis.2023.03.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
Nano-ions can complex with polyelectrolytes for coacervates with hierarchical structures; however, the rational design of functional coacervations is still rare due to the poor understanding of their structure-property relationship from their complex interaction. Herein, 1 nm anionic metal oxide clusters, PW12O403-, with well-defined, mono-disperse structures are applied to complex with cationic polyelectrolyte and the system shows tunable coacervation via the alternation of counterions (H+ and Na+) of PW12O403-. Suggested from Fourier transform infrared spectroscopy (FT-IR) and isothermal titration studies, the interaction between PW12O403- and cationic polyelectrolytes can be modulated by the bridging effect of counterions via hydrogen bonding or ion-dipole interaction to carbonyl groups of polyelectrolytes. The condensed structures of the complexed coacervates are explored by small angle X-ray and neutron scattering techniques, respectively. The coacervate with H+ as counterions shows both crystallized and discrete PW12O403- clusters, with a loose polymer-cluster network in comparison to the system of Na+ which shows a dense packing structure with aggregated nano-ions filling the meshes of polyelectrolyte networks. The bridging effect of counterions helps understand the super-chaotropic effect observed in nano-ion system and provides avenues for the design of metal oxide cluster-based functional coacervates.
Collapse
|
16
|
Hohenschutz M, Bauduin P, Lopez CG, Förster B, Richtering W. Superchaotropic Nano-ion Binding as a Gelation Motif in Cellulose Ether Solutions. Angew Chem Int Ed Engl 2023; 62:e202210208. [PMID: 36346946 PMCID: PMC10107358 DOI: 10.1002/anie.202210208] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Nanometer-sized anions (nano-ions) like polyoxometalates and boron clusters exhibit so-called superchaotropic behavior, which describes their strong binding to hydrated non-ionic matter in water. We show here that nano-ions, at millimolar concentrations, dramatically enhance the viscosity and induce gelation of aqueous solutions of non-ionic cellulose ethers (CEs), a class of widely utilized polymers known for their thickening and gel-forming ability. These phenomena arise from an interplay of attractive forces and repulsive electrostatic forces between CE-chains upon nano-ion binding. The attractive forces manifest themselves as aggregation of CE-chains into a physically crosslinked polymer network (gel). In turn, the electrostatic repulsions hamper the viscosity increase and gelation. Superchaotropic nano-ion binding emerges as a novel and general physical crosslinking motif for CE-solutions and exceeds by far the conventional thickening effects of classical salts and ionic surfactants.
Collapse
Affiliation(s)
- Max Hohenschutz
- RWTH Aachen University, Institute of Physical Chemistry, Landoltweg 2, 52074, Aachen, Germany
| | - Pierre Bauduin
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| | - Carlos G Lopez
- RWTH Aachen University, Institute of Physical Chemistry, Landoltweg 2, 52074, Aachen, Germany
| | - Beate Förster
- Forschungszentrum Jülich GmbH, Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen (ER-C-1), 52425, Jülich, Germany
| | - Walter Richtering
- RWTH Aachen University, Institute of Physical Chemistry, Landoltweg 2, 52074, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., RWTH-Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
| |
Collapse
|
17
|
Moorthy H, Datta LP, Samanta S, Govindaraju T. Multifunctional Architectures of Cyclic Dipeptide Copolymers and Composites, and Modulation of Multifaceted Amyloid-β Toxicity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56535-56547. [PMID: 36516435 DOI: 10.1021/acsami.2c16336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disorder primarily characterized by the β-amyloid (Aβ42) misfolding and aggregation-associated multifaceted amyloid toxicity encompassing oxidative stress, neuronal death, and severe cognitive impairment. Modulation of Aβ42 aggregation via various structurally anisotropic macromolecular systems is considered effective in protecting neuronal cells. In this regard, we have developed a cyclic dipeptide (CDP)-based copolymer (CP) and explored its material and biomedical properties. Owing to the structural versatility, CDP-CP forms solvent-dependent anisotropic architectures ranging from dense fibers and mesosheets to vesicles, which are shown to interact with dyes and nanoparticles and mimic synthetic protocells, providing a conceptually new approach to achieve advanced functional materials with the hierarchical organization. CP upon interaction with gold nanoparticles (GNP) and polyoxometalate (POM) generated faceted architectures (CP-GNP) and the nanocomposite (CP-POM), respectively. CP-GNP and CP-POM have shown remarkable ability to inhibit Aβ42 aggregation, dissolve the preformed aggregates, and scavenge reactive oxygen species (ROS) to ameliorate multifaceted amyloid toxicity. In cellulo studies show that CP-GNP and CP-POM protect neuronal cells from Aβ42-induced toxicity and reduce lipopolysaccharide (LPS)-activated neuroinflammation at sub-micromolar concentration. To our knowledge, this is the first report on the hierarchical organization of CDP-CP into 1D-to-2D architectures and their organic-inorganic hybrid nanocomposites to combat the multifaceted amyloid toxicity.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Lakshmi Priya Datta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
18
|
Zhang J, Gabel D, Assaf KI, Nau WM. A Fluorescein-Substituted Perbrominated Dodecaborate Cluster as an Anchor Dye for Large Macrocyclic Hosts and Its Application in Indicator Displacement Assays. Org Lett 2022; 24:9184-9188. [PMID: 36507622 DOI: 10.1021/acs.orglett.2c03615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Perhalogenated boron clusters derived from B12Br122-, a superchaotropic dianion with a globular icosahedral shape, serve as inorganic cavity binders for cyclodextrins (CDs), in particular for large CDs (γ-CD and δ-CD), with high binding affinity (Ka > 106 M-1) in aqueous solution. This opens the door for applications of this anchoring moiety by linking it to organic residues, prominently fluorescent dyes. We report here the synthesis of a novel fluorescein-substituted perbrominated dodecaborate cluster by a copper(I)-catalyzed azide-alkyne click reaction. The formation of host-guest inclusion complexes between the dodecaborate-modified fluorescein dye and CDs can be readily followed by optical titrations, which afforded a binding constant of ∼1 × 104 M-1 with γ-CD; that is, the cluster functionalization allows binding of an otherwise nonbinding dye to the macrocycle ("anchor dye"). The formation of the 1:1 host-guest inclusion complex between the dye and γ-CD occurs over a broad range of pH values, which allows its application as a sensitive reporter pair according to the indicator displacement method, e.g., for drug detection. In addition, the substituted dye shows outer-wall binding to cucurbiturils through the dodecaborate moiety, leading to the formation of aggregates and significant fluorescence quenching of the dye.
