1
|
Yang H, Feng HX, Chen J, Zhou L. Strategies for the Synthesis of Mechanically Planar Chiral Rotaxanes. Chemistry 2025; 31:e202500898. [PMID: 40217105 DOI: 10.1002/chem.202500898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/27/2025]
Abstract
Rotaxanes, belonging to the class of classical mechanically interlocked molecules (MIMs), exhibit chiral properties that diverge from those of traditional chiral elements, particularly displaying mechanically planar chirality. Their distinctive spatial structure further augments their chiral significance, thereby imparting them with vast potential for applications in the realm of chiral materials and asymmetric catalysis. In recent years, mechanically planar chiral rotaxanes have garnered increasing attention from researchers. In this review, we summarize the recent advancements in obtaining enantiopure mechanically planar chiral rotaxanes. In this regard, chiral separation techniques, the use of chiral auxiliaries, and asymmetric catalytic synthesis have emerged as potent methodologies for constructing chiral rotaxanes, thereby enabling the synthesis of diverse types of mechanically planar chiral rotaxanes. Additionally, we analyze the current challenges faced in this field and look forward to the future development opportunities that lie ahead.
Collapse
Affiliation(s)
- Hui Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Hong-Xia Feng
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, 710125, China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| |
Collapse
|
2
|
Shan WL, Si N, Xu MT, Chen ZY, Zhao G, Tang H, Jin GX. One-Step Directed Self-Assembly of Molecular Closed Four-Link Chains and Borromean Links. Angew Chem Int Ed Engl 2025; 64:e202501965. [PMID: 39980201 DOI: 10.1002/anie.202501965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Despite substantial advancements in the synthesis of mechanically interlocked molecules (MIMs), the efficient construction of higher order links remains a formidable challenge. Herein, we report the highly efficient one-step directed construction of a series of unprecedented molecular closed four-link chains (84 1 metalla-links), achieved through the synergistic assembly of coordination-driven and aromatic stacking interactions involving binuclear rhodium/iridium precursors and bis-dentate benzothiadiazole derivative ligands. Meanwhile, modulating the substituent positions of the pyridine groups in the ligand resulted in a change in topological structure, leading to the formation of two molecular Borromean links (6 2 3 ${6_2^3 }$ metalla-links). The molecular configurations of the abovementioned metalla-links were clearly identified through mass spectrometry, NMR, and single-crystal X-ray diffraction. Furthermore, structural transformation between the molecular Borromean links and corresponding monocycles was achieved through concentration effects, as validated by solution-state NMR spectroscopy investigations.
Collapse
Affiliation(s)
- Wei-Long Shan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Nian Si
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Meng-Ting Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Zhi-Yang Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Gen Zhao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Haitong Tang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| |
Collapse
|
3
|
Peñaranda-Navarro R, Collados-Salmeron M, Carrilero-Flores E, Saura-Sanmartin A. Molecular Release by the Rotaxane and Pseudorotaxane Approach. Chemistry 2025; 31:e202500350. [PMID: 40047094 DOI: 10.1002/chem.202500350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Indexed: 03/19/2025]
Abstract
The controlled release of target molecules is a relevant application in several areas, such as medicine, fragrance chemistry and catalysis. Systems which pursue this implementation require a fine-tune of the start and rate of the release, among other properties. In this scenario, rotaxane- and pseudorotaxane-based systems are postulated as ideal scaffolds to accomplish a precise cargo release, due to the special features provided by the intertwined arrangement. This short review covers advances towards the controlled release of different molecules using rotaxane- and pseudorotaxane-based systems, both in solution and in the solid state.
Collapse
Affiliation(s)
- Raquel Peñaranda-Navarro
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Maria Collados-Salmeron
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Elena Carrilero-Flores
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
4
|
Shi A, Wang H, Yang G, Gu C, Xiang C, Qian L, Lam JWY, Zhang T, Tang BZ. Multiple Chirality Switching of a Dye-Grafted Helical Polymer Film Driven by Acid & Base. Angew Chem Int Ed Engl 2024; 63:e202409782. [PMID: 38888844 DOI: 10.1002/anie.202409782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
A stimuli-responsive multiple chirality switching material, which can regulate opposed chiral absorption characteristics, has great application value in the fields of optical modulation, information storage and encryption, etc. However, due to the rareness of effective functional systems and the complexity of material structures, developing this type of material remains an insurmountable challenge. Herein, a smart polymer film with multiple chirality inversion properties was fabricated efficiently based on a newly-designed acid & base-sensitive dye-grafted helical polymer. Benefited from the cooperative effects of various weak interactions (hydrogen bonds, electrostatic interaction, etc.) under the aggregated state, this polymer film exhibited a promising acid & base-driven multiple chirality inversion property containing record switchable chiral states (up to five while the solution showed three-state switching) and good reversibility. The creative exploration of such a multiple chirality switching material can not only promote the application progress of current chiroptical regulation technology, but also provide a significant guidance for the design and synthesis of future smart chiroptical switching materials and devices.
Collapse
Affiliation(s)
- Aiyan Shi
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Haoran Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Guojian Yang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Chang Gu
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Lei Qian
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Ting Zhang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), 518172, P. R. China
| |
Collapse
|
5
|
Razi SS, Marin-Luna M, Alajarin M, Martinez-Cuezva A, Berna J. Conjugated bis(enaminones) as effective templates for rotaxane assembly and their post-synthetic modifications. Commun Chem 2024; 7:170. [PMID: 39098851 PMCID: PMC11298525 DOI: 10.1038/s42004-024-01258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
The development of efficient methods for the synthesis of mechanically interlocked compounds is currently considered a major challenge in supramolecular chemistry. Twofold vinylogous fumaramides, a class of conjugated bis(enaminones), successfully achieve the assembly of hydrogen-bonded amide-based rotaxanes, with a templating ability comparable to that of their parent fumaramide-based systems, showcasing full conversions and impressive yields up to 92%. Computational calculations offer a compelling explanation for the remarkable efficiency of these bis(enaminones) in driving the synthesis of unprecedented rotaxanes. The reactivity of these interlocked species was thoroughly investigated, revealing that a one-step double stopper-exchange process can be successfully performed while preserving the mechanical bond. This approach facilitates the formation of controllable rotaxanes, including a three-station molecular shuttle, whose assembly via a clipping methodology is highly unselective. The internal translational motion of this latter species has been successfully controlled in a reversible way by means of a cycloaddition/retrocycloaddition sequence.
Collapse
Affiliation(s)
- Syed S Razi
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain
| | - Marta Marin-Luna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
6
|
Yamane R, Asai Y, Takiguchi N, Okamoto A, Kawano S, Tokunaga Y, Shizuma M, Muraoka M. Acid-base responsive molecular switching of a [2]rotaxane incorporating two different stations in an axle component. RSC Adv 2024; 14:19780-19786. [PMID: 38903675 PMCID: PMC11188621 DOI: 10.1039/d4ra03532a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Interlocked compounds such as rotaxanes and catenanes exhibit unique kinetic properties in response to external chemical or physical stimuli and are therefore expected to be applied to molecular machines and molecular sensors. To develop a novel rotaxane for this application, an isophthalamide macrocycle and a neutral phenanthroline axle were used. Stable pseudorotaxanes are known to be formed using hydrogen bonds and π-π interactions. In this study, we designed a non-symmetric axial molecule and synthesized a [2]rotaxane with the aim of introducing two different stations; a phenanthroline and a secondary amine/ammonium unit. Furthermore, 1H NMR measurements demonstrated that the obtained rotaxane acts as a molecular switch upon application of external acid/base stimuli.
