1
|
Bukhdruker S, Melnikov I, Baeken C, Balandin T, Gordeliy V. Crystallographic insights into lipid-membrane protein interactions in microbial rhodopsins. Front Mol Biosci 2024; 11:1503709. [PMID: 39606035 PMCID: PMC11599742 DOI: 10.3389/fmolb.2024.1503709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The primary goal of our work is to provide structural insights into the influence of the hydrophobic lipid environment on the membrane proteins (MPs) structure and function. Our work will not cover the well-studied hydrophobic mismatch between the lipid bilayer and MPs. Instead, we will focus on the less-studied direct molecular interactions of lipids with the hydrophobic surfaces of MPs. To visualize the first layer of amphiphiles surrounding MPs and analyze their interaction with the proteins, we use the available highest-quality crystallographic structures of microbial rhodopsins. The results of the structure-based analysis allowed us to formulate the hypothetical concept of the role of the nearest layer of the lipids as an integral part of the MPs that are important for their structure and function. We then discuss how the lipid-MPs interaction is influenced by exogenous hydrophobic molecules, noble gases, which can compete with lipids for the surface of MPs and can be used in the systematic approach to verify the proposed concept experimentally. Finally, we raise the problems of currently available structural data that should be overcome to obtain a more profound picture of the lipid-MP interactions.
Collapse
Affiliation(s)
- S. Bukhdruker
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - I. Melnikov
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | - C. Baeken
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - T. Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - V. Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| |
Collapse
|
2
|
Kogut-Günthel MM, Zara Z, Nicoli A, Steuer A, Lopez-Balastegui M, Selent J, Karanth S, Koehler M, Ciancetta A, Abiko LA, Hagn F, Di Pizio A. The path to the G protein-coupled receptor structural landscape: Major milestones and future directions. Br J Pharmacol 2024. [PMID: 39209310 DOI: 10.1111/bph.17314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures. These structures reveal novel features that shed light on receptor activation, dimerization and oligomerization, dichotomy between orthosteric and allosteric modulation, and the intricate interactions underlying signal transduction, providing insights into diverse ligand-binding modes and signalling pathways. However, a substantial portion of the GPCR repertoire and their activation states remain structurally unexplored. Future efforts should prioritize capturing the full structural diversity of GPCRs across multiple dimensions. To do so, the integration of structural biology with biophysical and computational techniques will be essential. We describe in this review the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and conformational dynamics, of atomic force microscopy (AFM) to explore the spatial-temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in artificial intelligence for protein structure prediction to characterize the structures of the entire GPCRome. In summary, the journey through GPCR structural biology provided in this review illustrates how far we have come in decoding these essential proteins architecture and function. Looking ahead, integrating cutting-edge biophysics and computational tools offers a path to navigating the GPCR structural landscape, ultimately advancing GPCR-based applications.
Collapse
Affiliation(s)
| | - Zeenat Zara
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Faculty of Science, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Alexandra Steuer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Marta Lopez-Balastegui
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
| | - Sanjai Karanth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany
| | - Antonella Ciancetta
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Franz Hagn
- Structural Membrane Biochemistry, Bavarian NMR Center, Dept. Bioscience, School of Natural Sciences, Technical University of Munich, Munich, Germany
- Institute of Structural Biology (STB), Helmholtz Munich, Neuherberg, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| |
Collapse
|
3
|
Jones AJY, Harman TH, Harris M, Lewis OE, Ladds G, Nietlispach D. Binding kinetics drive G protein subtype selectivity at the β 1-adrenergic receptor. Nat Commun 2024; 15:1334. [PMID: 38351103 PMCID: PMC10864275 DOI: 10.1038/s41467-024-45680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) bind to different G protein α-subtypes with varying degrees of selectivity. The mechanism by which GPCRs achieve this selectivity is still unclear. Using 13C methyl methionine and 19F NMR, we investigate the agonist-bound active state of β1AR and its ternary complexes with different G proteins in solution. We find the receptor in the ternary complexes adopts very similar conformations. In contrast, the full agonist-bound receptor active state assumes a conformation differing from previously characterised activation intermediates or from β1AR in ternary complexes. Assessing the kinetics of binding for the agonist-bound receptor with different G proteins, we find the increased affinity of β1AR for Gs results from its much faster association with the receptor. Consequently, we suggest a kinetic-driven selectivity gate between canonical and secondary coupling which arises from differential favourability of G protein binding to the agonist-bound receptor active state.