Collapse
Affiliation(s)
- Jinling Zhang
- Jacobs University Bremen, School of Science, Campus Ring 1, 28759 Bremen, Germany
| | - Detlef Gabel
- Jacobs University Bremen, School of Science, Campus Ring 1, 28759 Bremen, Germany
| | - Khaleel I Assaf
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117 Al-Salt, Jordan
| | - Werner M Nau
- Jacobs University Bremen, School of Science, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
19
|
Fabre B, Falaise C, Cadot E. Polyoxometalates-Functionalized Electrodes for (Photo)Electrocatalytic Applications: Recent Advances and Prospects. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno Fabre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Clément Falaise
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| |
Collapse
|
20
|
Schmid P, Hohenschutz M, Graß X, Witzmann M, Touraud D, Diat O, Pfitzner A, Bauduin P. Counterion effect on α-Keggin polyoxometalates in water: The peculiar role of H+ on their salting-in effect and co-assembly with organics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Rahman T, Petrus E, Segado M, Martin NP, Palys LN, Rambaran MA, Ohlin CA, Bo C, Nyman M. Predicting the Solubility of Inorganic Ion Pairs in Water. Angew Chem Int Ed Engl 2022; 61:e202117839. [DOI: 10.1002/anie.202117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Tasnim Rahman
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| | - Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Mireia Segado
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Nicolas P. Martin
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| | - Lauren N. Palys
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| | - Mark A. Rambaran
- Department of Chemistry Faculty of Science and Technology Umeå University 901 87 Umeå Sweden
| | - C. Andre Ohlin
- Department of Chemistry Faculty of Science and Technology Umeå University 901 87 Umeå Sweden
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili (URV) Marcel lí Domingo s/n 43007 Tarragona Spain
| | - May Nyman
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
22
|
Polymeric Surfactant P84/Polyoxometalate α-PW12O403−—A Model System to Investigate the Interplay between Chaotropic and Hydrophobic Effects. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low charge density nanometric ions were recently shown to bind strongly to neutral hydrated matter in aqueous solution. This phenomenon, called the (super-)chaotropic effect, arises from the partial dehydration of both the nano-ion and the solute, leading to a significant gain in enthalpy. Here, we investigate the chaotropic effect of the polyoxometalate α-PW12O403− on the triblock copolymer P84: (EO)19(PO)43(EO)19 with (EO)19 the polyethoxylated and (PO)43 the polypropoxylated chains. The combination of phase diagrams, spectroscopic (nuclear magnetic resonance) and scattering (small angle neutron/X-ray scattering) techniques revealed that: (i) below the micellization temperature of P84, PW12O403− exclusively binds to the propylene oxide moiety of P84 unimers; and (ii) above the micellization temperature, PW12O403− mostly adsorbs on the ethylene oxide micellar corona. The preferential binding of the PW12O403− to the PPO chain over the PEO chains suggests that the binding is driven by the chaotropic effect and is reinforced by the hydrophobic effect. At higher temperatures, copolymer micellization leads to the displacement of PW12O403− from the PPO chain to the PEO chains. This study deepens our understanding of the subtle interplay between the chaotropic and hydrophobic effects in complex salt-organic matter solutions.
Collapse
|
23
|
Khlifi S, Marrot J, Haouas M, Shepard WE, Falaise C, Cadot E. Chaotropic Effect as an Assembly Motif to Construct Supramolecular Cyclodextrin-Polyoxometalate-Based Frameworks. J Am Chem Soc 2022; 144:4469-4477. [PMID: 35230838 DOI: 10.1021/jacs.1c12049] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In aqueous solution, low-charged polyoxometalates (POMs) exhibit remarkable self-assembly properties with nonionic organic matter that have been recently used to develop groundbreaking advances in host-guest chemistry, as well as in soft matter science. Herein, we exploit the affinity between a chaotropic POM and native cyclodextrins (α-, β-, and γ-CD) to enhance the structural and functional diversity of cyclodextrin-based open frameworks. First, we reveal that the Anderson-Evans type polyoxometalate [AlMo6O18(OH)6]3- represents an efficient inorganic scaffold to design open hybrid frameworks built from infinite cyclodextrin channels connected through the disk-shaped POM. A single-crystal X-ray analysis demonstrates that the resulting supramolecular architectures contain large cavities (up to 2 nm) where the topologies are dictated by the rotational symmetry of the organic macrocycle, generating honeycomb (bnn net) and checkerboard-like (pcu net) networks for α-CD (C6) and γ-CD (C8), respectively. On the other hand, the use of β-CD, a macrocycle with C7 ideal symmetry, led to a distorted-checkerboard-like network. The cyclodextrin-based frameworks built from an Anderson-Evans type POM are easily functionalizable using the molecular recognition properties of the macrocycle building units. As a proof of concept, we successfully isolated a series of compartmentalized functional frameworks by the entrapment of polyiodides or superchaotropic redox-active polyanions within the macrocyclic host matrix. This set of results paves the way for designing multifunctional supramolecular frameworks whose pore dimensions are controlled by the size of inorganic entities.
