1
|
Abstract
Topochemical reactions normally occurring in the solid and crystalline state exhibit solvent-free and catalyst-free properties, with high atom economy properties, which have been widely applied in materials science and polymer synthesis. Herein, we explore the potential of topochemical reactions for controlling the emergence of supramolecular chirality and the precise fabrication of chiroptical materials. Boronic acid pinacol esters (BPin) were conjugated to naphthalimides containing an inherent chiral cholesteryl group linked by alkyl or benzene spacers. The BPin segments were oxidized by H2O2 to form hydroxyl groups, which enhanced luminescence, reduced steric effects, and increased amphiphilicity. The inherent liposomal aggregates underwent in situ oxidation and transformed into 1D nanoarchitectures, exhibiting macroscopic chirality, active Cotton effects, and circularly polarized luminescence. Oxidation could also initiate an intimate interplay between the building units and the guest molecule, by which the chirality and chiroptical evolution in the multiple component chiral assembly system were realized.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
2
|
Wiley RE, McLaughlin MF, Johnson JS. Dearomatization of Cyclic Diphenylhydrazines: Harnessing the o-Semidine Rearrangement for the Synthesis of Spirocyclic Tetrahydroquinolines. Org Lett 2022; 24:8014-8018. [PMID: 36269213 PMCID: PMC9678246 DOI: 10.1021/acs.orglett.2c03220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of novel tetrahydroquinoline-containing spirocycles has been achieved through an acid-promoted dearomatization of cyclic diarylhydrazines. The reaction, proceeding through a dearomative o-semidine rearrangement, furnishes a stable, yet reactive spirocyclohexadieniminium ion, which can further be used as an electrophile or a diene in a one-pot sequence. These transformations efficiently produce novel diazaspirocycles and allow for further synthetic elaboration of the cyclohexadienamine products.
Collapse
Affiliation(s)
- Robert E Wiley
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 25799-3290, United States
| | - Michael F McLaughlin
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 25799-3290, United States
| | - Jeffrey S Johnson
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 25799-3290, United States
| |
Collapse
|
3
|
Potassium-doped carbon nitride: Highly efficient photoredox catalyst for selective oxygen reduction and arylboronic acid hydroxylation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Chu WD, Liang TT, Ni H, Dong ZH, Shao Z, Liu Y, He CY, Bai R, Liu QZ. Palladium-Catalyzed Intermolecular Asymmetric Dearomative Annulation of Phenols with Vinyl Cyclopropanes. Org Lett 2022; 24:4865-4870. [PMID: 35775729 DOI: 10.1021/acs.orglett.2c01594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report the Pd(0)-catalyzed intermolecular asymmetric dearomative [3 + 2] annulation of phenols with vinyl cyclopropanes via in situ generated ortho-quinone methide intermediates. A series of highly functionalized spiro-[5,6] bicycles which bear three contiguous stereogenic centers including one all-carbon quaternary were obtained with excellent stereoselectivities. Density functional theory (DFT) calculations indicate that the reactions were controlled by thermodynamics.
Collapse
Affiliation(s)
- Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P. R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, P. R. China
| | - Tian-Tian Liang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P. R. China
| | - Hao Ni
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, P. R. China
| | - Zhi-Hong Dong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P. R. China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, P. R. China
| | - Yong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P. R. China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P. R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, P. R. China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P. R. China
| |
Collapse
|
5
|
Rosatella AA, Afonso CAM. One-Pot Transformation of Salicylaldehydes to Spiroepoxydienones via the Adler-Becker Reaction in a Continuous Flow. ACS OMEGA 2022; 7:11570-11577. [PMID: 35449962 PMCID: PMC9017099 DOI: 10.1021/acsomega.1c05559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The Adler-Becker reaction is a useful approach for the oxidative dearomatization of salicylic alcohols to spiroepoxydienones and has been applied in the total synthesis of several natural products. Despite the advantages, the substrate and product instability under the reaction conditions can decrease the reaction efficiency, leading to lower yields. Herein, we report the Adler-Becker reaction in a continuous flow for the transformation of reduced salicylaldehydes into spiroepoxydienones in a one-pot approach. For that, a heterogeneous oxidant based on periodate is developed, leading to an efficient continuous flow process, with higher productivity and shorter reaction times, when compared with batch conditions.