Collapse
Affiliation(s)
- Andrew J Y Jones
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Thomas H Harman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Oliver E Lewis
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
4
|
Gavryushov S, Bashilov A, Cherashev-Tumanov KV, Kuzmich NN, Burykina TI, Izotov BN. Interaction of Synthetic Cannabinoid Receptor Agonists with Cannabinoid Receptor I: Insights into Activation Molecular Mechanism. Int J Mol Sci 2023; 24:14874. [PMID: 37834323 PMCID: PMC10574015 DOI: 10.3390/ijms241914874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) have become a wide group of new psychoactive substances since the 2010s. For the last few years, the X-ray structures of the complexes of cannabinoid receptor I (CB1) with SCRAs as well as the complexes of CB1 with its antagonist have been published. Based on those data, SCRA-CB1 interactions are analyzed in detail, using molecular modeling and molecular dynamics simulations. The molecular mechanism of the conformational transformation of the transmembrane domain of CB1 caused by its interaction with SCRA is studied. These conformational changes allosterically modulate the CB1-Gi complex, providing activation of the Gi protein. Based on the X-ray-determined structures of the CB1-ligand complexes, a stable apo conformation of inactive CB1 with a relatively low potential barrier of receptor activation was modeled. For that model, molecular dynamic simulations of SCRA binding to CB1 led to the active state of CB1, which allowed us to explore the key features of this activation and the molecular mechanism of the receptor's structural transformation. The simulated CB1 activation is in accordance with the previously published experimental data for the activation at protein mutations or structural changes of ligands. The key feature of the suggested activation mechanism is the determination of the stiff core of the CB1 transmembrane domain and the statement that the entire conformational transformation of the receptor to the active state is caused by a shift of alpha helix TM7 relative to this core. The shift itself is caused by protein-ligand interactions. It was verified via steered molecular dynamics simulations of the X-ray-determined structures of the inactive receptor, which resulted in the active conformation of CB1 irrespective of the placement of agonist ligand in the receptor's active site.
Collapse
Affiliation(s)
- Sergei Gavryushov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow 119991, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya Str., Moscow 119991, Russia; (A.B.); (K.V.C.-T.); (T.I.B.); (B.N.I.)
| | - Anton Bashilov
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya Str., Moscow 119991, Russia; (A.B.); (K.V.C.-T.); (T.I.B.); (B.N.I.)
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 121205, Russia
| | - Konstantin V. Cherashev-Tumanov
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya Str., Moscow 119991, Russia; (A.B.); (K.V.C.-T.); (T.I.B.); (B.N.I.)
| | - Nikolay N. Kuzmich
- The Maurice and Vivienne Wohl Institute for Drug Discovery, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Tatyana I. Burykina
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya Str., Moscow 119991, Russia; (A.B.); (K.V.C.-T.); (T.I.B.); (B.N.I.)
| | - Boris N. Izotov
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya Str., Moscow 119991, Russia; (A.B.); (K.V.C.-T.); (T.I.B.); (B.N.I.)
| |
Collapse
|
5
|
Necelis M, McDermott C, Belcher Dufrisne M, Baryiames C, Columbus L. Solution NMR investigations of integral membrane proteins: Challenges and innovations. Curr Opin Struct Biol 2023; 82:102654. [PMID: 37542910 PMCID: PMC10529709 DOI: 10.1016/j.sbi.2023.102654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 08/07/2023]
Abstract
Compared to soluble protein counterparts, the understanding of membrane protein stability, solvent interactions, and function are not as well understood. Recent advancements in labeling, expression, and stabilization of membrane proteins have enabled solution nuclear magnetic resonance spectroscopy to investigate membrane protein conformational states, ligand binding, lipid interactions, stability, and folding. This review highlights these advancements and new understandings and provides examples of recent applications.