Collapse
Affiliation(s)
- Soumaya Khlifi
- Université Paris-Saclay, UVSQ, CNRS, UMR8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Jérôme Marrot
- Université Paris-Saclay, UVSQ, CNRS, UMR8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Mohamed Haouas
- Université Paris-Saclay, UVSQ, CNRS, UMR8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - William E Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubain, 91192 Gif-sur-Yvette, France
| | - Clément Falaise
- Université Paris-Saclay, UVSQ, CNRS, UMR8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Emmanuel Cadot
- Université Paris-Saclay, UVSQ, CNRS, UMR8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| |
Collapse
|
24
|
Yao S, Falaise C, Leclerc N, Roch-Marchal C, Haouas M, Cadot E. Improvement of the Hydrolytic Stability of the Keggin Molybdo- and Tungsto-Phosphate Anions by Cyclodextrins. Inorg Chem 2022; 61:4193-4203. [PMID: 35179360 DOI: 10.1021/acs.inorgchem.2c00095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Keggin-type molybdo- and tungsto-phosphate polyoxoanions are among the most popular polyoxometalates (POMs) but suffer from their limited stability at low pH in aqueous solution. Their superchaotropic properties generate strong supramolecular complexes with cyclodextrins (CDs), which significantly affect the hydrolytic stability of POM. This chaotropically driven stabilization effect was systematically monitored by 31P NMR spectroscopy covering a wide range of pH (from 0 to 8) and varying the nature of the CD (α-, β-, and γ-form). A shift of ca. two pH units of the stability domains of these POMs was found in the presence of two equivalents of γ-CD compared to pure water, leading to keep intact the PW12O403- anion without any decomposition up to pH 3.5 (versus 1.5 in pure water) and pH 2.5 for PMo12O403-, which begins to decompose even at pH 0 in pure water. The effect of the smaller CDs (α- and β-form) is much less pronounced (only 0.5 pH units shift of the stability domain) confirming the importance of host-guest size matching to form a sandwich-type inclusion complex and thus protect the POM structure against basic hydrolysis. Such complexation was further supported by 183W and 1H NMR spectroscopy. Finally, using quantitative 31P NMR analyses, the new speciation and formation constants of phospho-molybdates and phospho-tungstates in the presence of cyclodextrins are determined and compared to those previously reported in pure water or in the 50:50 water/1,4-dioxane mixture.
Collapse
Affiliation(s)
- Sa Yao
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Catherine Roch-Marchal
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| |
Collapse
|
25
|
Rahman T, Petrus E, Segado M, Martin N, Palys L, Rambaran MA, Ohlin CA, Bo C, Nyman M. Predicting solubility of ion pairs in aqueous inorganic chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tasnim Rahman
- Oregon State University Department of Chemistry UNITED STATES
| | - Enric Petrus
- ICIQ: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - Mireia Segado
- ICIQ: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - Nicolas Martin
- Oregon State University Department of Chemistry chemistry UNITED STATES
| | - Lauren Palys
- Oregon State University Department of Chemistry Chemistry UNITED STATES
| | | | | | - Carles Bo
- ICIQ: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - May Nyman
- Oregon State University Department of Chemistry 153 Gilbert Hall 97331-4003 Corvallis UNITED STATES
| |
Collapse
|
26
|
Xie X, Liu X, Ma Z, Zhao H, Li W. Cationic peptides template the assembly of polyoxometalates into ultrathin nanosheet with in-plane ordered arrangement. Dalton Trans 2022; 51:3839-3844. [DOI: 10.1039/d1dt04292k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrathin polyoxometalates nanosheets with in-plane alignment have been constructed in aqueous solution with the assistance of cationic peptides. Different POMs varying in topology, size, and charges could be templated into...
