1
|
Zheng L, Cui YS, Chen DP, Li GM, Liu F, Zhai DD, Shi ZJ. Terminal Vanadium Hydride through Oxidative C-H Cleavage and Its Application in Reduction of O 2. J Am Chem Soc 2025; 147:14154-14162. [PMID: 40249830 DOI: 10.1021/jacs.4c14758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
We reported the synthesis and characterization of a novel vanadium hydride complex {[DippN2NCH2C6H4]VH}2{K}2 (2) obtained through intramolecular Caryl-H oxidative addition with an in situ-generated low-valent vanadium intermediate. This vanadium hydride exhibits strong reducing properties and is capable of activating O2 through a 4-electron reduction process. Simultaneously, it forms dioxovanadate complex 5 with a regenerated Csp2-H bond and oxovanadium complex 6. Feasible mechanisms for the formation of 5 and 6 were proposed based on the deuterium-labeled experiments and DFT calculations.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yun-Shu Cui
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Dong-Ping Chen
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Geng-Mu Li
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Feng Liu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Dan-Dan Zhai
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, SIOC, CAS, Shanghai 200032, China
- Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Shanghai 201418, China
| |
Collapse
|
2
|
Rueda-Espinosa J, Zhou W, Love JA, Pal S. Intramolecular Csp 3-H Activation at a Platinum(IV) Center Resulting from O 2 Activation: The Role of a Proton-Responsive Ligand and Trans Influence. J Am Chem Soc 2024; 146:34442-34451. [PMID: 39630995 DOI: 10.1021/jacs.4c11054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Aerobic oxidation of a dimethylplatinum(II) complex featuring 1,1-di(2-pyridyl)ethanol as a supporting ligand leads to the formation of two unexpected PtIV complexes (in ∼1:1 ratio), neither of which results from direct oxidation typical for PtII centers supported by popular κ2-(N,N) ligands. While one product features an isomerized PtIV center stabilized by the κ3-(N,N,O) ligand coordination mode, surprisingly, the other product results from intramolecular activation of the ligand methyl fragment. Mechanistic studies, reactivity of model complexes, and DFT calculations reveal that the critical proton-responsive nature of the ligand allows formation of intermediates that result in a concerted metalation deprotonation (CMD)-like C-H activation at PtIV. To the best of our knowledge, this is the first mechanistic delineation of Csp3-H activation at PtIV, despite being known for other high-valent platinum group metal centers.
Collapse
Affiliation(s)
- Juan Rueda-Espinosa
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Wen Zhou
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Jennifer A Love
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Shrinwantu Pal
- Department of Chemistry, Brandon University, 270 18th Street, Brandon, Manitoba R7A 6A9, Canada
| |
Collapse
|
3
|
Bailey EP, Donohoe TJ, Smith MD. Functional group tolerant hydrogen borrowing C-alkylation. Nat Commun 2024; 15:5131. [PMID: 38879563 PMCID: PMC11180204 DOI: 10.1038/s41467-024-49249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/30/2024] [Indexed: 06/19/2024] Open
Abstract
Hydrogen borrowing is an attractive and sustainable strategy for carbon-carbon bond formation that enables alcohols to be used as alkylating reagents in place of alkyl halides. However, despite intensive efforts, limited functional group tolerance is observed in this methodology, which we hypothesize is due to the high temperatures and harsh basic conditions often employed. Here we demonstrate that room temperature and functional group tolerant hydrogen borrowing can be achieved with a simple iridium catalyst in the presence of substoichiometric base without an excess of reagents. Achieving high yields necessitates the application of anaerobic conditions to counteract the oxygen sensitivity of the catalytic iridium hydride intermediate, which otherwise leads to catalyst degradation. Substrates containing heteroatoms capable of complexing the catalyst exhibit limited room temperature reactivity, but the application of moderately higher temperatures enables extension to a broad range of medicinally relevant nitrogen rich heterocycles. These newly developed conditions allow alcohols possessing functional groups that were previously incompatible with hydrogen borrowing reactions to be employed.