Collapse
Affiliation(s)
- Risa Yamane
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology Asahi-ku Osaka 535-8585 Japan
| | - Yuki Asai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology Asahi-ku Osaka 535-8585 Japan
| | - Nanami Takiguchi
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology Asahi-ku Osaka 535-8585 Japan
| | - Ayuna Okamoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology Asahi-ku Osaka 535-8585 Japan
| | - Shintaro Kawano
- Osaka Research Institute of Industrial Science and Technology Joto-ku Osaka 536-8553 Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui Bunkyo Fukui 910-8507 Japan
| | - Motohiro Shizuma
- Osaka Research Institute of Industrial Science and Technology Joto-ku Osaka 536-8553 Japan
| | - Masahiro Muraoka
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology Asahi-ku Osaka 535-8585 Japan
| |
Collapse
|
7
|
Liao S, Tang J, Ma C, Yu L, Tan Y, Li X, Gan Q. Foldaxane-Based Switchable [c2]Daisy Chains. Angew Chem Int Ed Engl 2024; 63:e202315668. [PMID: 38346927 DOI: 10.1002/anie.202315668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 02/29/2024]
Abstract
Artificial molecular muscles are highly attractive in the field of molecular machinery due to their unique properties of contraction and stretching motion. However, the synthesis of molecular muscles poses formidable challenges as it is hindered by undesirable yields and poor selectivity. Herein, we present a procedure for the dynamic assembly of foldaxane-based [c2]daisy chains, wherein the hermaphroditic sequences consisting of aromatic helices and peptide rods are interlocked through inter-strand hydrogen-bonding interactions. The binding complementarity facilitates a selective and efficient assembly of [c2]daisy chain structures, inhibiting the creation of by-products. Introducing multiple recognition sites confers the system with contraction and stretching motion actuated by chemical stimuli. The rate of this muscle-like motion is calculated to be 0.8 s-1, which is 107 times faster than that of complex dissociation.
Collapse
Affiliation(s)
- Sibei Liao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Jie Tang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Chunmiao Ma
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Lu Yu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Xuanzhu Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Quan Gan
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| |
Collapse
|
8
|
Prakashni M, Dasgupta S. BP23C7: high-yield synthesis and application in constructing [3]rotaxanes and responsive pseudo[2]rotaxanes. Org Biomol Chem 2024; 22:1871-1884. [PMID: 38349013 DOI: 10.1039/d3ob02094k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A biphenyl-23-crown-7 ether (BP23C7) is synthesized in 86% yield from commercially available starting materials. BP23C7 forms pseudo[2]rotaxane with a dibenzylammonium ion (DBA+), exhibiting a good association constant value (ka = 1 × 103 M-1). Subsequently, fluorophoric properties of BP23C7 and anthracene terminated axles are blended to create responsive pseudo[2]rotaxanes. The "turn-on" fluorescence response of BP23C7 due to the addition of fluoride and chloride anions to pseudo[2]rotaxane systems has been investigated. Concomitant fluorescence quenching of the anthracene moiety of corresponding axles due to ion-pair formation has been addressed. Furthermore, two variants of [23]crown ethers, i.e. BP23C7 and o-xylene-23-crown-7 ether (X23C7), are applied for constructing homo[3]rotaxane architectures. A half-axle comprising of DBA+ moiety and a terminal olefin is mixed separately with two [23]crown ethers and subjected to self-metathesis using Grubbs' first-generation catalyst.
Collapse
Affiliation(s)
- Manisha Prakashni
- Department of Chemistry, National Institute of Technology Patna, Patna - 800005, India.
| | - Suvankar Dasgupta
- Department of Chemistry, National Institute of Technology Patna, Patna - 800005, India.
| |
Collapse
|
9
|
Nakajima T, Tashiro S, Ehara M, Shionoya M. Selective synthesis of tightly- and loosely-twisted metallomacrocycle isomers towards precise control of helicity inversion motion. Nat Commun 2023; 14:7868. [PMID: 38057325 DOI: 10.1038/s41467-023-43658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
Molecular twist is a characteristic component of molecular machines. Selectively synthesising isomers with different modes of twisting and controlling their motion such as helicity inversion is an essential challenge for achieving more advanced molecular systems. Here we report a strategy to control the inversion kinetics: the kinetically selective synthesis of tightly- and loosely-twisted isomers of a trinuclear PdII-macrocycle and their markedly different molecular behaviours. The loosely-twisted isomers smoothly invert between (P)- and (M)-helicity at a rate of 3.31 s-1, while the helicity inversion of the tightly-twisted isomers is undetectable but rather relaxes to the loosely-twisted isomers. This critical difference between these two isomers is explained by the presence or absence of an absolute configuration inversion of the nitrogen atoms of the macrocyclic amine ligand. Strategies to control the helicity inversion and structural loosening motions by the mode of twisting offer future possibilities for the design of molecular machines.
Collapse
Affiliation(s)
- Tomoki Nakajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Tseng IC, Zhang MX, Kang SL, Chiu SH. An Anion-Switchable Dual-Function Rotaxane Catalyst. Angew Chem Int Ed Engl 2023; 62:e202309889. [PMID: 37670563 DOI: 10.1002/anie.202309889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
In situ switching of the associated anions of a rotaxane catalyst between Cl- and TFPB- exposes its dialkylammonium and imidazolium stations, respectively, thereby selectively catalyzing the reactions of a mixture of trans-cinnamaldehyde and an aliphatic thiol to yield the Michael adduct and the thioacetal product, respectively.
Collapse
Affiliation(s)
- I-Cheng Tseng
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Min-Xuan Zhang
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Shih-Lun Kang
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
11
|
Hum G, Phang SJI, Ong HC, León F, Quek S, Khoo YXJ, Li C, Li Y, Clegg JK, Díaz J, Stuparu MC, García F. Main Group Molecular Switches with Swivel Bifurcated to Trifurcated Hydrogen Bond Mode of Action. J Am Chem Soc 2023. [PMID: 37267593 DOI: 10.1021/jacs.2c12713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Artificial molecular machines have captured the full attention of the scientific community since Jean-Pierre Sauvage, Fraser Stoddart, and Ben Feringa were awarded the 2016 Nobel Prize in Chemistry. The past and current developments in molecular machinery (rotaxanes, rotors, and switches) primarily rely on organic-based compounds as molecular building blocks for their assembly and future development. In contrast, the main group chemical space has not been traditionally part of the molecular machine domain. The oxidation states and valency ranges within the p-block provide a tremendous wealth of structures with various chemical properties. Such chemical diversity─when implemented in molecular machines─could become a transformative force in the field. Within this context, we have rationally designed a series of NH-bridged acyclic dimeric cyclodiphosphazane species, [(μ-NH){PE(μ-NtBu)2PE(NHtBu)}2] (E = O and S), bis-PV2N2, displaying bimodal bifurcated R21(8) and trifurcated R31(8,8) hydrogen bonding motifs. The reported species reversibly switch their topological arrangement in the presence and absence of anions. Our results underscore these species as versatile building blocks for molecular machines and switches, as well as supramolecular chemistry and crystal engineering based on cyclophosphazane frameworks.