Collapse
|
27
|
Lampl R, Breibeck J, Gumerova NI, Galanski MS, Rompel A. Wells-Dawson phosphotungstates as mushroom tyrosinase inhibitors: a speciation study. Sci Rep 2021; 11:19354. [PMID: 34588468 PMCID: PMC8481536 DOI: 10.1038/s41598-021-96491-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/06/2021] [Indexed: 01/28/2023] Open
Abstract
In order to elucidate the active polyoxotungstate (POT) species that inhibit fungal polyphenol oxidase (AbPPO4) in sodium citrate buffer at pH 6.8, four Wells-Dawson phosphotungstates [α/β-PV2WVI18O62]6- (intact form), [α2-PV2WVI17O61]10- (monolacunary), [PV2WVI15O56]12- (trilacunary) and [H2PV2WVI12O48]12- (hexalacunary) were investigated. The speciation of the POT solutions under the dopachrome assay (50 mM Na-citrate buffer, pH 6.8; L-3,4-dihydroxyphenylalanine as a substrate) conditions were determined by 183W-NMR, 31P-NMR spectroscopy and mass spectrometry. The intact Wells-Dawson POT [α/β-PV2WVI18O62]6- shows partial (~ 69%) disintegration into the monolacunary [α2-PV2WVI17O61]10- anion with moderate activity (Ki = 9.7 mM). The monolacunary [α2-PV2WVI17O61]10- retains its structural integrity and exhibits the strongest inhibition of AbPPO4 (Ki = 6.5 mM). The trilacunary POT [PV2WVI15O56]12- rearranges to the more stable monolacunary [α2-PV2WVI17O61]10- (~ 62%) accompanied by release of free phosphates and shows the weakest inhibition (Ki = 13.6 mM). The hexalacunary anion [H2PV2WVI12O48]12- undergoes time-dependent hydrolysis resulting in a mixture of [H2PV2WVI12O48]12-, [PV8WVI48O184]40-, [PV2WVI19O69(H2O)]14- and [α2-PV2WVI17O61]10- which together leads to comparable inhibitory activity (Ki = 7.5 mM) after 48 h. For the solutions of [α/β-PV2WVI18O62]6-, [α2-PV2WVI17O61]10- and [PV2WVI15O56]12- the inhibitory activity is correlated to the degree of their rearrangement to [α2-PV2WVI17O61]10-. The rearrangement of hexalacunary [H2PV2WVI12O48]12- into at least four POTs with a negligible amount of monolacunary anion interferes with the correlation of activity to the degree of their rearrangement to [α2-PV2WVI17O61]10-. The good inhibitory effect of the Wells-Dawson [α2-PV2WVI17O61]10- anion is explained by the low charge density of its protonated forms Hx[α2-PV2WVI17O61](10-x)- (x = 3 or 4) at pH 6.8.
Collapse
Affiliation(s)
- Raphael Lampl
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Joscha Breibeck
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Nadiia I Gumerova
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Mathea Sophia Galanski
- Fakultät für Chemie, Institut für Anorganische Chemie und NMR Zentrum, Universität Wien, Währinger Str. 42, 1090, Wien, Austria
| | - Annette Rompel
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Althanstraße 14, 1090, Wien, Austria.
| |
Collapse
|
28
|
Li J, Fernandez-Alvarez R, Tošner Z, Kozlík P, Štěpánek M, Zhigunov A, Urbanová M, Brus J, Uchman M, Matějíček P. Polynorbornene-Based Polyelectrolytes with Covalently Attached Metallacarboranes: Synthesis, Characterization, and Lithium-Ion Mobility. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jianwei Li
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Roberto Fernandez-Alvarez
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Zdeněk Tošner
- NMR Laboratory, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czechia
| | - Martina Urbanová
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czechia
| | - Jiří Brus
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czechia
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| |
Collapse
|
29
|
Hohenschutz M, Grillo I, Dewhurst C, Schmid P, Girard L, Jonchère A, Diat O, Bauduin P. Superchaotropic nano-ions as foam stabilizers. J Colloid Interface Sci 2021; 603:141-147. [PMID: 34186391 DOI: 10.1016/j.jcis.2021.06.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022]
Abstract
HYPOTHESIS Weakly hydrated nanometric ions, called superchaotropes, were recently shown to adsorb strongly to non-ionic surfaces affecting drastically the surface's physical-chemical properties due to a charging effect. Superchaotropic ions could serve as stabilizing agents for non-ionic colloidal systems, such as non-ionic surfactant foams. EXPERIMENTS We study foams of the non-ionic surfactant BrijO10 (C18:1E10) without and in presence of the superchaotropic Keggin-ion SiW12O404- (SiW). The foams are investigated under free drainage conditions by image analysis and conductimetry to reveal the effect of SiW on the foam stability, liquid drainage, and bubble size. Additionally, small angle neutron scattering on the same foams, but in a dry quasi-stationary state, provides insight into effects of SiW on the foam films. FINDINGS SiW strongly stabilizes non-ionic surfactant foams at millimolar concentrations by inducing electrostatic repulsions between foam film interfaces resulting in thicker and monodisperse foam films. A similar effect is observed with the ionic surfactant sodium dodecylsulfate (SDS) but to a lesser extent and with a different mechanism. At the foam films' interface, SiW adsorbs to the polar non-ionic surfactant heads driven by the superchaotropic effect whereas DS- anchors between non-ionic surfactant alkyl chains by the hydrophobic effect. The potential of superchaotropic ions as foam stabilizers is herein demonstrated.
Collapse
Affiliation(s)
- Max Hohenschutz
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| | - Isabelle Grillo
- Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Charles Dewhurst
- Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Philipp Schmid
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| | - Luc Girard
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| | - Alban Jonchère
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| | - Olivier Diat
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| | - Pierre Bauduin
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France.
| |
Collapse
|
30
|
Wang M, Song Y, Zhang S, Zhang X, Cai X, Lin Y, De Yoreo JJ, Chen CL. Programmable two-dimensional nanocrystals assembled from POSS-containing peptoids as efficient artificial light-harvesting systems. SCIENCE ADVANCES 2021; 7:7/20/eabg1448. [PMID: 33990330 PMCID: PMC8121420 DOI: 10.1126/sciadv.abg1448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/26/2021] [Indexed: 05/03/2023]
Abstract
Inspired by the formation of hierarchically structured natural biominerals (e.g., bone and tooth), various sequence-defined polymers have been synthesized and exploited for design and synthesis of functional hybrid materials. Here, we synthesized a series of organic-inorganic hybrid peptoids by using polyhedral oligomeric silsesquioxane (POSS) nanoclusters as side chains at a variety of backbone locations. We further demonstrated the use of these hybrid peptoids as sequence-defined building blocks to assemble a new class of programmable two-dimensional (2D) nanocrystals. They are highly stable and exhibit an enhanced mechanical property and electron scattering due to the incorporated POSS nanoclusters. By varying peptoid side-chain chemistry, we further demonstrated the precise displacement of a large variety of function groups within these 2D nanocrystals and developed a highly efficient aqueous light-harvesting system for live cell imaging. Because these 2D nanocrystals are biocompatible and highly programmable, we expect that they offer unique opportunities for applications.