Collapse
Affiliation(s)
- Elliot P Bailey
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | | | - Martin D Smith
- Chemistry Research Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Phearman AS, Ardon Y, Goldberg KI. Insertion of Molecular Oxygen into a Gold(III)-Hydride Bond. J Am Chem Soc 2024; 146:4045-4059. [PMID: 38290523 DOI: 10.1021/jacs.3c12285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The use of molecular oxygen as an oxidant in chemical synthesis has significant environmental and economic benefits, and it is widely used as such in large-scale industrial processes. However, its adoption in highly selective homogeneous catalytic transformations, particularly to produce oxygenated organics, has been hindered by our limited understanding of the mechanisms by which O2 reacts with transition metals. Of particular relevance are the mechanisms of the reactions of oxygen with late transition metal hydrides as these metal centers are better poised to release oxygenated products. Homogeneous catalysis with gold complexes has markedly increased, and herein we report the synthesis and full characterization of a rare AuIII-H, supported by a diphosphine pincer ligand (tBuPCP = 2,6-bis(di-tert-butylphosphinomethyl)benzene). [(tBuPCP)AuIII-H]+ was found to cleanly react with molecular oxygen to yield a stable AuIII-OOH complex that was also fully characterized. Extensive kinetic studies on the reaction via variable temperature NMR spectroscopy have been completed, and the results are consistent with an autoaccelerating radical chain mechanism. The observed kinetic behavior exhibits similarities to that of previously reported PdII-H and PtIV-H reactions with O2 but is not fully consistent with any known O2 insertion mechanism. As such, this study contributes to the nascent fundamental understanding of the mechanisms of aerobic oxidation of late metal hydrides.
Collapse
Affiliation(s)
- Alexander S Phearman
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yotam Ardon
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Karen I Goldberg
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Mohammadpour P, Safaei E, Mazarei E, Zeinalipour-Yazdi CD. TEMPO and a co-reductant mediated aerobic epoxidation of olefins using a new magnetically recoverable iron(III) bis(phenol)diamine complex: experimental and computational studies. Phys Chem Chem Phys 2023; 25:26588-26603. [PMID: 37753780 DOI: 10.1039/d3cp02254d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
A magnetically recoverable catalyst of an iron(III) bis(phenol) diamine complex immobilized onto amine functionalized silica-coated magnetic nanoparticles has been synthesized. The catalyst was characterized using FESEM, TEM and XRD which confirmed the nano structure of the catalyst. The physicochemical techniques of ICP, FT-IR, XPS, EDS and TGA proved the loading of the ligand and metal complex on silica-coated magnetic nanoparticles. Using the prepared heterogeneous catalyst, aerobic epoxidation reactions of different alkenes have been investigated in the presence of SO32- as a reducing agent. Moreover, using TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to discover the mechanism of the aerobic epoxidation of olefins, a new TEMPO-assisted route has been explored. Both of the reaction pathways led to a moderate to high percentage yield of epoxides in water at room temperature. For further understanding mechanistic aspects, density functional theory (DFT) computational studies have been performed. The DFT calculations confirm the suggested mechanism for the title reaction and show the electron density in the vicinity of Fe(II) in the presence of TEMPO as a co-catalyst was more than that in the presence of SO32-.
Collapse
Affiliation(s)
- Pegah Mohammadpour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran.
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran.
| | - Elham Mazarei
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | | |
Collapse
|
6
|
Zhou J, Chen H, Chen J, Wan D, Zhang H, Wang R, Xie D, Mao C. Mechanisms and Kinetics Studies of Butylated Hydroxytoluene Degradation to Isobutene. J Phys Chem A 2022; 126:3210-3218. [PMID: 35549278 DOI: 10.1021/acs.jpca.2c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2,6-Di-tert-butyl-hydroxytotulene (BHT) is a widely used antioxidant in various fields. In this study, we explored comprehensively the mechanisms and kinetics of BHT degradation to produce isobutene using the density functional theory method. Furthermore, the intrinsic chemical reactivity of BHT was investigated using the electrostatic potential, average local ionization energy, and Fukui function, and the most likely reaction site with OH radical was predicted. Two initiation pathways of BHT with OH radicals were reported. The OH addition pathways at the C2 site of BHT was found more likely to occur than the pathways of H abstracts from the t-butyl group due to the lower energy barrier. Rate constants of two initiation pathways were calculated by transition state theory, and they were promoted by the temperature rise. Mayer bond order and localized molecular orbitals analysis were conducted to reveal the variation of the chemical bonds in the reaction process. The tertiary butyl radical that had been generated in the OH-addition reaction was more likely to generate isobutene with the participation of oxygen. Overall, this research could help to reveal the transformation mechanism of isobutene produced by BHT degradation.