Collapse
Affiliation(s)
- Gavin Hum
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Si Jia Isabel Phang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - How Chee Ong
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Felix León
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Shina Quek
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Yi Xin Joycelyn Khoo
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Chenfei Li
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Yongxin Li
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, St Lucia 4072, Queensland, Australia
| | - Jesús Díaz
- Departamento de Química Orgánica e Inorgánica, Facultad de Veterinaria Extremadura, Avda de la Universidad s/n, Cáceres 10003, Spain
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo 33006, Asturias, Spain
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
12
|
Wu J, Sun X, Li X, Li X, Feng W, Yuan L. Multi-Responsive Molecular Encapsulation and Release Based on Hydrogen-Bonded Azo-Macrocycle. Molecules 2023; 28:molecules28114437. [PMID: 37298912 DOI: 10.3390/molecules28114437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Research on stimuli-responsive host-guest systems is at the cutting edge of supramolecular chemistry, owing to their numerous potential applications such as catalysis, molecular machines, and drug delivery. Herein, we present a multi-responsive host-guest system comprising azo-macrocycle 1 and 4,4'-bipyridinium salt G1 for pH-, photo-, and cation- responsiveness. Previously, we reported a novel hydrogen-bonded azo-macrocycle 1. The size of this host can be controlled through light-induced E↔Z photo-isomerization of the constituent azo-benzenes. The host is found in this work to be capable of forming stable complexes with bipyridinium/pyridinium salts, and implementing guest capture and release with G1 under light in a controlled manner. The binding and release of the guest in the complexes can also be easily controlled reversibly by using acid and base. Moreover, the cation competition-induced dissociation of the complex 1a2⊃G1 is achieved. These findings are expected to be useful in regulating encapsulation for sophisticated supramolecular systems.
Collapse
Affiliation(s)
- Jinyang Wu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Xuan Sun
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Xianghui Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Prakashni M, Dasgupta S. Synthesis of [2]Rotaxane‐Based pH‐Responsive Molecular Switch Involving a [23]Crown Ether Wheel, Dibenzylammonium and Methyl Triazolium Recognition Stations. ChemistrySelect 2023. [DOI: 10.1002/slct.202300553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Manisha Prakashni
- Department of Chemistry National Institute of Technology Patna Ashok Rajpath Patna 800005 Bihar India
| | - Suvankar Dasgupta
- Department of Chemistry National Institute of Technology Patna Ashok Rajpath Patna 800005 Bihar India
| |
Collapse
|
14
|
Takiguchi N, Yamazaki S, Murata M, Kawano S, Shizuma M, Muraoka M. Controlling the Molecular Shuttling of pH‐Responsive [2]Rotaxanes with Two Different Stations. ChemistrySelect 2023. [DOI: 10.1002/slct.202300687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
15
|
Bismillah AN, Johnson TG, Hussein BA, Turley AT, Saha PK, Wong HC, Aguilar JA, Yufit DS, McGonigal PR. Control of dynamic sp 3-C stereochemistry. Nat Chem 2023; 15:615-624. [PMID: 36914791 PMCID: PMC10159849 DOI: 10.1038/s41557-023-01156-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 02/09/2023] [Indexed: 03/16/2023]
Abstract
Stereogenic sp3-hybridized carbon centres are fundamental building blocks of chiral molecules. Unlike dynamic stereogenic motifs, such as sp3-nitrogen centres or atropisomeric biaryls, sp3-carbon centres are usually fixed, requiring intermolecular reactions to undergo configurational changes. Here we report the internal enantiomerization of fluxional carbon cages and the consequences of their adaptive configurations for the transmission of stereochemical information. The sp3-carbon stereochemistry of the rigid tricyclic cages is inverted through strain-assisted Cope rearrangements, emulating the low-barrier configurational dynamics typical for sp3-nitrogen inversion or conformational isomerism. This dynamic enantiomerization can be stopped, restarted or slowed by external reagents, while the configuration of the cage is controlled by neighbouring, fixed stereogenic centres. As part of a phosphoramidite-olefin ligand, the fluxional cage acts as a conduit to transmit stereochemical information from the ligand while also transferring its dynamic properties to chiral-at-metal coordination environments, influencing catalysis, ion pairing and ligand exchange energetics.
Collapse
Affiliation(s)
| | | | | | | | | | - Ho Chi Wong
- Department of Chemistry, Durham University, Durham, UK
| | | | | | - Paul R McGonigal
- Department of Chemistry, Durham University, Durham, UK. .,Department of Chemistry, University of York, York, UK.
| |
Collapse
|
16
|
A chiral macrocycle for the stereoselective synthesis of mechanically planar chiral rotaxanes and catenanes. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
17
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
18
|
Ishiwari F, Takata T. Rotaxanes with dynamic mechanical chirality: Systematic studies on synthesis, enantiomer separation, racemization, and chiral-prochiral interconversion. Front Chem 2022; 10:1025977. [PMID: 36386001 PMCID: PMC9650364 DOI: 10.3389/fchem.2022.1025977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022] Open
Abstract
Dynamic mechanical chirality of [2]rotaxane consisting of a C s symmetric wheel and a C 2v symmetric axle is discussed via the synthesis, enantiomer separation, racemization, and chiral-prochiral interconversion. This [2]rotaxane is achiral and/or prochiral when its wheel locates at the center of the axle, but becomes chiral when the wheel moves from the center of the axle. These were proved by the experiments on the enantiomer separation and racemization. The racemization energy of the isolated single enantiomers was controlled by the bulkiness of the central substituents on the axle. Furthermore, the chiral-prochiral interconversion was achieved by relative positional control of the components. The present systematic studies will provide new insight into mechanically chiral interlocked compounds as well as the utility as dynamic chiral sources.
Collapse
Affiliation(s)
- Fumitaka Ishiwari
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
19
|
Wu Z, Wang S, Zhang Z, Zhang Y, Yin Y, Shi H, Jiao S. Solvent effects on the motion of a crown ether/amino rotaxane. RSC Adv 2022; 12:30495-30500. [PMID: 36337980 PMCID: PMC9597606 DOI: 10.1039/d2ra05453a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022] Open
Abstract
Solvents have been recognized as a significant factor for modulating the shuttle of rotaxanes and regulating their functions regarding molecular machines by a lot of published studies. The mechanism of the effects of solvents on the motion of crown ether/amino rotaxanes, however, remains unclear. In this work, a rotaxane, formed by dibenzo-24-crown-8 (C[8]) and a dumbbell-shaped axle with two positively charged amino groups, was investigated at the atom level. Two-dimensional free-energy landscapes characterizing the conformational change of C[8] and the shuttling motions in chloroform and water were mapped. The results indicated that the barriers in water were evidently lower than those in chloroform. By analyzing the trajectories, there was no obvious steric effect during shuttling. Instead, the main driving force of shuttling was verified from electrostatic interactions, especially strong hydrogen bonding interactions between the axle and water, which resulted in the fast shuttling rate of the rotaxane. All in all, the polarity and hydrogen bond-forming ability of solvents are the main factors in affecting the shuttling rate of a crown ether/amino rotaxane. In addition, C[8] would adopt S-shaped conformations during shuttling except for situating in the amino sites with C-shaped ones adopted due to π-π stacking interactions. The results of this research improve the comprehension of the solvent modulation ability for shuttling in crown ether-based rotaxanes and illustrate the effects of structural modifications on motions. These new insights are expected to serve the efficient design and construction of molecular machines.