Collapse
Affiliation(s)
- Mingming Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Yang Song
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Shuai Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Xin Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Xiaoli Cai
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
31
|
Yao S, Falaise C, Khlifi S, Leclerc N, Haouas M, Landy D, Cadot E. Redox-Responsive Host-Guest Association between γ-Cyclodextrin and Mixed-Metal Keggin-Type Polyoxometalates. Inorg Chem 2021; 60:7433-7441. [PMID: 33915041 DOI: 10.1021/acs.inorgchem.1c00724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The complexation of Keggin-type polyoxometalates (POMs) with γ-cyclodextrin (γ-CD) leads to supramolecular inclusion assemblies in aqueous solution driven by a chaotropic effect. The strength of the interaction between γ-CD and oxidized or one-electron reduced POMs in a series of molybdenum and vanadium monosubstituted phospho- and silico-tungstates, [XW11MO40]n- Keggin-type anions where X = P or Si and M = MoV/VI or VIV/V, has been evaluated by isothermal titration calorimetry (ITC), NMR spectroscopy, and cyclic voltammetry. Such a study reveals that the host-guest binding constant K1:1 increases strongly with the decrease of the global ionic charge of the POM unit. There is an almost one magnitude order of variation in K1:1 per charge unit, where K1:1 falls down from about 105 M-1 to values close to zero as ionic charge varies from 3- to 6-. Such POMs with molybdenum and vanadium addenda offer the possibility of tuning the host-guest association strength by the simple addition/removal of one electron to POMs, opening a new avenue for the design of smart materials through redox stimuli.
Collapse
Affiliation(s)
- Sa Yao
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Soumaya Khlifi
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), ULCO, Dunkerque 59140, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| |
Collapse
|
32
|
Schmid P, Buchecker T, Khoshsima A, Touraud D, Diat O, Kunz W, Pfitzner A, Bauduin P. Self-assembly of a short amphiphile in water controlled by superchaotropic polyoxometalates: H4SiW12O40 vs. H3PW12O40. J Colloid Interface Sci 2021; 587:347-357. [DOI: 10.1016/j.jcis.2020.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/28/2023]
|
33
|
Tanuhadi E, Gumerova NI, Prado-Roller A, Galanski M, Čipčić-Paljetak H, Verbanac D, Rompel A. Aluminum-Substituted Keggin Germanotungstate [HAl(H 2O)GeW 11O 39] 4-: Synthesis, Characterization, and Antibacterial Activity. Inorg Chem 2021; 60:28-31. [PMID: 33332970 PMCID: PMC7788568 DOI: 10.1021/acs.inorgchem.0c03311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We report on the new monosubstituted
aluminum Keggin-type germanotungstate
(C4H12N)4[HAlGeW11O39(H2O)]·11H2O ([Al(H2O)GeW11]4–), which has been
synthesized at room temperature via rearrangement of the dilacunary
[γ-GeW10O36]8– polyoxometalate
precursor. [Al(H2O)GeW11]4– has been characterized thoroughly both in the solid state
by single-crystal and powder X-ray diffraction, IR spectroscopy, thermogravimetric
analysis, and elemental analysis as well as in solution by cyclic
voltammetry (CV) 183W, 27Al NMR and UV–vis
spectroscopy. A study on the antibacterial properties of [Al(H2O)GeW11]4– and the known aluminum(III)-centered
Keggin polyoxotungstates (Al-POTs) α-Na5[AlW12O40] (α-[AlW12O40]5–) and Na6[Al(AlOH2)W11O39] ([Al(AlOH2)W11O39]6–) revealed enhanced activity for all three Al-POTs against the Gram-negative
bacterium Moraxella catarrhalis (minimum inhibitory
concentration (MIC) up to 4 μg mL–1) and the
Gram-positive Enterococcus faecalis (MIC up to 128
μg mL–1) compared to the inactive Al(NO3)3 salt (MIC > 256 μg mL–1). CV indicates the redox activity of the Al-POTs as a dominating
factor for the observed antibacterial activity with increased tendency
to reduction, resulting in increased antibacterial activity of the
POT. We report on the synthesis and thorough
characterization
of the new monosubstituted aluminum germanotungstate (C4H12N)4[HAlGeW11O39(H2O)]·11H2O ([Al(H2O)GeW11]4−), which has been subjected to an antibacterial
study including the previously reported α-Na5[AlW12O40] and Na6[Al(AlOH2)W11O39]. All three aluminum-substituted polyoxotungstates
(Al-POTs) revealed enhanced activity against Moraxella catarrhalis and Enterococcus faecalis compared to the inactive
Al(NO3)3 salt. On the basis of cyclic voltammetry
studies, the redox activity of the POTs is suggested to have an impact
on their overall antibacterial activity.
