1
|
Reiß A, Göttlicher J, Vitova T, Feldmann C. Semiconducting Manganese-Bipyridyl Coordination Polymer via a Manganese-Metal-Nanoparticle Approach. Inorg Chem 2025; 64:9469-9476. [PMID: 40319394 DOI: 10.1021/acs.inorgchem.5c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The coordination polymer [Na2Mn2(4,4'-bipy)7(2,2'-bipy)4] is prepared by a novel redox approach using Mn(0) nanoparticles (2.4 ± 0.3 nm in size) as the starting material. The Mn(0) nanoparticles are then reacted with 2,2'-bipyridine (2,2'-bipy) and 4,4'-bipyridine (4,4'-bipy) in toluene at 80 °C. The title compound is composed of ∞1[Mn(2,2'-bipy)(4,4'-bipy)3/2] chains and double-stranded ∞1[Na2(2,2'-bipy)2(4,4'-bipy)4] chains forming an interpenetrating coordination network with five noncharged bipy ligands and six anionic [bipy]- ligands. Such composition and coordination with bipy as sole ligand and anion are observed for the first time. Structure and composition are validated by X-ray diffraction based on single crystals and powders, XANES spectroscopy, infrared spectroscopy, and elemental analysis. Optical spectroscopy of the black-red, shiny metallic crystals shows absorption below 350 nm with a band gap <1.5 eV. Power-voltage curves indicate semiconducting behavior with a positive temperature gradient and silicon-like conductivity (3 × 10-4 S/m, 25 °C). In sum, the redox approach using Mn(0) nanoparticles allows for preparation of a Mn-coordinated interpenetrating network with 2,2'-bipy and 4,4'-bipy as sole ligands and semiconducting properties. The redox approach generally offers the option to realize further bipyridyl networks with other metals and semiconducting or metallic properties.
Collapse
Affiliation(s)
- Andreas Reiß
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstrasse 15, D-76131 Karlsruhe, Germany
| | - Jörg Göttlicher
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
| | - Tonya Vitova
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
| | - Claus Feldmann
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstrasse 15, D-76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Zhou Q, Dong X, Chi G, Cao XY, Zhang N, Wu S, Ma Y, Zhang ZH, Zhang L. Cinquefoil Knot Possessing Dynamic and Tunable Metal Coordination. J Am Chem Soc 2024; 146:22405-22412. [PMID: 39099103 DOI: 10.1021/jacs.4c05376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
While the majority of knots are made from the metal-template approach, the use of entangled, constrained knotted loops to modulate the coordination of the metal ions remains inadequately elucidated. Here, we report on the coordination chemistry of a 140-atom-long cinquefoil knotted strand comprising five tridentate and five bidentate chelating vacancies. The knotted loop is prepared through the self-assembly of asymmetric "3 + 2" dentate ligands with copper(II) ions that favor five-coordination geometry. The formation of the copper(II) pentameric helicate is confirmed by X-ray crystallography, while the corresponding copper(II) knot is characterized by XPS and LR-/HR ESI-MS. Upon removal of the original template, the knotted ligand facilitates zinc(II) ions, which typically form four- or six-coordination geometries, resulting in the formation of an otherwise inaccessible zinc(II) metallic knot with coordinatively unsaturated metal centers. The coordination numbers and geometries of the zinc(II) cations are undoubtedly determined by X-ray crystallography. Despite the kinetically labile nature and high reversibility of the zinc(II) complex preventing the detection of 5-to-6 coordination equilibrium in solution, the effects on metal-ion coordination induced by knotting hold promise for fine-tuning the coordination of metal complexes.
Collapse
Affiliation(s)
- Qi Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xue Dong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Guanyu Chi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Yu Cao
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Ningjin Zhang
- Instrumental Analytical Center of Shanghai Jiao Tong University, Shanghai 201100, P. R. China
| | - Shitao Wu
- School of Physical Science and Technology and Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yanhang Ma
- School of Physical Science and Technology and Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Liang Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
3
|
Yao Y, Tse YC, Lai SKM, Shi Y, Low KH, Au-Yeung HY. Dynamic mechanostereochemical switching of a co-conformationally flexible [2]catenane controlled by specific ionic guests. Nat Commun 2024; 15:1952. [PMID: 38433258 PMCID: PMC10909852 DOI: 10.1038/s41467-024-46099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Responsive synthetic receptors for adaptive recognition of different ionic guests in a competitive environment are valuable molecular tools for not only ion sensing and transport, but also the development of ion-responsive smart materials and related technologies. By virtue of the mechanical chelation and ability to undergo large-amplitude co-conformational changes, described herein is the discovery of a chameleon-like [2]catenane that selectively binds copper(I) or sulfate ions and its associated co-conformational mechanostereochemical switching. This work highlights not only the advantages and versatility of catenane as a molecular skeleton in receptor design, but also its potential in constructing complex responsive systems with multiple inputs and outputs.