Collapse
Affiliation(s)
- Zhen Wu
- School of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
| | - Shuangshuang Wang
- School of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Zilin Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Yanjun Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Yanzhen Yin
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Haixin Shi
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Shufei Jiao
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| |
Collapse
|
20
|
Kumari M, Dey K, Bera SK, Lahiri GK. Indazole-Derived Mono-/Diruthenium and Heterotrinuclear Complexes: Switchable Binding Mode, Electronic Form, and Anion Sensing Events. Inorg Chem 2022; 61:16122-16140. [PMID: 36149433 DOI: 10.1021/acs.inorgchem.2c02628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The article deals with the newer classes of mononuclear: [(acac)2RuIII(H-Iz)(Iz-)] 1, [(acac)2RuIII(H-Iz)2]ClO4 [1]ClO4/[1']ClO4, and [(bpy)2RuII(H-Iz)(Iz-)]ClO4 [2]ClO4, mixed-valent unsymmetric dinuclear: [(acac)2RuIII(μ-Iz-)2RuII(bpy)2]ClO4 [3]ClO4, and heterotrinuclear: [(acac)2RuIII(μ-Iz-)2MII(μ-Iz-)2RuIII(acac)2] (M = Co:4a, Ni:4b, Cu:4c, and Zn:4d) complexes (H-Iz = indazole, Iz- = indazolate, acac = acetylacetonate, and bpy = 2,2'-bipyridine). Structural characterization of all the aforestated complexes established their molecular identities including varying binding modes (Na and Nb donors and 1H-indazole versus 2H-indazole) of the heterocyclic H-Iz/Iz- in the complexes. Unlike [1']ClO4 containing two NH protons at the backface of H-Iz units, the corresponding [1]ClO4 was found to be unstable due to the deprotonation of its positively charged quaternary nitrogen center, and this resulted in the eventual formation of the parent complex 1. A combination of experimental and density functional theory calculations indicated the redox noninnocent feature of Iz- in the complexes along the redox chain. The absence of intervalence charge transfer transition in the near-infrared region of the (Iz-)2-bridged unsymmetric mixed-valent RuIIIRuII state in [3]ClO4 suggested negligible intramolecular electronic coupling corresponding to a class I setup (Robin and Day classification). Heterotrinuclear complexes (4a-4d) exhibited varying spin configurations due to spin-spin interactions between the terminal Ru(III) ions and the central M(II) ion. Though both [3]ClO4 and 4a-4d displayed ligand (Iz-/Iz•)-based oxidation, reductions were preferentially taken place at the bpy and metal (RuIII/RuII) centers, respectively. Unlike 1 or [2]ClO4 containing one free NH proton at the backface of H-Iz, [1']ClO4 with two H-Iz units could selectively and effectively recognize F-, OAc-, and CN- among the tested anions: F-, OAc-, CN-, Cl-, Br-, I-, SCN-, HSO4-, and Η2PΟ4- in CH3CN via intermolecular NH···anion hydrogen bonding interaction. The difference in the sensing feature between [1']ClO4 and 1/[2]ClO4 could be rationalized by their pKa values of 8.4 and 11.3/10.8, respectively.
Collapse
Affiliation(s)
- Maya Kumari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Krishnendu Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Sudip Kumar Bera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
21
|
Bej S, Nandi M, Ghosh P. Development of fluorophoric [2]pseudorotaxanes and [2]rotaxane: selective sensing of Zn(II). Org Biomol Chem 2022; 20:7284-7293. [PMID: 36052954 DOI: 10.1039/d2ob01210c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorophoric [2]pseudorotaxanes {NiPR1(ClO4)2-NiPR3(ClO4)2} are synthesized by utilizing newly designed fluorophoric bidentate ligands (L1-L3) and a heteroditopic naphthalene containing macrocycle (NaphMC) with high yields via Ni(II) templation and π-π stacking interactions. Subsequently, a fluorophoric [2]rotaxane (NAPRTX) is established through a Cu(I) catalysed click reaction between an azide terminated pseudorotaxane, {NiPR4(ClO4)2}, which contains the newly designed fluorophoric ligand L4, and alkyne terminated bulky stopper units. All these fluorophoric [2]pseudorotaxanes and the [2]rotaxane were characterized using numerous techniques such as mass spectrometry, NMR, UV/Vis, PL, and elemental analysis, wherever applicable. Furthermore, to investigate the effect of the fluorophoric moieties, the coordinating ability of chelating units, and size and shape of the three dimensional cavity generated by the mechanical bond in the interlocked [2]rotaxane (NAPRTX), we have performed a sensing study of various metal ions. Thus, the interlocked [2]rotaxane is found to have potential as a selective fluorescent sensor for Zn(II) metal ions over other transition, alkali and alkaline earth metal ions, where the 2,2'-bipyridyl arylvinylene moiety of the axle acts as a fluorescence signalling unit.
Collapse
Affiliation(s)
- Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Mandira Nandi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
22
|
Maynard JR, Gallagher P, Lozano D, Butler P, Goldup SM. Mechanically axially chiral catenanes and noncanonical mechanically axially chiral rotaxanes. Nat Chem 2022; 14:1038-1044. [PMID: 35760959 PMCID: PMC7613450 DOI: 10.1038/s41557-022-00973-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
Chirality typically arises in molecules because of a rigidly chiral arrangement of covalently bonded atoms. Less generally appreciated is that chirality can arise when molecules are threaded through one another to create a mechanical bond. For example, when two macrocycles with chemically distinct faces are joined to form a catenane, the structure is chiral, although the rings themselves are not. However, enantiopure mechanically axially chiral catenanes in which the mechanical bond provides the sole source of stereochemistry have not been reported. Here we re-examine the symmetry properties of these molecules and in doing so identify a straightforward route to access them from simple chiral building blocks. Our analysis also led us to identify an analogous but previously unremarked upon rotaxane stereogenic unit, which also yielded to our co-conformational auxiliary approach. With methods to access mechanically axially chiral molecules in hand, their properties and applications can now be explored.
Collapse
|
23
|
Li M, Chia XL, Tian C, Zhu Y. Mechanically planar chiral rotaxanes through catalytic desymmetrization. Chem 2022. [DOI: 10.1016/j.chempr.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Wu P, Dharmadhikari B, Patra P, Xiong X. Rotaxane nanomachines in future molecular electronics. NANOSCALE ADVANCES 2022; 4:3418-3461. [PMID: 36134345 PMCID: PMC9400518 DOI: 10.1039/d2na00057a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/16/2022] [Indexed: 06/16/2023]
Abstract
As the electronics industry is integrating more and more new molecules to utilize them in logic circuits and memories to achieve ultra-high efficiency and device density, many organic structures emerged as promising candidates either in conjunction with or as an alternative to conventional semiconducting materials such as but not limited to silicon. Owing to rotaxane's mechanically interlocked molecular structure consisting of a dumbbell-shaped molecule threaded through a macrocycle, they could be excellent nanomachines in molecular switches and memory applications. As a nanomachine, the macrocycle of rotaxane can move reversibly between two stations along its axis under external stimuli, resulting in two stable molecular configurations known as "ON" and "OFF" states of the controllable switch with distinct resistance. There are excellent reports on rotaxane's structure, properties, and function relationship and its application to molecular electronics (Ogino, et al., 1984; Wu, et al., 1991; Bissell, et al., 1994; Collier, et al., 1999; Pease, et al., 2001; Chen, et al., 2003; Green, et al., 2007; Jia, et al., 2016). This comprehensive review summarizes [2]rotaxane and its application to molecular electronics. This review sorts the major research work into a multi-level pyramid structure and presents the challenges of [2]rotaxane's application to molecular electronics at three levels in developing molecular circuits and systems. First, we investigate [2]rotaxane's electrical characteristics with different driving methods and discuss the design considerations and roles based on voltage-driven [2]rotaxane switches that promise the best performance and compatibility with existing solid-state circuits. Second, we examine the solutions for integrating [2]rotaxane molecules into circuits and the limitations learned from these devices keep [2]rotaxane active as a molecular switch. Finally, applying a sandwiched crossbar structure and architecture to [2]rotaxane circuits reduces the fabrication difficulty and extends the possibility of reprogrammable [2]rotaxane arrays, especially at a system level, which eventually promotes the further realization of [2]rotaxane circuits.