Collapse
Affiliation(s)
- Junwei Zhou
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210023, China
| | - Hongrui Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210023, China
| | - Jianfa Chen
- Shanghai Space Propulsion Technology Research Institute, Shanghai 201100, China
| | - Daihong Wan
- Shanghai Space Propulsion Technology Research Institute, Shanghai 201100, China
| | - Huikun Zhang
- Shanghai Space Propulsion Technology Research Institute, Shanghai 201100, China
| | - Rong Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chengli Mao
- Shanghai Space Propulsion Technology Research Institute, Shanghai 201100, China
| |
Collapse
|
7
|
Ben-Tal Y, Boaler PJ, Dale HJA, Dooley RE, Fohn NA, Gao Y, García-Domínguez A, Grant KM, Hall AMR, Hayes HLD, Kucharski MM, Wei R, Lloyd-Jones GC. Mechanistic analysis by NMR spectroscopy: A users guide. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:28-106. [PMID: 35292133 DOI: 10.1016/j.pnmrs.2022.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
A 'principles and practice' tutorial-style review of the application of solution-phase NMR in the analysis of the mechanisms of homogeneous organic and organometallic reactions and processes. This review of 345 references summarises why solution-phase NMR spectroscopy is uniquely effective in such studies, allowing non-destructive, quantitative analysis of a wide range of nuclei common to organic and organometallic reactions, providing exquisite structural detail, and using instrumentation that is routinely available in most chemistry research facilities. The review is in two parts. The first comprises an introduction to general techniques and equipment, and guidelines for their selection and application. Topics include practical aspects of the reaction itself, reaction monitoring techniques, NMR data acquisition and processing, analysis of temporal concentration data, NMR titrations, DOSY, and the use of isotopes. The second part comprises a series of 15 Case Studies, each selected to illustrate specific techniques and approaches discussed in the first part, including in situ NMR (1/2H, 10/11B, 13C, 15N, 19F, 29Si, 31P), kinetic and equilibrium isotope effects, isotope entrainment, isotope shifts, isotopes at natural abundance, scalar coupling, kinetic analysis (VTNA, RPKA, simulation, steady-state), stopped-flow NMR, flow NMR, rapid injection NMR, pure shift NMR, dynamic nuclear polarisation, 1H/19F DOSY NMR, and in situ illumination NMR.
Collapse
Affiliation(s)
- Yael Ben-Tal
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Patrick J Boaler
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Harvey J A Dale
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ruth E Dooley
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom; Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Nicole A Fohn
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Yuan Gao
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrés García-Domínguez
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Katie M Grant
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew M R Hall
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Hannah L D Hayes
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Maciej M Kucharski
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ran Wei
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Guy C Lloyd-Jones
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom.
| |
Collapse
|
8
|
Shimoyama Y, Ohgomori Y, Kon Y, Hong D. Hydrogen peroxide production from oxygen and formic acid by homogeneous Ir-Ni catalyst. Dalton Trans 2021; 50:9410-9416. [PMID: 34096959 DOI: 10.1039/d1dt01431e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen peroxide was directly produced from oxygen and formic acid, catalysed by a hetero-dinuclear Ir-Ni complex with two adjacent sites, at ambient temperature. Synergistic catalysis derived from the hetero-dinuclear Ir and Ni centres was demonstrated by comparing its activity to those of the component mononuclear Ir and Ni complexes. A reaction intermediate of Ir-hydrido was detected by UV-vis, ESI-TOF-MS, and 1H NMR spectroscopies. It was revealed that the Ir moiety serves as an active species of Ir-hydrido, reacting with oxygen to afford an Ir-hydroperoxide species through O2 insertion, which is the rate-determining step for H2O2 production. Meanwhile, the Ni moiety promotes H2O2 formation by activating solvents as proton sources. We also found that H2O2 production is strongly affected by the solvent dielectric constants (DE); the highest H2O2 concentration was obtained in ethylene glycol with a moderate DE. The catalytic mechanism of H2O2 production by the Ir-Ni complex was discussed, based on kinetic analysis, isotope labelling experiments, and theoretical DFT calculations.