Collapse
Affiliation(s)
- Yueliang Yao
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yuen Cheong Tse
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | | | - Yixiang Shi
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Kam-Hung Low
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Synthetic Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Zhao H, Wijerathna AMSD, Dong Q, Bai Q, Jiang Z, Yuan J, Wang J, Chen M, Zirnheld M, Li R, Liu D, Wang P, Zhang Y, Li Y. Adjusting the Architecture of Heptagonal Metallo-Macrocycles by Embedding Metal Nodes into the Backbone. Angew Chem Int Ed Engl 2024; 63:e202318029. [PMID: 38087428 DOI: 10.1002/anie.202318029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Indexed: 12/30/2023]
Abstract
Coordination-driven self-assembly has been extensively employed for the bottom-up construction of discrete metallo-macrocycles. However, the prevalent use of benzene rings as the backbone limits the formation of large metallo-macrocycles with more than six edges. Herein, by embedding metal nodes into the ligand backbone, we successfully regulated the ligand arm angle and assembled two giant heptagonal metallo-macrocycles with precise control. The angle between two arms at position 4 of the central terpyridine (tpy) extended after complexation with metal ions, leading to ring expansion of the metallo-macrocycle. The assembled structures were straightforwardly identified through multi-dimensional NMR spectroscopy (1 H, COSY, NOESY), multidimensional mass spectrometry analysis (ESI-MS and TWIM-MS), transmission electron microscopy (TEM), as well as scanning tunneling microscopy (STM). In addition, the catalytic performances of metallo-macrocycles in the oxidation of thioanisole were studied, with both supramolecules exhibiting good conversion rates. Furthermore, fiber-like nanostructures were observed from single-molecule heptagons by hierarchical self-assembly.
Collapse
Affiliation(s)
- He Zhao
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | | | - Qiangqiang Dong
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jun Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Markus Zirnheld
- Department of Physics, Old Dominion University, Norfolk, VA 23529, USA
| | - Rockwell Li
- Department of Physics, Old Dominion University, Norfolk, VA 23529, USA
| | - Die Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Yuan Zhang
- Department of Physics, Old Dominion University, Norfolk, VA 23529, USA
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
5
|
Sarwa A, Białońska A, Sobieraj M, Martínez JP, Trzaskowski B, Szyszko B. Iminopyrrole-Based Self-Assembly: A Route to Intrinsically Flexible Molecular Links and Knots. Angew Chem Int Ed Engl 2024; 63:e202316489. [PMID: 38032333 DOI: 10.1002/anie.202316489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
The use of 2,5-diformylpyrrole in self-assembly reactions with diamines and Zn(II)/Cd(II) salts allowed the preparation of [2]catenane, trefoil knot, and Borromean rings. The intrinsically dynamic nature of the diiminopyrrole motif rendered all of the formed assemblies intramolecularly flexible. The presence of diiminopyrrole revealed new coordination motifs and influenced the host-guest chemistry of the systems, as illustrated by hexafluorophosphate encapsulation by Borromean rings.
Collapse
Affiliation(s)
- Aleksandra Sarwa
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-387, Wrocław, Poland
| | - Agata Białońska
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-387, Wrocław, Poland
| | - Michał Sobieraj
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-387, Wrocław, Poland
| | - Juan Pablo Martínez
- Centre of New Technologies, University of Warsaw, 2c Banach St., 02-097, Warsaw, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, 2c Banach St., 02-097, Warsaw, Poland
| | - Bartosz Szyszko
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-387, Wrocław, Poland
| |
Collapse
|
6
|
Lu X, Huang JJ, Chen T, Zheng J, Liu M, Wang XY, Li YX, Niu X, Dang LL. A Coordination-Driven Self-Assembly and NIR Photothermal Conversion Study of Organometallic Handcuffs. Molecules 2023; 28:6826. [PMID: 37836669 PMCID: PMC10574444 DOI: 10.3390/molecules28196826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Due to their fascinating topological structures and application prospects, coordination supramolecular complexes have continuously been studied by scientists. However, the controlled construction and property study of organometallic handcuffs remains a significant and challenging research subject in the area of supramolecular chemistry. Hence, a series of tetranuclear organometallic and heterometallic handcuffs bearing different size and metal types were rationally designed and successfully synthesized by utilizing a quadridentate pyridyl ligand (tetra-(3-pyridylphenyl)ethylene) based on three Cp*Rh (Cp* = η5-C5Me5) fragments bearing specific longitudinal dimensions and conjugated planes. These results were determined with single-crystal X-ray diffraction analysis technology, ESI-MS NMR spectroscopy, etc. Importantly, the photoquenching effect of Cp* groups and the discrepancy of intermolecular π-π stacking interactions between building block and half-sandwich fragments promote markedly different photothermal conversion results. These results will further push the synthesis of topological structures and the development of photothermal conversion materials.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Jing-Jing Huang
- Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Jie Zheng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Ming Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xin-Yi Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Yu-Xin Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- College of Science, Shihezi University, Shihezi 832003, China