Collapse
Affiliation(s)
- Peiqiao Wu
- Department of Computer Science and Computer Engineering, University of Bridgeport Bridgeport CT USA
| | - Bhushan Dharmadhikari
- Department of Electrical and Computer Engineering and Technology, Minnesota State University Mankato MN USA
| | - Prabir Patra
- Department of Biomedical Engineering and Mechanical Engineering, University of Bridgeport Bridgeport CT USA
| | - Xingguo Xiong
- Department of Electrical Engineering and Computer Engineering, University of Bridgeport Bridgeport CT USA
| |
Collapse
|
25
|
Rodríguez-Rubio A, Savoini A, Modicom F, Butler P, Goldup SM. A Co-conformationally "Topologically" Chiral Catenane. J Am Chem Soc 2022; 144:11927-11932. [PMID: 35763555 PMCID: PMC9348828 DOI: 10.1021/jacs.2c02029] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Catenanes composed of two achiral rings that are oriented (Cnh symmetry) because of the sequence of atoms they contain are referred to as topologically chiral. Here, we present the synthesis of a highly enantioenriched catenane containing a related but overlooked "co-conformationally 'topologically' chiral" stereogenic unit, which arises when a bilaterally symmetric Cnv ring is desymmetrized by the position of an oriented macrocycle.
Collapse
Affiliation(s)
- Arnau Rodríguez-Rubio
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Andrea Savoini
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Florian Modicom
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Patrick Butler
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Stephen M. Goldup
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| |
Collapse
|
26
|
[2]Rotaxane as a switch for molecular electronic memory application: A molecular dynamics study. J Mol Graph Model 2022; 114:108163. [PMID: 35339870 DOI: 10.1016/j.jmgm.2022.108163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022]
Abstract
As VLSI technology is shifting from microelectronics to nanoelectronics era, bi-stable [2]rotaxane emerges as a promising candidate for molecular electronics. A typical voltage-driven [2]rotaxane consists of a cyclobis-(paraquat-p-phenylene) macrocycle encircling a dumbbell shape molecular chain and moving between two stations on the chain: tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP). As a molecular switch, the macrocycle can move reversibly between two stations along its axis with appropriate driving voltage, resulting in two stable molecular conformational states with distinct high and low resistance. This makes it a well-suited candidate to represent binary states ("0" and "1") for digital electronics. In this work, we performed molecular simulation to investigate the switching mechanism of [2]rotaxane molecule. We used distance and angle variables to characterize the movement of the macrocycle along the chain, and compared the switching behavior of [2]rotaxane in water, ethanol, dimethyl ether and vacuum. The results show that the solvent environment plays an important role in the switching characteristics of [2]rotaxane molecule. The switching of [2]rotaxane is stable, controllable, reversible and repeatable. We also looked into potential failure mechanism of the [2]rotaxane, which could shed light on the fault model, testing and reliability enhancement of [2]rotaxane based molecular electronics. Our simulation results support that [2]rotaxane molecules possess potential to be used for molecular memory and logic applications.
Collapse
|
27
|
Yao B, Sun H, Yang L, Wang S, Liu X. Recent Progress in Light-Driven Molecular Shuttles. Front Chem 2022; 9:832735. [PMID: 35186899 PMCID: PMC8847434 DOI: 10.3389/fchem.2021.832735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular shuttles are typical molecular machines that could be applied in various fields. The motion modes of wheel components in rotaxanes could be strategically modulated by external stimuli, such as pH, ions, solvent, light, and so on. Light is particularly attractive because it is harmless and can be operated in a remote mode and usually no byproducts are formed. Over the past decade, many examples of light-driven molecular shuttles are emerging. Accordingly, this review summarizes the recent research progress of light-driven molecular shuttles. First, the light-driven mechanisms of molecular motions with different functional groups are discussed in detail, which show how to drive photoresponsive or non-photoresponsive molecular shuttles. Subsequently, the practical applications of molecular shuttles in different fields, such as optical information storage, catalysis for organic reactions, drug delivery, and so on, are demonstrated. Finally, the future development of light-driven molecular shuttle is briefly prospected.
Collapse
|
28
|
Cui Z, Gao X, Lin YJ, Jin GX. Stereoselective Self-Assembly of Complex Chiral Radial [5]Catenanes Using Half-Sandwich Rhodium/Iridium Building Blocks. J Am Chem Soc 2022; 144:2379-2386. [PMID: 35080385 DOI: 10.1021/jacs.1c13168] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we have successfully achieved the stereoselective synthesis of two chiral radial [5]catenanes in a single step through the self-assembly of bidentate ligands containing l-alanine residues and binuclear half-sandwich organometallic rhodium(III)/iridium(III) clips. Remarkably, these two chiral radial [5]catenanes exhibit complex stereochemical structures as revealed by single-crystal X-ray diffraction. The eight binuclear units and eight bidentate ligands in their solid-state structures all exhibit a single planar chirality, and the interlocking between molecular macrocycles exhibits a single co-conformational mechanical helical chirality. This indicates that the introduction of the point chirality in the ligands enables the efficient stereoselective construction of mechanically interlocked molecules. Furthermore, by using ligands containing d-alanine residues, radial [5]catenanes with the opposite planar chirality and opposite co-conformational mechanical helical chirality have also been obtained.
Collapse
Affiliation(s)
- Zheng Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
29
|
Nazarova A, Padnya P, Cragg PJ, Stoikov I. [1]Rotaxanes based on phosphorylated pillar[5]arenes. NEW J CHEM 2022. [DOI: 10.1039/d1nj05461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[1]Rotaxanes based on monosubstituted phosphorus-containing pillar[5]arenes have been synthesized by the Kabachnik–Fields reaction for the first time in good yields.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| | - Pavel Padnya
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| | - Peter J. Cragg
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Ivan Stoikov
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| |
Collapse
|
30
|
McCarney EP, McCarthy WJ, Lovitt JI, Gunnlaugsson T. Macrocyclic vs. [2]catenane btp structures: influence of (aryl) substitution on the self templation of btp ligands in macrocyclic synthesis. Org Biomol Chem 2021; 19:10189-10200. [PMID: 34788352 DOI: 10.1039/d1ob02032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of four 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) olefin based ligands 3, 4, 11 and 12 is described and their attempted use to form mechanically interlocked molecules using ring closing metatheses (RCM) reactions. The btp ligands were modified in two ways, in 3 and 4 the aryl substitution pattern was changed from 4th position to 3rd position and in the case of 11 and 12, the arms were replaced with aliphatic chains. Our study demonstrates that for all four ligands, the RCM reactions only result in the formation of macrocyclic structures, which in three of the cases, were structurally characterised in both solution (using NMR and HRMS) and in the solid-state using X-ray crystallography. NMR studies were also carried out to investigate if these ligands could preorganise in solution via hydrogen bonding interactions. This study provides a handle of how such precursor substitution can be used to direct the formation of macrocycles or mechanically interlocked structures.