Collapse
Affiliation(s)
- Yoshihiro Shimoyama
- Interdisciplinary Research Centre for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Yuji Ohgomori
- Interdisciplinary Research Centre for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Yoshihiro Kon
- Interdisciplinary Research Centre for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Dachao Hong
- Interdisciplinary Research Centre for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
9
|
Rubashkin SB, Chu WY, Goldberg KI. Lowering the Barrier to C–H Activation at IrIII through Pincer Ligand Design. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sophie B. Rubashkin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wan-Yi Chu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I. Goldberg
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Shimoyama Y, Kitagawa Y, Ohgomori Y, Kon Y, Hong D. Formate-driven catalysis and mechanism of an iridium-copper complex for selective aerobic oxidation of aromatic olefins in water. Chem Sci 2021; 12:5796-5803. [PMID: 34168803 PMCID: PMC8179673 DOI: 10.1039/d0sc06634f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/15/2021] [Indexed: 11/21/2022] Open
Abstract
A hetero-dinuclear IrIII-CuII complex with two adjacent sites was employed as a catalyst for the aerobic oxidation of aromatic olefins driven by formate in water. An IrIII-H intermediate, generated through formate dehydrogenation, was revealed to activate terminal aromatic olefins to afford an Ir-alkyl species, and the process was promoted by a hydrophobic [IrIII-H]-[substrate aromatic ring] interaction in water. The Ir-alkyl species subsequently reacted with dioxygen to yield corresponding methyl ketones and was promoted by the presence of the CuII moiety under acidic conditions. The IrIII-CuII complex exhibited cooperative catalysis in the selective aerobic oxidation of olefins to corresponding methyl ketones, as evidenced by no reactivities observed from the corresponding mononuclear IrIII and CuII complexes, as the individual components of the IrIII-CuII complex. The reaction mechanism afforded by the IrIII-CuII complex in the aerobic oxidation was disclosed by a combination of spectroscopic detection of reaction intermediates, kinetic analysis, and theoretical calculations.
Collapse
Affiliation(s)
- Yoshihiro Shimoyama
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama-cho Toyonaka Osaka 560-8531 Japan
| | - Yuji Ohgomori
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Dachao Hong
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
11
|
Poveda D, Vivancos Á, Bautista D, González-Herrero P. Visible light driven generation and alkyne insertion reactions of stable bis-cyclometalated Pt(iv) hydrides. Chem Sci 2020; 11:12095-12102. [PMID: 34123220 PMCID: PMC8162800 DOI: 10.1039/d0sc04879h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hydride complexes resulting from the oxidative addition of C–H bonds are intermediates in hydrocarbon activation and functionalization reactions. The discovery of metal systems that enable their direct formation through photoexcitation with visible light could lead to advantageous synthetic methodologies. In this study, easily accessible dimers [Pt2(μ-Cl)2(C^N)2] (C^N = cyclometalated 2-arylpyridine) are demonstrated as a very convenient source of Pt(C^N) subunits, which promote photooxidative C–H addition reactions with different 2-arylpyridines (N′^C′H) upon irradiation with blue light. The resulting [PtH(Cl)(C^N)(C′^N′)] complexes are the first isolable Pt(iv) hydrides arising from a cyclometalation reaction. A transcyclometalation process involving three photochemical steps is elucidated, which occurs when the C^N ligand is a monocyclometalated 2,6-diarylpyridine, and a detailed analysis of the photoreactivity associated with the Pt(C^N) moiety is provided. Alkyne insertions into the Pt–H bond of a photogenerated Pt(iv) hydride are also reported as a demonstration of the ability of this class of compounds to undergo subsequent organometallic reactions. The photochemical generation of isolable bis-cyclometalated Pt(iv) hydrides via photooxidative C–H addition reactions is demonstrated from easily accessible Pt(ii) precursors using visible light.![]()
Collapse
Affiliation(s)
- Dionisio Poveda
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia Campus de Espinardo, 19 30100 Murcia Spain
| | - Ángela Vivancos
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia Campus de Espinardo, 19 30100 Murcia Spain
| | - Delia Bautista
- Área Científica y Técnica de Investigación, Universidad de Murcia Campus de Espinardo, 21 30100 Murcia Spain
| | - Pablo González-Herrero
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia Campus de Espinardo, 19 30100 Murcia Spain
| |
Collapse
|
12
|
Affiliation(s)
- Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
13
|
Foley BJ, Ozerov OV. Air- and Water-Tolerant (PNP)Ir Precatalyst for the Dehydrogenative Borylation of Terminal Alkynes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bryan J. Foley
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Oleg V. Ozerov
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
14
|
Zhang L, Shi M, Wang F. Practical way for the synthesis of 4H-benzo[e][1,3]oxazine by anhydride-promoted [4+2] cyclization of in situ generated o-quinone methides with amides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Konnick MM, Knapp SM, Stahl SS. Mechanism of the reaction of an NHC-coordinated palladium(II)-hydride with O2 in acetonitrile. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|