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
7
|
Ashbridge Z, Fielden SDP, Leigh DA, Pirvu L, Schaufelberger F, Zhang L. Knotting matters: orderly molecular entanglements. Chem Soc Rev 2022; 51:7779-7809. [PMID: 35979715 PMCID: PMC9486172 DOI: 10.1039/d2cs00323f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| | - Lucian Pirvu
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - Liang Zhang
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| |
Collapse
|
8
|
Munasinghe VK, Pancholi J, Manawadu D, Zhang Z, Beer PD. Mechanical Bond Enhanced Lithium Halide Ion-Pair Binding by Halogen Bonding Heteroditopic Rotaxanes. Chemistry 2022; 28:e202201209. [PMID: 35621330 PMCID: PMC9541756 DOI: 10.1002/chem.202201209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/10/2022]
Abstract
A family of novel halogen bonding (XB) and hydrogen bonding (HB) heteroditopic [2]rotaxane host systems constructed by active metal template (AMT) methodology, were studied for their ability to cooperatively recognise lithium halide (LiX) ion-pairs. 1 H NMR ion-pair titration experiments in CD3 CN:CDCl3 solvent mixtures revealed a notable "switch-on" of halide anion binding in the presence of a co-bound lithium cation, with rotaxane hosts demonstrating selectivity for LiBr over LiI. The strength of halide binding was shown to greatly increase with increasing number of halogen bond donors integrated into the interlocked cavity, where an all-XB rotaxane was found to be the most potent host for LiBr. DFT calculations corroborated these findings, determining the mode of LiX ion-pair binding. Notably, ion-pair binding was not observed with the corresponding XB/HB macrocycles alone, highlighting the cooperative, heteroditopic, rotaxane axle-macrocycle component mechanical bond effect as an efficient strategy for ion-pair recognition in general.
Collapse
Affiliation(s)
- Vihanga K. Munasinghe
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX13TAUK
| | - Jessica Pancholi
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX13TAUK
| | - Dilhan Manawadu
- Department of ChemistryUniversity of Oxford Physical and Theoretical Chemistry LaboratoryOxfordOX13QZUK
| | - Zongyao Zhang
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX13TAUK
| | - Paul D. Beer
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX13TAUK
| |
Collapse
|
9
|
McTernan C, Davies JA, Nitschke JR. Beyond Platonic: How to Build Metal-Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chem Rev 2022; 122:10393-10437. [PMID: 35436092 PMCID: PMC9185692 DOI: 10.1021/acs.chemrev.1c00763] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/17/2022]
Abstract
The field of metallosupramolecular chemistry has advanced rapidly in recent years. Much work in this area has focused on the formation of hollow self-assembled metal-organic architectures and exploration of the applications of their confined nanospaces. These discrete, soluble structures incorporate metal ions as 'glue' to link organic ligands together into polyhedra.Most of the architectures employed thus far have been highly symmetrical, as these have been the easiest to prepare. Such high-symmetry structures contain pseudospherical cavities, and so typically bind roughly spherical guests. Biomolecules and high-value synthetic compounds are rarely isotropic, highly-symmetrical species. To bind, sense, separate, and transform such substrates, new, lower-symmetry, metal-organic cages are needed. Herein we summarize recent approaches, which taken together form the first draft of a handbook for the design of higher-complexity, lower-symmetry, self-assembled metal-organic architectures.
Collapse
Affiliation(s)
| | | | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
10
|
Li L, Liu H, Tang J, Du P, Zhang Y, Qian Y. Embedding of Functionalized Coordination Cages and a Molecular Knot in a Polymeric Membrane for Potentiometric Sensing of Environmentally Important Oxyanions and Halides. ACS Sens 2022; 7:1602-1611. [PMID: 35499166 DOI: 10.1021/acssensors.2c00782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Three kinds of coordination cages and a molecular knot with inductively activated +P-H, N-H, or C-H hydrogen bond donors anchoring in the functionalized cavities were inspected as ionophores to develop polymeric membrane ISEs for potentiometric sensing of environmentally important oxyanions and halides. The proposed ISEs displayed significant preference for perrhenate, phosphate, or chloride with a selectivity pattern distinctively different from the sequence depending on the Gibbs free energy of hydration owing to the high degree of shape, charge, and size selectivity originating from the rigidity and complementarity of the binding cavities. To gain further insight into the response characters of the proposed ISEs, the binding constants of ionophore-anion complexes in the membrane phase were investigated, and the binding affinity, together with the Hofmeister series, correlates well with the determined selectivity pattern of the proposed ISEs. Optimizing the composition of the membrane such as lipophilic additives and plasticizers produced ISEs displaying Nernstian/near-Nernstian potentiometric responses to primary anions with a wide linear range, improved detection limits, good reversibility, and satisfying lifetime. Potentiometric determination of perrhenate, phosphate, and chloride in river water, mineral water, and artificial serum samples was achieved with good recovery and accuracy using the proposed ISEs, demonstrating their potential for real-life applications. These results will shed new light on how novel ionophores could be designed for potentiometric sensing and broaden the scope of host-guest chemistry of coordination cages and molecular knots.