Collapse
Affiliation(s)
- Eoin P McCarney
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - William J McCarthy
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - June I Lovitt
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. .,SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. .,SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
31
|
A chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes. Nat Chem 2021; 14:179-187. [PMID: 34845345 PMCID: PMC7612332 DOI: 10.1038/s41557-021-00825-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022]
Abstract
Rotaxanes can display molecular chirality solely due to the mechanical bond between the axle and encircling macrocycle without the presence of covalent stereogenic units. However, the synthesis of such molecules remains challenging. We have discovered a combination of reaction partners that function as a chiral interlocking auxiliary to both orientate a macrocycle and, effectively, load it onto a new axle. Here we use these substrates to demonstrate the potential of a chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes by producing a range of examples in high enantiopurity (93–99% e.e.), including so-called ‘impossible’ rotaxanes whose axles lack any functional groups that would allow their direct synthesis by other means. Intriguingly, by varying the order of bond-forming steps, we can effectively choose which end of an axle the macrocycle is loaded onto, enabling the synthesis of both hands of a single target using the same reactions and building blocks.
Collapse
|
32
|
Tajima S, Muranaka A, Naito M, Taniguch N, Harada M, Miyagawa S, Ueda M, Takaya H, Kobayashi N, Uchiyama M, Tokunaga Y. Synthesis of a Mechanically Planar Chiral and Axially Chiral [2]Rotaxane. Org Lett 2021; 23:8678-8682. [PMID: 34730985 DOI: 10.1021/acs.orglett.1c02983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we synthesized a [2]rotaxane that was both mechanically planar chiral and axially chiral, comprising a symmetrical bis-crown ether featuring a biphenyl moiety (as the macrocyclic component) and a symmetrical bis-ammonium salt (as the dumbbell-shaped component).
Collapse
Affiliation(s)
- Shinya Tajima
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Atsuya Muranaka
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masaya Naito
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Noriho Taniguch
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Masahiro Ueda
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Hikaru Takaya
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan.,Institute for Molecular Science, National Institute of Natural Science, Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Tokida, Ueda, Nagano 386-8567, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
33
|
Borodin O, Shchukin Y, Robertson CC, Richter S, von Delius M. Self-Assembly of Stimuli-Responsive [2]Rotaxanes by Amidinium Exchange. J Am Chem Soc 2021; 143:16448-16457. [PMID: 34559523 PMCID: PMC8517971 DOI: 10.1021/jacs.1c05230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 01/29/2023]
Abstract
Advances in supramolecular chemistry are often underpinned by the development of fundamental building blocks and methods enabling their interconversion. In this work, we report the use of an underexplored dynamic covalent reaction for the synthesis of stimuli-responsive [2]rotaxanes. The formamidinium moiety lies at the heart of these mechanically interlocked architectures, because it enables both dynamic covalent exchange and the binding of simple crown ethers. We demonstrated that the rotaxane self-assembly follows a unique reaction pathway and that the complex interplay between crown ether and thread can be controlled in a transient fashion by addition of base and fuel acid. Dynamic combinatorial libraries, when exposed to diverse nucleophiles, revealed a profound stabilizing effect of the mechanical bond as well as intriguing reactivity differences between seemingly similar [2]rotaxanes.
Collapse
Affiliation(s)
- Oleg Borodin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yevhenii Shchukin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Craig C. Robertson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Stefan Richter
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
34
|
Nicoli F, Baroncini M, Silvi S, Groppi J, Credi A. Direct synthetic routes to functionalised crown ethers. Org Chem Front 2021; 8:5531-5549. [PMID: 34603737 PMCID: PMC8477657 DOI: 10.1039/d1qo00699a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022]
Abstract
Crown ethers are macrocyclic hosts that can complex a wide range of inorganic and organic cations as well as neutral guest species. Their widespread utilization in several areas of fundamental and applied chemistry strongly relies on strategies for their functionalisation, in order to obtain compounds that could carry out multiple functions and could be incorporated in sophisticated systems. Although functionalised crown ethers are normally synthesised by templated macrocyclisation using appropriately substituted starting materials, the direct addition of functional groups onto a pre-formed macrocyclic framework is a valuable yet underexplored alternative. Here we review the methodologies for the direct functionalisation of aliphatic and aromatic crown ethers sporadically reported in the literature over a period of four decades. The general approach for the introduction of moieties on aliphatic crown ethers involves a radical mediated cross dehydrogenative coupling initiated either by photochemical or thermal/chemical activation, while aromatic crown ethers are commonly derivatised via electrophilic aromatic substitution. Direct functionalization routes can reduce synthetic effort, allow the later modification of crown ether-based architectures, and disclose new ways to exploit these versatile macrocycles in contemporary supramolecular science and technology.
Collapse
Affiliation(s)
- Federico Nicoli
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica "G. Ciamician", Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
35
|
Chen JF, Ding JD, Wei TB. Pillararenes: fascinating planar chiral macrocyclic arenes. Chem Commun (Camb) 2021; 57:9029-9039. [PMID: 34498646 DOI: 10.1039/d1cc03778a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chiral macrocycles possess significant value in chiral science and supramolecular chemistry. Pillararenes, as a class of relatively young supramolecular macrocyclic hosts, have been widely used for host-guest recognition and self-assembly. Since the position of substituents on the benzene rings breaks the molecular symmetry (symmetric plane and symmetric center), pillararenes possess planar chirality. However, it is a great challenge to synthesize stable and resolvable enantiomers because of the easy rotation of the phenylene group. In this review, we summarize the construction methods of resolvable chiral pillararenes. We also focus on their applications in enantioselective recognition, chiral switches, chirality sensing, asymmetric catalysis, circularly polarized luminescence, metal-organic frameworks, and highly permeable membranes. Finally, we discuss the future research perspectives in this field of pillararene-based planar chiral materials. We hope that this review will encourage more researchers to work in this exciting field.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Jin-Dong Ding
- Shaanxi Key Laboratory of National Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| |
Collapse
|
36
|
Affiliation(s)
- Arthur H. G. David
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310021 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
37
|
Ivanov P. Computational study (MM and DFT) on the conformations of some aromatic crown ether rotaxane macrocycles. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
McCarney EP, Lovitt JI, Gunnlaugsson T. Mechanically Interlocked Chiral Self-Templated [2]Catenanes from 2,6-Bis(1,2,3-triazol-4-yl)pyridine (btp) Ligands. Chemistry 2021; 27:12052-12057. [PMID: 34106499 PMCID: PMC8457180 DOI: 10.1002/chem.202101773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/24/2022]
Abstract
We report the efficient self-templated formation of optically active 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) derived homocircuit [2]catenane enantiomers. This represents the first example of the enantiopure formation of chiral btp homocircuit [2]catenanes from starting materials consisting of a classical chiral element; X-ray diffraction crystallography enabled the structural characterization of the [2]catenane. The self-assembly reaction was monitored closely in solution facilitating the characterization of the pseudo-rotaxane reaction intermediate prior to mechanically interlocking the pre-organised system via ring-closing metathesis.