Collapse
Affiliation(s)
- Elias Tanuhadi
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstrasse 14, 1090 Wien, Austria
| | - Nadiia I Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstrasse 14, 1090 Wien, Austria
| | - Alexander Prado-Roller
- Universität Wien, Fakultät für Chemie, Institut für Anorganische Chemie und Zentrum für Röntgenstrukturanalyse, Währinger Strasse 42, 1090 Wien, Austria
| | - Markus Galanski
- Universität Wien, Fakultät für Chemie, Institut für Anorganische Chemie und NMR Zentrum, Währinger Strasse 42, 1090, Wien, Austria
| | - Hana Čipčić-Paljetak
- Center for Translational and Clinical Research, Croatian Center of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Donatella Verbanac
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstrasse 14, 1090 Wien, Austria
| |
Collapse
|
34
|
Yao S, Falaise C, Ivanov AA, Leclerc N, Hohenschutz M, Haouas M, Landy D, Shestopalov MA, Bauduin P, Cadot E. Hofmeister effect in the Keggin-type polyoxotungstate series. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00902d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chaotropic character of Keggin-type polyoxotungstate anions was evaluated with respect to their ability to bind to γ-cyclodextrin (γ-CD) by varying the global charge density of the nanometer-sized polyanion.
Collapse
Affiliation(s)
- Sa Yao
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | - Clément Falaise
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | - Anton A. Ivanov
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | | | - Mohamed Haouas
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492)
- ULCO
- Dunkerque
- France
| | | | | | - Emmanuel Cadot
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| |
Collapse
|
35
|
Qi B, An S, Luo J, Liu T, Song Y. Enhanced Macroanion Recognition of Superchaotropic Keggin Clusters Achieved by Synergy of Anion–π and Anion–Cation Interactions. Chemistry 2020; 26:16802-16810. [DOI: 10.1002/chem.202003083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/15/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Bo Qi
- Beijing Advanced Innovation Center, for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Sai An
- Beijing Advanced Innovation Center, for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Jiancheng Luo
- Department of Polymer Science The University of Akron Akron Ohio 44325-3909 USA
| | - Tianbo Liu
- Department of Polymer Science The University of Akron Akron Ohio 44325-3909 USA
| | - Yu‐Fei Song
- Beijing Advanced Innovation Center, for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| |
Collapse
|
36
|
Merhi T, Jonchère A, Girard L, Diat O, Nuez M, Viñas C, Bauduin P. Highlights on the Binding of Cobalta-Bis-(Dicarbollide) with Glucose Units. Chemistry 2020; 26:13935-13947. [PMID: 32628301 DOI: 10.1002/chem.202002123] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Metalla-bis-dicarbollides, such as the cobalta-bis-dicarbollide (COSAN) anion [Co(C2 B9 H11 )2 ]- , have attracted much attention in biology but a deep understanding of their interactions with cell components is still missing. For this purpose, we studied the interactions of COSAN with the glucose moiety, which is ubiquitous at biological interfaces. Octyl-glucopyranoside surfactant (C8G1) was chosen as a model as it self-assembles in water and creates a hydrated glucose-covered interface. At low COSAN content and below the critical micellar concentration (CMC) of C8G1, COSAN binds to C8G1 monomers through the hydrophobic effect. Above the CMC of C8G1, COSAN adsorbs onto C8G1 micelles through the superchaotropic effect. At high COSAN concentrations, COSAN disrupts C8G1 micelles and the assemblies become similar to COSAN micelles but with a small amount of solubilized C8G1. Therefore, COSAN binds in a versatile way to C8G1 through either the hydrophobic or superchaotropic effect depending on their relative concentrations.
Collapse
Affiliation(s)
- Tania Merhi
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, 30207, Marcoule, France
| | - Alban Jonchère
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, 30207, Marcoule, France
| | - Luc Girard
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, 30207, Marcoule, France
| | - Olivier Diat
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, 30207, Marcoule, France
| | - Miquel Nuez
- Institute de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Clara Viñas
- Institute de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Pierre Bauduin
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, 30207, Marcoule, France
| |
Collapse
|
37
|
Chen J, Luo J, Bekele S, Tsige M, Liu T. Rational Control of Self-Recognition of Macroionic γ-Cyclodextrin by Host-Guest Interaction with Super-Chaotropic Borate Cluster Ions. Chempluschem 2020; 85:2316-2319. [PMID: 33058510 DOI: 10.1002/cplu.202000536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/26/2020] [Indexed: 11/11/2022]
Abstract
We report a feasible method to control self-recognition during the self-assembly of a hydrophilic macroion, phosphate-functionalized γ-cyclodextrin (γ-CD-P), though host-guest interactions. We confirmed that γ-CD-P can form a host-guest complex with a super-chaotropic anion, namely the B12 F12 2- borate cluster, by using NMR spectroscopy and isothermal titration calorimetry. The loaded γ-CD-P, which has a higher charge density, can be distinguished from the uncomplexed γ-CD-P, leading to self-sorting behavior during the self-assembly process, confirmed by the formation of two types of individual supramolecular structures (Rh of ca. 57 nm and 18 nm, determined by light scattering) instead of hybrid structures in mixed dilute solution. This self-recognition behavior is accounted for by the difference in intermolecular electrostatic interactions arising from the loading.