Collapse
Affiliation(s)
- Long Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Haitao Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jing Tang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Pengcheng Du
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yihao Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yi Qian
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
11
|
Dang LL, Li TT, Zhang TT, Zhao Y, Chen T, Gao X, Ma LF, Jin GX. Highly selective synthesis and near-infrared photothermal conversion of metalla-Borromean ring and [2]catenane assemblies. Chem Sci 2022; 13:5130-5140. [PMID: 35655550 PMCID: PMC9093202 DOI: 10.1039/d2sc00437b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Although the selective synthesis of complicated supramolecular architectures has seen significant progress in recent years, the exploration of the properties of these complexes remains a fascinating challenge. Herein, a series of new supramolecular topologies, metalla[2]catenanes and Borromean ring assemblies, were constructed based on appropriate Cp*Rh building blocks and two rigid alkynyl pyridine ligands (L1, L2) via coordination-driven self-assembly. Interestingly, minor differences between the two rigid alkynyl pyridine ligands with/without organic substituents led to products with dramatically different topologies. Careful structural analysis showed that π–π stacking interactions play a crucial role in stabilizing these [2]catenanes and Borromean ring assemblies, while also promoting nonradiative transitions and triggering photothermal conversion in both the solution and the solid states. These results were showcased through comparative studies of the NIR photothermal conversion efficiencies of the Borromean ring assemblies, [2]catenanes and metallarectangles, which exhibited a wide range of photothermal conversion efficiencies (12.64–72.21%). The influence of the different Cp*Rh building blocks on the NIR photothermal conversion efficiencies of their assemblies was investigated. Good photothermal conversion properties of the assemblies were also found in the solid state. This study provides a new strategy to construct valuable half-sandwich-based NIR photothermal conversion materials while also providing promising candidates for the further development of materials science. The selective synthesis of three kinds of supermolecular topologies, molecular Borromean ring, [2]catenane and metallarectangle based on two alkynyl ligands is presented. Remarkably, the NIR photothermal conversion efficiency was found to improve as the π–π stacking increases.![]()
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China.,Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| | - Ting-Ting Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China.,College of Chemistry and Bioengineering (Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials), Guilin University of Technology Guilin 541004 P. R. China
| | - Ting-Ting Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Xiang Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| |
Collapse
|
12
|
Jiang C, Hu SJ, Zhou LP, Yang J, Sun QF. Lanthanide-organic pincer hosts with allosteric-controlled metal ion binding specificity. Chem Commun (Camb) 2022; 58:5494-5497. [PMID: 35416812 DOI: 10.1039/d2cc01379g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of lanthanide-organic pincer hosts were synthesized, which showed allosteric-controlled metal ion binding selectivities due to the lanthanide-induced subtle changes of the central vacant binding site.
Collapse
Affiliation(s)
- Chen Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Jian Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Liu D, Lin YJ, Jin GX. Guest Encapsulation and Self-Assembly of a Box-like Metalla-Rectangle Featuring Cp*Rh Fragments. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Danjo H, Asai K, Tanaka T, Ono D, Kawahata M, Iwatsuki S. Preparation of tricationic tris(pyridylpalladium(II)) metallacyclophane as an anion receptor. Chem Commun (Camb) 2022; 58:2196-2199. [PMID: 35072179 DOI: 10.1039/d1cc05563a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A tricationic tris(pyridylpalladium(II)) metallacyclophane was prepared from 3,5-dibromopyridine by a successive treatment with tetrakis(triphenylphosphine)palladium(0), diphosphine, and silver salt. Single-crystal X-ray diffraction analysis revealed that the metallacyclophane incorporated one of three counter anions into its hole-shaped cavity to form multidentate C-H⋯anion interactions. Solution-phase 1H NMR experiments in DMSO-d6 indicated that the metallacyclophane exhibited selective binding behavior toward nitrate, tetrafluoroborate, p-toluenesulfonate, perchlorate, and hydrogen sulfate ions, whereas the hexafluoroantimonate ion exhibited only weak interaction toward the metallacyclophane. This anion recognition behavior was further demonstrated by an extraction experiment of water-soluble sulfonate dyes.