Collapse
Affiliation(s)
- Andreia A. Rosatella
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- CBIOS—Universidade
Lusófona’s Research Center for Biosciences & Health
Technologies, Campo Grande,
376, 1749-024 Lisbon, Portugal
| | - Carlos A. M. Afonso
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
6
|
Pu Q, Huo M, Liang G, Bai L, Chen G, Li H, Xiang P, Zhou H, Zhou J. Divergent oxidative dearomatization coupling reactions to construct polycyclic cyclohexadienones. Chem Commun (Camb) 2022; 58:4348-4351. [PMID: 35293906 DOI: 10.1039/d2cc00183g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly selective divergent oxidative dearomatization coupling reactions, in which the chemoselectivity is controlled by catalysts and bases, are reported herein. Three different kinds of polycyclic cyclohexadienones are produced from the same reactants (41 examples, 85-99% yield). Our method marks a novel copper- and palladium-catalyzed C-H oxidative dearomatization of phenolic derivatives.
Collapse
Affiliation(s)
- Qian Pu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Mingming Huo
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Guojuan Liang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Genhui Chen
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hongjiao Li
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xiang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Ueda J, Harada S, Kobayashi M, Yanagawa M, Nemoto T. Maleic Acid/Thiourea‐Catalyzed Dearomative
ipso
‐Friedel–Crafts Reaction of Indoles to Produce Functionalized Spiroindolenines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jun Ueda
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Mayu Kobayashi
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Mai Yanagawa
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
- Molecular Chirality Research Center Chiba University 1-33, Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| |
Collapse
|
8
|
Ito T, Harada S, Homma H, Takenaka H, Hirose S, Nemoto T. Asymmetric Intramolecular Dearomatization of Nonactivated Arenes with Ynamides for Rapid Assembly of Fused Ring System under Silver Catalysis. J Am Chem Soc 2021; 143:604-611. [PMID: 33382259 DOI: 10.1021/jacs.0c10682] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arene dearomatization is a straightforward method for converting an aromatic feedstock into functionalized carbocycles. Enantioselective dearomatizations of chemically inert arenes, however, are quite limited and underexplored relative to those of phenols and indoles. We developed a method for diazo-free generation of silver-carbene species from an ynamide and applied it to the dearomatization of nonactivated arenes. Transiently generated norcaradiene could be trapped by intermolecular [4 + 2] cycloaddition, synthesizing polycycles with five consecutive stereogenic centers. This protocol constitutes the first highly enantioselective reaction based on the diazo-free generation of silver-carbene species. Mechanistic investigations revealed a dearomatization followed by two different classes of pericyclic reactions, as well as the origin of the chemo- and enantioselectivity.
Collapse
Affiliation(s)
- Tsubasa Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Haruka Homma
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroki Takenaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shumpei Hirose
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.,Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
9
|
Chandra G, Patel S. Molecular Complexity from Aromatics: Recent Advances in the Chemistry of
para
Quinol and Masked
para
‐Quinone Monoketal. ChemistrySelect 2020. [DOI: 10.1002/slct.202003802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Girish Chandra
- Department of Chemistry School of Physical and Chemical Sciences Central University of South Bihar SH-7, Gaya-Panchanpur Road Gaya Bihar India 824236
| | - Samridhi Patel
- Department of Chemistry School of Physical and Chemical Sciences Central University of South Bihar SH-7, Gaya-Panchanpur Road Gaya Bihar India 824236
| |
Collapse
|
10
|
Harada S, Kobayashi M, Kono M, Nemoto T. Site-Selective and Chemoselective C–H Functionalization for the Synthesis of Spiroaminals via a Silver-Catalyzed Nitrene Transfer Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mayu Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masato Kono
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
- Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
11
|
Homma H, Harada S, Ito T, Kanda A, Nemoto T. Atypical Dearomative Spirocyclization of β-Naphthols with Diazoacetamides Using a Silver Catalyst. Org Lett 2020; 22:8132-8138. [PMID: 33026816 DOI: 10.1021/acs.orglett.0c03110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A chemoselective dearomatization of the less reactive benzenoid unit in β-naphthol was developed. Spirocyclization with a reductant constructs a pivotal structure for drug candidates. One-pot oxidative conversion enabled the tandem dearomatization of β-naphthol, producing conjugated tetraenone variants. The potential utility of the product as an F--selective anion sensor was also demonstrated. Theoretical studies revealed the intermediacy of silver-carbenoid species leading to chemoselective spirocyclization over arene cyclopropanation.