Collapse
Affiliation(s)
- Jiahui Chen
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Jiancheng Luo
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Selemon Bekele
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Mesfin Tsige
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Tianbo Liu
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| |
Collapse
|
38
|
Chen J, Qian K, Xiao K, Luo J, Li H, Ma T, Kortz U, Tsige M, Liu T. Co-ion Effects in the Self-Assembly of Macroions: From Co-ions to Co-macroions and to the Unique Feature of Self-Recognition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10519-10527. [PMID: 32787054 DOI: 10.1021/acs.langmuir.0c01797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Macroions, as soluble ions with a size on the nanometer scale, show unique solution behavior different from those of simple ions and large colloidal suspensions. In macroionic solutions, the counterions are known to be important and well-explored. However, the role of co-ions (ions carrying the same type of charge as the macroions) is often ignored. Here, through experimental and simulation studies, we demonstrate the role of co-ions as a function of co-ion size on their interaction with the macroions (using {Mo72Fe30} and {SrPd12} as models) and the related self-assembly into blackberry-type structures in dilute solutions. Several regimes of unique co-ion effects are clearly identified: small ions (halides, oxoacid ions), subnanometer-scaled bulky ions (lacunary Keggin and dodecaborate ions), and those with sizes comparable to the macroions. Small co-ions have no observable effect on the self-assembly of fully hydrophilic {Mo72Fe30}, while due to hydrophobic interaction and intermolecular hydrogen bonds, the small co-ions show influences on the self-assembly of hydrophobic {SrPd12}. Subnanometer ions, a.k.a. "superchaotropic ions", are still too small to assemble into a blackberry by themselves, but they can coassemble with the macroions, showing a strong interaction with the macroionic system. When the co-ion size is comparable to that of the macroions, they assemble independently instead of assembling with the macroions, leading to the previously reported unique self-recognition phenomenon for macroions.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Kun Qian
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Kexing Xiao
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Jiancheng Luo
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Hui Li
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Tian Ma
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Mesfin Tsige
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Tianbo Liu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
39
|
Chupina AV, Mukhacheva AA, Abramov PA, Sokolov MN. Complexation and Isomerization of [β-Mo8O26]4− in the Presence of Ag+ and DMF. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620020158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Xu Q, Xu B, Kong H, He P, Wang J, Kannan T, Ma P, Wang J, Niu J. Synthesis and Characterization of a Crown-Shaped 36-Molybdate Cluster and Application in Catalyzing Knoevenagel Condensation. Inorg Chem 2020; 59:10665-10672. [DOI: 10.1021/acs.inorgchem.0c01122] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qiaofei Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Baijie Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Hui Kong
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Peipei He
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Jiawei Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Thirumurthy Kannan
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| |
Collapse
|
41
|
Yuan H, Liu G. Ionic effects on synthetic polymers: from solutions to brushes and gels. SOFT MATTER 2020; 16:4087-4104. [PMID: 32292998 DOI: 10.1039/d0sm00199f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ionic effects on synthetic polymers have attracted extensive attention due to the crucial role of ions in the determination of the properties of synthetic polymers. This review places the focus on specific ion effects, multivalent ion effects, and ionic hydrophilicity/hydrophobicity effects in synthetic polymer systems from solutions to brushes and gels. The specific ion effects on neutral polymers are determined by both the direct and indirect specific ion-polymer interactions, whereas the ion specificities of charged polymers are mainly dominated by the specific ion-pairing interactions. The ionic cross-linking effect exerted by the multivalent ions is widely used to tune the properties of polyelectrolytes, while the reentrant behavior of polyelectrolytes in the presence of multivalent ions still remains poorly understood. The ionic hydrophilicity/hydrophobicity effects not only can be applied to make strong polyelectrolytes thermosensitive, but also can be used to prepare polymeric nano-objects and to control the wettability of polyelectrolyte brush-modified surfaces. The not well-studied ionic hydrogen bond effects are also discussed in the last section of this review.
Collapse
Affiliation(s)
- Haiyang Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026, P. R. China.
| | | |
Collapse
|
42
|
Hohenschutz M, Grillo I, Diat O, Bauduin P. How Nano-Ions Act Like Ionic Surfactants. Angew Chem Int Ed Engl 2020; 59:8084-8088. [PMID: 32125752 DOI: 10.1002/anie.201916193] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Recently, nanometric ions were shown to adsorb to hydrated neutral surfaces and to bind to the cavities of macrocyclic molecules with an unexpectedly strong affinity arising from a solvent-mediated effect named superchaotropicity. We show here that nano-ions at low concentrations (μm range), similarly to anionic surfactants, induce the spontaneous transformation of a swollen lyotropic lamellar phase of non-ionic surfactant into a vesicle phase. This transition occurs when the neutral lamellae acquire charges, either by adsorption of the nano-ions onto, or by anchoring of the ionic surfactant into the lamellae. In contrast to ionic surfactants, nano-ions strongly dehydrate the neutral surfactant assemblies. As a conclusion, these purely inorganic nanometric ions act as alternatives to the widely used organic ionic surfactants.