Collapse
Affiliation(s)
- Hiroshi Danjo
- Department of Chemistry, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501, Japan.
| | - Kohei Asai
- Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501, Japan
| | - Tomoya Tanaka
- Department of Chemistry, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501, Japan.
| | - Daiki Ono
- Department of Chemistry, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501, Japan.
| | - Masatoshi Kawahata
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Satoshi Iwatsuki
- Department of Chemistry, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501, Japan.
| |
Collapse
|
15
|
Dang LL, Zhang TT, Chen T, Zhao Y, Zhao CC, Aznarez F, Sun KX, Ma LF. Coordination assembly and NIR photothermal conversion of Cp*Rh-based supramolecular topologies based on distinct conjugated systems. Org Chem Front 2022. [DOI: 10.1039/d2qo01107g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The selective synthesis and transformation of Borromean rings and [2]catenane, are presented based on linear/aromatic conjugated ligands through different stacking interactions, promoting nonradiative transitions and trigger photothermal conversion.
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Ting-Ting Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| | - Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Chen-Chen Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Francisco Aznarez
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Kai-Xin Sun
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|
16
|
Macreadie LK, Gilchrist AM, McNaughton DA, Ryder WG, Fares M, Gale PA. Progress in anion receptor chemistry. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Dang LL, Li TT, Cui Z, Sui D, Ma LF, Jin GX. Selective construction and stability studies of a molecular trefoil knot and Solomon link. Dalton Trans 2021; 50:16984-16989. [PMID: 34612256 DOI: 10.1039/d1dt02755g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two novel compounds, a molecular trefoil knot and a Solomon link, were constructed successfully through the cooperation of multiple π-π stacking interactions. A reversible transformation between the trefoil knot and the corresponding [2 + 2] macrocycle could be achieved by solvent- and guest-induced effects. However, the Solomon link maintains its stability in different concentrations, solvents and guest molecules. Single-crystal X-ray crystallographic data, NMR spectroscopic experiments and ESI-MS support the synthesis and structural assignments. These synthesis methods open the door to the further development of smart materials, which will push the advancement of rational design of biomaterials.
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Ting-Ting Li
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China. .,College of Chemistry and Bioengineering (Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials), Guilin University of Technology, Guilin 541004, P. R. China
| | - Zheng Cui
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China.
| | - Dong Sui
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China.
| |
Collapse
|
18
|
Affiliation(s)
- Arthur H. G. David
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310021 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
19
|
Morita H, Akine S, Nakamura T, Nabeshima T. Exclusive formation of a meridional complex of a tripodand and perfect suppression of guest recognition. Chem Commun (Camb) 2021; 57:2124-2127. [PMID: 33538748 DOI: 10.1039/d1cc00146a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tripodal ligands have been utilized for complexation-induced structural change, but all the tripodal complexes reported so far are facial isomers, which do not completely reduce the recognition ability by closing the binding pocket. We now report the first example of the selective synthesis of a meridional tripodal complex. The tripodal ligand with a 1,3,5-triethyl-2,4,6-tris(methylene)benzene pivot possessing 2,2'-bipyridine on each arm exclusively formed a mononuclear complex with the mer-[Fe(bpy)]2+ unit. The meridional tripodal complex has a unique structure in which one bipyridine unit is self-penetrated. As a result of cavity blockage, the ion recognition property of the tripodand has been successfully suppressed.