Collapse
Affiliation(s)
- Eoin P. McCarney
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| | - June I. Lovitt
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| |
Collapse
|
39
|
Stereodynamics of E/ Z isomerization in rotaxanes through mechanical shuttling and covalent bond rotation. Chem 2021; 7:2137-2150. [PMID: 34435161 PMCID: PMC8367298 DOI: 10.1016/j.chempr.2021.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/18/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022]
Abstract
The mechanical bond has opened a new world for structural and dynamic stereochemistry, which is still largely underexplored and whose significance for various applications is becoming increasingly evident. We demonstrate that designed rearrangements involving both covalent and mechanical bonds can be integrated in [2]rotaxanes, leading to interesting consequences in terms of E/Z isomerization mechanisms. Two entirely distinct and concomitant stereomutations, pertaining to the same stereogenic element but involving different kinds of linkages within the molecule, are observed and are thoroughly characterized. The rate of the two processes is affected in opposite ways upon changing solvent polarity; such a phenomenon can be used to selectively modify the rate of each motion and adjust the relative contribution of the two mechanisms to the isomerization. Although the movements are not synchronized, an analysis of the intriguing fundamental implications for transition state theory, reaction pathway bifurcation, and microscopic reversibility was triggered by our experimental observations. Rotaxanes that display E/Z stereoisomerism depending on the ring position Co-existence of two different stereomutations that yield the same product Mutual influence and opposite solvent dependence of the two dynamic processes Fundamental implications for microscopic reversibility and chemical equilibrium
The concurrence and interplay of different movements of molecular components within the same structure play a key role in providing function to naturally occurring molecular machines. Despite the progress made on artificial counterparts, the construction of molecular systems, where two (or more) motions are integrated together to produce an outcome, is still in its infancy. Molecules called rotaxanes, obtained by interlocking a ring with a dumbbell-shaped axle, are an appealing yet underexplored platform for this purpose. Here, we describe rotaxanes where two coexisting and radically different processes—rotation about a covalent bond and translation of the ring along the axle—lead to the same change in the overall molecular shape. These results are significant not only to improve our fundamental understanding of the way molecular components move but also to develop sophisticated artificial nanomachines capable of transforming or transmitting motion.
Collapse
|
40
|
Caprice K, Pál D, Besnard C, Galmés B, Frontera A, Cougnon FBL. Diastereoselective Amplification of a Mechanically Chiral [2]Catenane. J Am Chem Soc 2021; 143:11957-11962. [PMID: 34323081 PMCID: PMC8397304 DOI: 10.1021/jacs.1c06557] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Achiral [2]catenanes composed of rings with inequivalent sides may adopt chiral co-conformations. Their stereochemistry depends on the relative orientation of the interlocked rings and can be controlled by sterics or an external stimulus (e.g., a chemical stimulus). Herein, we have exploited this stereodynamic property to amplify a mechanically chiral (P)-catenane upon binding to (R)-1,1'-binaphthyl 2,2'-disulfonate, with a diastereomeric excess of 85%. The chirality of the [2]catenane was ascertained in the solid state by single crystal X-ray diffraction and in solution by NMR and CD spectroscopies. This study establishes a robust basis for the development of a new synthetic approach to access enantioenriched mechanically chiral [2]catenanes.
Collapse
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Dávid Pál
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Bartomeu Galmés
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Fabien B L Cougnon
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
41
|
Liu C, Yu Z, Yao J, Ji J, Zhao T, Wu W, Yang C. Solvent-Driven Chirality Switching of a Pillar[4]arene[1]quinone Having a Chiral Amine-Substituted Quinone Subunit. Front Chem 2021; 9:713305. [PMID: 34307304 PMCID: PMC8293272 DOI: 10.3389/fchem.2021.713305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 11/14/2022] Open
Abstract
Several new chiral pillar[4]arene[1]quinone derivatives were synthesized by reacting pillar[4]arene[1]quinone (EtP4Q1), containing four 1,4-diethoxybenzene units and one benzoquinone unit, with various chiral amines via Michael addition. Due to the direct introduction of chiral substituents on the rim of pillar[n]arene and the close location of the chiral center to the rim of EtP4Q1, the newly prepared compounds showed unique chiroptical properties without complicated chiral resolution processes, and unprecedented high anisotropy factor of up to −0.018 at the charge transfer absorption band was observed. Intriguingly, the benzene sidearm attached pillar[4]arene[1]quinone derivative 1a showed solvent- and complexation-driven chirality inversion. This work provides a promising potential for absolute asymmetric synthesis of pillararene-based derivatives.
Collapse
Affiliation(s)
- Chunhong Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Jiabin Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Jiecheng Ji
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Ting Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Curcio M, Nicoli F, Paltrinieri E, Fois E, Tabacchi G, Cavallo L, Silvi S, Baroncini M, Credi A. Chemically Induced Mismatch of Rings and Stations in [3]Rotaxanes. J Am Chem Soc 2021; 143:8046-8055. [PMID: 33915051 PMCID: PMC8176457 DOI: 10.1021/jacs.1c02230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
The mechanical interlocking
of molecular components can lead to
the appearance of novel and unconventional properties and processes,
with potential relevance for applications in nanoscience, sensing,
catalysis, and materials science. We describe a [3]rotaxane in which
the number of recognition sites available on the axle component can
be changed by acid–base inputs, encompassing cases in which
this number is larger, equal to, or smaller than the number of interlocked
macrocycles. These species exhibit very different properties and give
rise to a unique network of acid–base reactions that leads
to a fine pKa tuning of chemically equivalent
acidic sites. The rotaxane where only one station is available for
two rings exhibits a rich coconformational dynamics, unveiled by an
integrated experimental and computational approach. In this compound,
the two crown ethers compete for the sole recognition site, but can
also come together to share it, driven by the need to minimize free
energy without evident inter-ring interactions.
Collapse
Affiliation(s)
- Massimiliano Curcio
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| | - Federico Nicoli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| | - Erica Paltrinieri
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| | - Ettore Fois
- Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como 22100, Italy
| | - Gloria Tabacchi
- Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como 22100, Italy
| | - Luigi Cavallo
- Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Serena Silvi
- Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy.,Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Bologna 40126, Italy
| | - Massimo Baroncini
- Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Bologna 40127, Italy
| | - Alberto Credi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| |
Collapse
|
43
|
Morise T, Muranaka A, Ban H, Harada M, Naito M, Yoshida K, Kobayashi N, Uchiyama M, Tokunaga Y. A Chiral [3]Rotaxane Comprising Achiral Bis-macrocyclic and Dumbbell-Shaped Components. Org Lett 2021; 23:2120-2124. [PMID: 33689384 DOI: 10.1021/acs.orglett.1c00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study, we synthesized a molecularly chiral [3]rotaxane comprising a calix-bis-crown ether (as the macrocyclic component) and two unsymmetrical dialkylammonium salts (as dumbbell-shaped components) without any chirality in any of the individual components. Chiral high-performance liquid chromatography was used to separate the enantiomers, which were characterized by circular dichroism spectroscopy. Density functional theory calculations gave an insight into the absolute configuration of each [3]rotaxane.