Collapse
Affiliation(s)
- Haruka Homma
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tsubasa Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayaka Kanda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.,Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
12
|
Ueda J, Harada S, Kanda A, Nakayama H, Nemoto T. Silver-Catalyzed, Chemo- and Enantioselective Intramolecular Dearomatization of Indoles to Access Sterically Congested Azaspiro Frameworks. J Org Chem 2020; 85:10934-10950. [PMID: 32692554 DOI: 10.1021/acs.joc.0c01580] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An asymmetric dearomatization of indoles bearing α-diazoacetamide functionalities was developed for synthesizing high-value spiro scaffolds. A silver phosphate chemoselectively catalyzed the sterically challenging dearomatization, whereas more typically used metal catalysts for carbene transfer reactions, such as a rhodium complex, were not effective and instead resulted in a Büchner ring expansion or cyclopropanation. Mechanistic studies indicated that the spirocyclization occurred through a silver-assisted asynchronous concerted process and not via a silver-carbene intermediate. Analyses based on natural bond orbital population and a distortion/interaction model indicated that the degree of C-Ag mutual interaction is crucial for achieving a high level of enantiocontrol. In addition, an oxidative disconnection of a C(sp3)-C(sp2) bond in the product provided unconventional access to the corresponding chiral spirooxindole.
Collapse
Affiliation(s)
- Jun Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayaka Kanda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroki Nakayama
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.,Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
13
|
Uyanik M, Nishioka K, Kondo R, Ishihara K. Chemoselective oxidative generation of ortho-quinone methides and tandem transformations. Nat Chem 2020; 12:353-362. [DOI: 10.1038/s41557-020-0433-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 01/29/2020] [Indexed: 12/27/2022]
|
14
|
Shi H, Wang L, Li SS, Liu Y, Xu L. Divergent syntheses of spirooxindoles from oxindole-embedded four-membered synthon via cycloaddition reactions. Org Chem Front 2020. [DOI: 10.1039/d0qo00038h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The construction of five and six membered heterocycle fused spirooxindoles was achieved via the [4 + 1] and formal [4 + 2] cycloadditions between our rationally designed four-membered synthons and pyridinium methylides and α-bromoacetophenones, respectively.
Collapse
Affiliation(s)
- Hongjin Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| | - Yongjun Liu
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| |
Collapse
|
15
|
Yi J, Wu Z, You S. Copper‐Catalyzed Oxidative Dearomatization of 2‐Naphthols
via
Etherification. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ji‐Cheng Yi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road, Shanghai 201210 China
| | - Zhi‐Jie Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road, Shanghai 201210 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road, Shanghai 201210 China
| |
Collapse
|
16
|
McLaughlin MF, Massolo E, Cope TA, Johnson JS. Phenolic Oxidation Using H 2O 2 via in Situ Generated para-Quinone Methides for the Preparation of para-Spiroepoxydienones. Org Lett 2019; 21:6504-6507. [PMID: 31361145 DOI: 10.1021/acs.orglett.9b02372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phenols are attractive starting materials for the preparation of highly substituted cyclohexane rings via dearomative processes. Herein we report an efficient preparation of dearomatized 1-oxaspiro[2.5]octa-4,7-dien-6-ones (para-spiroepoxydienones) via the nucleophilic epoxidation of in situ generated para-quinone methides from 4-(hydroxymethyl)phenols using aqueous H2O2. The developed protocol bypasses the need for stoichiometric bismuth reagents or diazomethane, which are frequently deployed for p-spiroepoxydienone preparation. The p-spiroepoxydienones are further elaborated in numerous downstream complexity-building transformations.
Collapse
Affiliation(s)
- Michael F McLaughlin
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| | - Elisabetta Massolo
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| | - Thomas A Cope
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| | - Jeffrey S Johnson
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| |
Collapse
|