Collapse
Affiliation(s)
- Hiroki Morita
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takashi Nakamura
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Tatsuya Nabeshima
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
20
|
August DP, Jaramillo-Garcia J, Leigh DA, Valero A, Vitorica-Yrezabal IJ. A Chiral Cyclometalated Iridium Star of David [2]Catenane. J Am Chem Soc 2021; 143:1154-1161. [DOI: 10.1021/jacs.0c12038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- David P. August
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | | | - David A. Leigh
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alberto Valero
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | | |
Collapse
|
21
|
Gao X, Cui Z, Lin YJ, Jin GX. Construction of organometallic trefoil knots and one-dimensional chains featuring half-sandwich Cp*Rh corner units and an abnormal zwitterion ligand. Org Chem Front 2021. [DOI: 10.1039/d0qo01279c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An abnormal flexible O-coordinated zwitterion ligand L shows self-adaptive conformation behaviour in chemical self-assembly. Two trefoil knots were obtained with C-shaped ligand L and two novel 1D chains were obtained with Z-shaped ligand L.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| | - Zheng Cui
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| | - Yue-Jian Lin
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| | - Guo-Xin Jin
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| |
Collapse
|
22
|
Yang YD, Chen XL, Sessler JL, Gong HY. Emergent Self-Assembly of a Multicomponent Capsule via Iodine Capture. J Am Chem Soc 2020; 143:2315-2324. [PMID: 33356188 DOI: 10.1021/jacs.0c11838] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Described here is a three-component self-assembly system that displays emergent behavior that differs from that of its constituents. The system comprises an all-hydrocarbon octaaryl macrocycle cyclo[8](1,3-(4,6-dimethyl)benzene (D4d-CDMB-8), corannulene (Cora), and I2. No appreciable interaction is seen between any pair of these three-components, either in cyclohexane or under various crystallization conditions. On the other hand, when all three-components are mixed in cyclohexane and allowed to undergo crystallization, a supramolecular iodine-containing capsule, ((D4d-CDMB-8)3⊃(Cora)2)⊃I2, is obtained. This all-hydrocarbon capsule consists of three D4d-CDMB-8 and two Cora subunits and contains a centrally bound I2 molecule as inferred from single-crystal and powder X-ray diffraction studies as well as solid-state 13C NMR and Raman spectroscopy. These analyses were complemented by solution-phase 1H NMR and UV-vis spectroscopic studies. No evidence of I2 escape from the capsule is seen, even at high temperatures (e.g., up to 418 K). The bound I2 is likewise protected from reaction with alkali or standard reductants in aqueous solution (e.g., saturated NaOH(aq) or aqueous Na2S2O3). It was also found that a mixed powder containing D4d-CDMB-8 and Cora in a 3:2 molar ratio could capture saturated I2 vapor or iodine from aqueous sources (e.g., 1.0 mM I2 in NaCl (35 wt %) or I2 + NaI(aq) (1.0 mM each)). The present system displays structural and functional features that go beyond what would be expected on the basis of a simple sum-of-the-components analysis. As such, it illustrates a new approach to creating self-assembled ensembles with emergent features.
Collapse
Affiliation(s)
- Yu-Dong Yang
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
| | - Xu-Lang Chen
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
| |
Collapse
|
23
|
Ghosh P, Fridman N, Maayan G. From Distinct Metallopeptoids to Self‐Assembled Supramolecular Architectures. Chemistry 2020; 27:634-640. [DOI: 10.1002/chem.202003612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/25/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Pritam Ghosh
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| |
Collapse
|
24
|
August D, Borsley S, Cockroft SL, della Sala F, Leigh DA, Webb SJ. Transmembrane Ion Channels Formed by a Star of David [2]Catenane and a Molecular Pentafoil Knot. J Am Chem Soc 2020; 142:18859-18865. [PMID: 33084320 PMCID: PMC7745878 DOI: 10.1021/jacs.0c07977] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/19/2022]
Abstract
A (FeII)6-coordinated triply interlocked ("Star of David") [2]catenane (612 link) and a (FeII)5-coordinated pentafoil (51) knot are found to selectively transport anions across phospholipid bilayers. Allostery, topology, and building block stoichiometry all play important roles in the efficacy of the ionophoric activity. Multiple FeII cation coordination by the interlocked molecules is crucial: the demetalated catenane exhibits no anion binding in solution nor any transmembrane ion transport properties. However, the topologically trivial, Lehn-type cyclic hexameric FeII helicates-which have similar anion binding affinities to the metalated Star of David catenane in solution-also display no ion transport properties. The unanticipated difference in behavior between the open- and closed-loop structures may arise from conformational restrictions in the linking groups that likely enhances the rigidity of the channel-forming topologically complex molecules. The (FeII)6-coordinated Star of David catenane, derived from a hexameric cyclic helicate, is 2 orders of magnitude more potent in terms of ion transport than the (FeII)5-coordinated pentafoil knot, derived from a cyclic pentamer of the same building block. The reduced efficacy is reminiscent of multisubunit protein ion channels assembled with incorrect monomer stoichiometries.
Collapse
Affiliation(s)
- David
P. August
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Stefan Borsley
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Scott L. Cockroft
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh EH9 3FJ, United Kingdom
| | - Flavio della Sala
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David A. Leigh
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Simon J. Webb
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
25
|
Jeong AR, Shin JW, Jeong JH, Jeoung S, Moon HR, Kang S, Min KS. Porous and Nonporous Coordination Polymers Induced by Pseudohalide Ions for Luminescence and Gas Sorption. Inorg Chem 2020; 59:15987-15999. [PMID: 33045830 DOI: 10.1021/acs.inorgchem.0c02503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The three-dimensional (3D) coordination polymers [Cd(tpmd)(NCX)2]n [X = O (1), S (2), and BH3 (3); tpmd = N,N,N',N'-tetrakis(pyridin-4-yl)methanediamine] have been determined to display their network structures through coordinated anionic ligands. Polymers 1 and 2 show nonporous structures, whereas polymer 3 shows a porous coordination framework. On the basis of the Cd(II) network structures, the 3D coordination polymer [Zn(tpmd)(NCBH3)2]n·nMeOH (4) was self-assembled. In the cases of polymers 1 and 2, pseudohalide ions acted to form nonporous network structures; however, in polymers 3 and 4, NCBH3- helps to construct porous network structures. Polymers 1-4 show strong ultraviolet luminescence emissions, depending on the pseudohalide ions present, compared to the tpmd ligands. Interestingly, coordination polymers 3 and 4 that possess NCBH3- ions exhibit high porosities and gas sorption properties. The polymers appeared to absorb N2, H2, CO2, and CH4. In the case of polymer 4, the structure is almost identical with that of polymer 3, except for the Cd(II) ion. However, polymer 4 has a larger void volume and higher gas absorption ability for N2 gas than polymer 3. For the sorption of gases, polymers 3 and 4 showed similar behaviors.