Collapse
Affiliation(s)
| | - Isabelle Grillo
- Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Olivier Diat
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| | - Pierre Bauduin
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| |
Collapse
|
43
|
Hohenschutz M, Grillo I, Diat O, Bauduin P. How Nano‐Ions Act Like Ionic Surfactants. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Isabelle Grillo
- Institut Laue-Langevin (ILL) 71 Avenue des Martyrs 38000 Grenoble France
| | - Olivier Diat
- ICSMCEACNRSENSCMUniv Montpellier Marcoule France
| | | |
Collapse
|
44
|
Matějíček P. Erratic ions: self-assembly and coassembly of ions of nanometer size and of irregular structure. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Liu X, Xie X, Du Z, Li B, Wu L, Li W. Aqueous self-assembly of arginine and K 8SiW 11O 39: fine-tuning the formation of a coacervate intended for sprayable anticorrosive coatings. SOFT MATTER 2019; 15:9178-9186. [PMID: 31584062 DOI: 10.1039/c9sm01511f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coacervates are commonly thought to be formed from the liquid-liquid phase separation of macromolecules, such as oppositely charged polyelectrolytes, proteins or peptides. Unlike conventional systems, we here show an entirely novel coacervate obtained from the self-assembly of arginine (Arg) and K8[α-SiW11O39] (SiW11) in water. The formation of the coacervate Arg/SiW11 is confirmed by combined techniques, including turbidity, rheology, optical microscopy, and scanning and transmission electron microscopy. Assessment of the rheological response reveals that the complex coacervate exhibits shear thinning behaviour. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy, elemental analysis and thermogravimetric analysis are used to characterize the coacervate. The thermodynamic parameters of the coacervation are monitored by isothermal titration calorimetry (ITC), which identifies that the formation of the coacervate by mixing of Arg and SiW11 is driven by a combination of entropic and enthalpic effects. The resultant coacervate shows a typical upper critical solution temperature (UCST) phenomenon, which is strongly dependent on the concentration of the species. Furthermore, we demonstrate that the coacervation could be tuned by stoichiometry and pH. A phase diagram for the complexation of Arg and SiW11 thus has been constructed using turbidity measurements. Such a phase diagram is a very useful tool for the preparation of coacervates from a specific combination of Arg and SiW11. Finally, the acid induced gelation of the coacervate has been explored to fabricate an anticorrosive coating to protect a copper plate from exposure to acid vapour.
Collapse
Affiliation(s)
- Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Xiaoming Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Zhanglei Du
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| |
Collapse
|
46
|
Zhang LL, Miao WK, Ren LJ, Yan YK, Lin Y, Wang W. Twining Poly(polyoxometalate) Chains into Nanoropes. Chemistry 2019; 25:13396-13401. [PMID: 31397509 DOI: 10.1002/chem.201902875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/08/2019] [Indexed: 12/22/2022]
Abstract
Organic polymers and inorganic clusters belong to two different disciplines and have completely different properties and structures. When a cluster is attached to the backbone of a polymer as a pendant, the resultant hybrid polymers (polyclusters) exhibit unique behaviours totally different from those of conventional polymers owing to the nanoscale size of the cluster and its particular interactions. Herein, the aggregation of a poly(polyoxometalate)-a polynorbornene backbone with inorganic polyoxometalate cluster pendants-upon addition of a non-solvent to its dilute solution is reported. A three-dimensional network of tangled and snake-like nanothreads was observed. Direct visualisation of individual nanoscale clusters enabled identification of single chains within the nanothreads. These observations suggest that during the process of aggregation, the hybrid polymer forms curved or extended chains as a consequence of an armouring effect in which the collapsed cluster pendants wrap around the backbone. The collapse occurs because they become less soluble in the solvent/non-solvent mixture. The extended chains then become entwined and form nanoropes consisting of multiple chains wound around each other. This study provides a deeper understanding of the nature of polyclusters and should also prove useful for their future development and application.
Collapse
Affiliation(s)
- Lan-Lan Zhang
- Center for Synthetic Soft Materials, Key Laboratory of, Functional Polymer Materials of Ministry of Education and Institute of, Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Wen-Ke Miao
- Center for Synthetic Soft Materials, Key Laboratory of, Functional Polymer Materials of Ministry of Education and Institute of, Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Li-Jun Ren
- Center for Synthetic Soft Materials, Key Laboratory of, Functional Polymer Materials of Ministry of Education and Institute of, Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yu-Kun Yan
- Center for Synthetic Soft Materials, Key Laboratory of, Functional Polymer Materials of Ministry of Education and Institute of, Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Wei Wang
- Center for Synthetic Soft Materials, Key Laboratory of, Functional Polymer Materials of Ministry of Education and Institute of, Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
47
|
Assaf KI, Begaj B, Frank A, Nilam M, Mougharbel AS, Kortz U, Nekvinda J, Grüner B, Gabel D, Nau WM. High-Affinity Binding of Metallacarborane Cobalt Bis(dicarbollide) Anions to Cyclodextrins and Application to Membrane Translocation. J Org Chem 2019; 84:11790-11798. [DOI: 10.1021/acs.joc.9b01688] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Khaleel I. Assaf
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Barbara Begaj
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Angelina Frank
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Mohamed Nilam
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Ali S. Mougharbel
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Jan Nekvinda
- Institute of Inorganic Chemistry, Czech Academy of Sciences, v.v.i., Hlavní 1001, CZ-250 68 Řež, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry, Czech Academy of Sciences, v.v.i., Hlavní 1001, CZ-250 68 Řež, Czech Republic
| | - Detlef Gabel
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Werner M. Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| |
Collapse
|
48
|
Wang W, Li C, Pi Y, Wang J, Tan R, Yin D. Chiral salen Cr(iii) complexes encapsulated in thermo-responsive polymer nanoreactors for asymmetric epoxidation of alkenes in water. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01398a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Thermo-responsive polymer nanoreactors containing chiral salen Cr(iii) complexes exhibited unprecedented efficiency and facile reusability in asymmetric epoxidation of unfunctionalized olefins in water.
Collapse
Affiliation(s)
- Weiying Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- Hunan Normal University
- Changsha 410081
| | - Chaoping Li
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- Hunan Normal University
- Changsha 410081
| | - Yibing Pi
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- Hunan Normal University
- Changsha 410081
| | - Jiajun Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- Hunan Normal University
- Changsha 410081
| | - Rong Tan
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- Hunan Normal University
- Changsha 410081
| | - Donghong Yin
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- Hunan Normal University
- Changsha 410081
| |
Collapse
|