Collapse
Affiliation(s)
- Takaaki Morise
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Atsuya Muranaka
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hayato Ban
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaya Naito
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Kazuyuki Yoshida
- Forensic Science Laboratory, Fukui Prefectural Police Headquarters, Ohte, Fukui 910-8515, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Tokida, Ueda, Nagano 386-8567, Japan
| | - Masanobu Uchiyama
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
44
|
Study on the effect of substituents on the structure, volatility, and fluorescence of N-(Alkyl or TMS)-2-pyridinamine diethyl aluminum complexes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Singh P. Molecular switches and dual channel detection of Cd 2+ and Fe 3+ ions based on a multipodand system. LUMINESCENCE 2021; 36:802-811. [PMID: 33386700 DOI: 10.1002/bio.4005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/20/2020] [Accepted: 12/29/2020] [Indexed: 11/05/2022]
Abstract
Multipodand conjugates were designed and synthesized and incorporated 5-chloro-8-hydroxyquinoline for efficient performance and fine tuning to behave as molecular switches by the addition of metals ions, protonation, and their combination in CH3 CN and CH3 CN-H2 O. Dipodand 3 and tetrapodand 4 showed a switching 'ON' of fluorescence (λem = 435-445) with Zn2+ and Cd2+ (OR logic) and switching 'OFF' of fluorescence (λem = 402) in the presence of Cu2+ , Co2+ and Ni2+ (NOR logic). 4 showed switching 'OFF' of fluorescence at 402 nm at low concentrations of Ag+ , Pb2+ , Hg2+ and Fe3+ and, on further accumulation of these metal ions, excimer bands at 432 nm (Ag+ ) and 510 nm (Pb2+ , Hg2+ and Fe3+ ) provided the opportunity for 'ON-OFF-ON' switching. In contrast, 3 showed no change with Ag+ , while Pb2+ caused only 'ON-OFF' switching and Hg2+ and Fe3+ ions caused similar 'ON-OFF-ON' switching. The H+ -induced 'ON-OFF-ON' molecular switch was combined with Cu2+ that persuaded NOR logic to mimic inhibit (INH) logic. The compound also exhibited a H+ /Cu2+ -induced 'OFF-ON-OFF' type of signalling pattern. These proton-induced multiple outputs provide opportunities for YES, NOT logic gates. 3 showed selective 'ON-OFF' behaviour with Fe3+ ions and 'OFF-ON' behaviour with Cd2+ ions in 20% HEPES buffer-CH3 CN.
Collapse
Affiliation(s)
- Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
46
|
Da Silva Rodrigues R, Luis ET, Marshall DL, McMurtrie JC, Mullen KM. Hydrazone exchange: a viable route for the solid-tethered synthesis of [2]rotaxanes. NEW J CHEM 2021. [DOI: 10.1039/d1nj00388g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Using a hydrazone exchange methodology, resin beads were functionalised with [2]rotaxanes at up to 80% efficiency—higher than using other dynamic or irreversible synthetic approaches to form self-assembled structures on solid supports.
Collapse
Affiliation(s)
| | - Ena T. Luis
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane
- Australia
- Centre for Materials Science
| | - David L. Marshall
- Centre for Materials Science
- Queensland University of Technology
- Brisbane
- Australia
- Central Analytical Research Facility
| | - John C. McMurtrie
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane
- Australia
- Centre for Materials Science
| | - Kathleen M. Mullen
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane
- Australia
- Centre for Materials Science
| |
Collapse
|
47
|
Iwamoto T, Miyagawa S, Naito M, Tokunaga Y. Orientation of the α-CD component of [2]rotaxanes affects their specific molecular recognition behaviour. Org Chem Front 2021. [DOI: 10.1039/d0qo01337d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An α-CD component enhanced the anion recognition ability of the urea moiety and the deprotonation of the phenol moiety in the axle component in orientationally isomeric [2]rotaxanes with the OH groups on the wide rim of the α-CD, respectively.
Collapse
Affiliation(s)
- Takuya Iwamoto
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Bunkyo
- Japan
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Bunkyo
- Japan
| | - Masaya Naito
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Bunkyo
- Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Bunkyo
- Japan
| |
Collapse
|
48
|
Knighton RC, Beer PD. Sodium cation-templated synthesis of an ion-pair binding heteroditopic [2]catenane. Org Chem Front 2021. [DOI: 10.1039/d1qo00247c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel method utilising sodium cation templation between a pyridinium bridged calix[4]diquinone macrocycle and a pyridine-N-oxide functionalised macrocycle precursor motif is used for the construction of a mechanically interlocked ion-pair.
Collapse
Affiliation(s)
- Richard C. Knighton
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Paul D. Beer
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| |
Collapse
|
49
|
Stout K, Peters TPJ, Mabesoone MFJ, Visschers FLL, Meijer EM, Klop J, van den Berg J, White PB, Rowan AE, Nolte RJM, Elemans JAAW. Double Porphyrin Cage Compounds. European J Org Chem 2020; 2020:7087-7100. [PMID: 33380897 PMCID: PMC7756431 DOI: 10.1002/ejoc.202001211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 01/01/2023]
Abstract
The synthesis and characterization of double porphyrin cage compounds are described. They consist of two porphyrins that are each attached to a diphenylglycoluril-based clip molecule via four ethyleneoxy spacers, and are linked together by a single alkyl chain using "click"-chemistry. Following a newly developed multistep synthesis procedure we report three of these double porphyrin cages, linked by spacers of different lengths, i.e. 3, 5, and 11 carbon atoms. The structures of the double porphyrin cages were fully characterized by NMR, which revealed that they consist of mixtures of two diastereoisomers. Their zinc derivatives are capable of forming sandwich-like complexes with the ditopic ligand 1,4-diazabicyclo[2,2,2]octane (dabco).
Collapse
Affiliation(s)
- Kathleen Stout
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| | - Theo P. J. Peters
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| | - Mathijs F. J. Mabesoone
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| | - Fabian L. L. Visschers
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| | - Eline M. Meijer
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| | - Joëlle‐Rose Klop
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| | - Jeroen van den Berg
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| | - Paul B. White
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| | - Alan E. Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Rds (Bldg 75)The University of Queensland4072Brisbane QldAustralia
| | - Roeland J. M. Nolte
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| | - Johannes A. A. W. Elemans
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| |
Collapse
|
50
|
Chen ZJ, Lu HF, Chiu CW, Hou FM, Matsunaga Y, Chao I, Yang JS. A Molecular Rotor That Probes the Helical Inversion of Stiff-Stilbene. Org Lett 2020; 22:9158-9162. [PMID: 33052674 DOI: 10.1021/acs.orglett.0c02993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Probing the inversion kinetics of a molecular helix is inherently a challenging task. We demonstrate herein that a fast-rotating pentiptycene component could function as an external NMR probe to afford the kinetic information on the inversion of a neighboring helical stiff-stilbene unit.
Collapse
Affiliation(s)
- Zi-Jian Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Hsiu-Feng Lu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
| | - Chun-Wei Chiu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Fen-Miao Hou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Yuki Matsunaga
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Ito Chao
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
| | - Jye-Shane Yang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| |
Collapse
|