Collapse
Affiliation(s)
- Ah Rim Jeong
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong Won Shin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong Hwa Jeong
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sungeun Jeoung
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hoi Ri Moon
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Suhyang Kang
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kil Sik Min
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
26
|
Dang LL, Feng HJ, Lin YJ, Jin GX. Self-Assembly of Molecular Figure-Eight Knots Induced by Quadruple Stacking Interactions. J Am Chem Soc 2020; 142:18946-18954. [DOI: 10.1021/jacs.0c09162] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li-Long Dang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
27
|
Lockyer SJ, Nawaz S, Brookfield A, Fielding AJ, Vitorica-Yrezabal IJ, Timco GA, Burton NA, Bowen AM, Winpenny REP, McInnes EJL. Conformational Flexibility of Hybrid [3]- and [4]-Rotaxanes. J Am Chem Soc 2020; 142:15941-15949. [PMID: 32820906 PMCID: PMC7605720 DOI: 10.1021/jacs.0c06547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis, structures, and properties of [4]- and [3]-rotaxane complexes are reported where [2]-rotaxanes, formed from heterometallic {Cr7Ni} rings, are bound to a fluoride-centered {CrNi2} triangle. The compounds have been characterized by single-crystal X-ray diffraction and have the formulas [CrNi2(F)(O2CtBu)6]{(BH)[Cr7NiF8(O2CtBu)16]}3 (3) and [CrNi2(F)(O2CtBu)6(THF)]{(BH)[Cr7NiF8(O2CtBu)16]}2 (4), where B = py-CH2CH2NHCH2C6H4SCH3. The [4]-rotaxane 3 is an isosceles triangle of three [2]-rotaxanes bound to the central triangle while the [3]-rotaxane 4 contains only two [2]-rotaxanes bound to the central triangle. Studies of the behavior of 3 and 4 in solution by small-angle X-ray scattering and atomistic molecular dynamic simulations show that the structure of 3 is similar to that found in the crystal but that 4 has a different conformation to the crystal. Continuous wave and pulsed electron paramagnetic resonance spectroscopy was used to study the structures present and demonstrate that in frozen solutions (at 5 K) 4 forms more extended molecules than 3 and with a wider range of conformations.
Collapse
Affiliation(s)
- Selena J Lockyer
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Selina Nawaz
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Adam Brookfield
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Alistair J Fielding
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, U.K
| | - Inigo J Vitorica-Yrezabal
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Grigore A Timco
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Neil A Burton
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Alice M Bowen
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Richard E P Winpenny
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Eric J L McInnes
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
28
|
Li G, Wang L, Wu L, Guo Z, Zhao J, Liu Y, Bai R, Yan X. Woven Polymer Networks via the Topological Transformation of a [2]Catenane. J Am Chem Soc 2020; 142:14343-14349. [PMID: 32787257 DOI: 10.1021/jacs.0c06416] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Weaving technology has been widely used to manufacture macroscopic fabrics to meet the artistic and practical needs of humanity for thousands of years. However, the fabrication of molecular fabrics with fascinating topologies and unique mechanical properties represents a significant challenge. Herein, we describe a topological transformation strategy to construct woven polymer networks (WPNs) at the molecular level via ring-opening metathesis polymerization (ROMP) of a zinc-template [2]catenane. The key feature of this approach is the exploitation of the pre-existing catenane crossing points that maintain the dense woven structure and the flexible alkyl chains on the [2]catenane that synergistically work with the crossing points to modulate the physicochemical and mechanical properties of the woven materials. As a result, the WPN possesses a certain degree of flexibility and stretchability, as well as high thermostability and mechanical robustness. Furthermore, we could remove the zinc ions to endow the WPN with more degrees of freedom and then enhance its mechanical behaviors by remetalation. This study not only provides a novel strategy toward woven materials with intriguing structural features and emergent mechanical adaptivities, but also highlights that mechanically interlocked molecules could offer unique opportunities for the construction of smart supramolecular materials with peculiar interlaced topologies at the molecular scale.
Collapse
Affiliation(s)
- Guangfeng Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhewen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
29
|
Dang LL, Gao X, Lin YJ, Jin GX. Selective synthesis and structural transformation between a molecular ring-in-ring architecture and an abnormal trefoil knot. Chem Sci 2020; 11:8013-8019. [PMID: 34094170 PMCID: PMC8163296 DOI: 10.1039/d0sc02733b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
The synthesis of complicated supramolecular architectures and the study of their reversible structural transformations remains a fascinating challenge in the field of supramolecular chemistry. Herein, two types of novel coordination compounds, a non-intertwined ring-in-ring assembly and an abnormal trefoil knot were constructed from a strategically selected Cp*Rh building block and a semi-rigid N,N'-bis(4-pyridylmethyl)diphthalic diimide ligand via coordination-driven self-assembly. Remarkably, the reversible transformation between the abnormal trefoil knot and the ring-in-ring assembly or the corresponding tetranuclear macrocycle could be achieved by the synergistic effects of Ag+ ion coordination and alteration of the solvent. Single-crystal X-ray crystallographic data and NMR spectroscopic experiments support the structural assignments.
Collapse
Affiliation(s)
- Li-Long Dang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Xiang Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Yue-Jian Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Guo-Xin Jin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
30
|
Gao WX, Feng HJ, Guo BB, Lu Y, Jin GX. Coordination-Directed Construction of Molecular Links. Chem Rev 2020; 120:6288-6325. [PMID: 32558562 DOI: 10.1021/acs.chemrev.0c00321] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since the emergence of the concept of chemical topology, interlocked molecular assemblies have graduated from academic curiosities and poorly defined species to become synthetic realities. Coordination-directed synthesis provides powerful, diverse, and increasingly sophisticated protocols for accessing interlocked molecules. Originally, metal ions were employed solely as templates to gather and position building blocks in entwined or threaded arrangements. Recently, metal centers have increasingly featured within the backbones of the integral structural elements, which in turn use noncovalent interactions to self-assemble into intricate topologies. By outlining ingenious recent examples as well as seminal classic cases, this Review focuses on the role of metal-ligand paradigms in assembling molecular links. In addition, the ever-evolving approaches to efficient assembly, the structural features of the resulting architectures, and their prospects for the future are also presented.
Collapse
Affiliation(s)
- Wen-Xi Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Bei-Bei Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Ye Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
31
|
Singh J, Kim DH, Kim EH, Kim H, Hadiputra R, Jung J, Chi KW. The First Quantitative Synthesis of a Closed Three-Link Chain (613) Using Coordination and Noncovalent Interactions-Driven Self-Assembly. J Am Chem Soc 2020; 142:9327-9336. [DOI: 10.1021/jacs.0c01406] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jatinder Singh
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
- Energy Materials Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Dong Hwan Kim
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Eun-Hee Kim
- Center for Research Equipments, Korea Basic Science Institute, Ochang, Chungbuk 28119, Republic of Korea
| | - Hyunuk Kim
- Energy Materials Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Rizky Hadiputra
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Jaehoon Jung
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| |
Collapse
|
32
|
Sun XP, Tang Z, Yao ZS, Tao J. A homochiral 3D framework of mechanically interlocked 1D loops with solvent-dependent spin-state switching behaviors. Chem Commun (Camb) 2020; 56:133-136. [PMID: 31799549 DOI: 10.1039/c9cc09063k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An atypical homochiral spin-crossover (SCO) framework (1) constructed from mechanically interlocked 1D molecular loops was prepared. Due to the flexibility of the interlocked structure, the guest solvent molecules can be reversibly exchanged. Consequently, its SCO behavior was capable of modulating between one- and two-stepped transitions in response to acetonitrile and methanol.
Collapse
Affiliation(s)
- Xiao-Peng Sun
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Zheng Tang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| |
Collapse
|
33
|
Dang LL, Gao X, Lin YJ, Jin GX. s-Block metal ions induce structural transformations between figure-eight and double trefoil knots. Chem Sci 2020. [DOI: 10.1039/c9sc05796j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The presence or absence of s-block metal ions induces reversible structural transformation of molecular knots.
Collapse
Affiliation(s)
- Li-Long Dang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Chemistry
- Fudan University
- Shanghai 200438
| | - Xiang Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Chemistry
- Fudan University
- Shanghai 200438
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Chemistry
- Fudan University
- Shanghai 200438
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Chemistry
- Fudan University
- Shanghai 200438
| |
Collapse
|
34
|
Chen DM, Wu XF, Liu YJ, Huang C, Zhu BX. Synthesis, crystal structures and vapor adsorption properties of Hg(II) and Cd(II) coordination polymers derived from two hydrazone Schiff base ligands. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|