Collapse
Affiliation(s)
- Matthew Necelis
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Connor McDermott
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | | | | | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
6
|
Nishikino T, Hijikata A, Kojima S, Shirai T, Kainosho M, Homma M, Miyanoiri Y. Changes in the hydrophobic network of the FliG MC domain induce rotational switching of the flagellar motor. iScience 2023; 26:107320. [PMID: 37520711 PMCID: PMC10372836 DOI: 10.1016/j.isci.2023.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/18/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
The FliG protein plays a pivotal role in switching the rotational direction of the flagellar motor between clockwise and counterclockwise. Although we previously showed that mutations in the Gly-Gly linker of FliG induce a defect in switching rotational direction, the detailed molecular mechanism was not elucidated. Here, we studied the structural changes in the FliG fragment containing the middle and C-terminal regions, named FliGMC, and the switch-defective FliGMC-G215A, using nuclear magnetic resonance (NMR) and molecular dynamics simulations. NMR analysis revealed multiple conformations of FliGMC, and the exchange process between these conformations was suppressed by the G215A residue substitution. Furthermore, changes in the intradomain orientation of FliG were induced by changes in hydrophobic interaction networks throughout FliG. Our finding applies to FliG in a ring complex in the flagellar basal body, and clarifies the switching mechanism of the flagellar motor.
Collapse
Affiliation(s)
- Tatsuro Nishikino
- Laboratory for Ultra-High Magnetic Field NMR Spectroscopy, Research Center for Next-Generation Protein Sciences, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Hijikata
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Seiji Kojima
- Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Masatsune Kainosho
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Michio Homma
- Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yohei Miyanoiri
- Laboratory for Ultra-High Magnetic Field NMR Spectroscopy, Research Center for Next-Generation Protein Sciences, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
7
|
Krempl C, Wurm JP, Beck Erlach M, Kremer W, Sprangers R. Insights into the Structure of Invisible Conformations of Large Methyl Group Labeled Molecular Machines from High Pressure NMR. J Mol Biol 2023; 435:167922. [PMID: 37330282 DOI: 10.1016/j.jmb.2022.167922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/19/2023]
Abstract
Most proteins are highly flexible and can adopt conformations that deviate from the energetically most favorable ground state. Structural information on these lowly populated, alternative conformations is often lacking, despite the functional importance of these states. Here, we study the pathway by which the Dcp1:Dcp2 mRNA decapping complex exchanges between an autoinhibited closed and an open conformation. We make use of methyl Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion (RD) experiments that report on the population of the sparsely populated open conformation as well as on the exchange rate between the two conformations. To obtain volumetric information on the open conformation as well as on the transition state structure we made use of RD measurements at elevated pressures. We found that the open Dcp1:Dcp2 conformation has a lower molecular volume than the closed conformation and that the transition state is close in volume to the closed state. In the presence of ATP the volume change upon opening of the complex increases and the volume of the transition state lies in-between the volumes of the closed and open state. These findings show that ATP has an effect on the volume changes that are associated with the opening-closing pathway of the complex. Our results highlight the strength of pressure dependent NMR methods to obtain insights into structural features of protein conformations that are not directly observable. As our work makes use of methyl groups as NMR probes we conclude that the applied methodology is also applicable to high molecular weight complexes.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Jan Philip Wurm
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Beck Erlach
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
8
|
Tzortzini E, Corey RA, Kolocouris A. Comparative Study of Receptor-, Receptor State-, and Membrane-Dependent Cholesterol Binding Sites in A 2A and A 1 Adenosine Receptors Using Coarse-Grained Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:928-949. [PMID: 36637988 DOI: 10.1021/acs.jcim.2c01181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We used coarse-grained molecular dynamics (CG MD) simulations to study protein-cholesterol interactions for different activation states of the A2A adenosine receptor (A2AR) and the A1 adenosine receptor (A1R) and predict new cholesterol binding sites indicating amino acid residues with a high residence time in three biologically relevant membranes. Compared to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-cholesterol and POPC-phosphatidylinositol-bisphosphate (PIP2)-cholesterol, the plasma mimetic membrane best described the cholesterol binding sites previously detected for the inactive state of A2AR and revealed the binding sites with long-lasting amino acid residues. We observed that using the plasma mimetic membrane and plotting residues with cholesterol residence time ≥2 μs, our CG MD simulations captured most obviously the cholesterol-protein interactions. For the inactive A2AR, we identified one more binding site in which cholesterol is bound to residues with a long residence time compared to the previously detected, for the active A1R, three binding sites, and for the inactive A1R, two binding sites. We calculated that for the active states, cholesterol binds to residues with a much longer residence time compared to the inactive state for both A2AR and A1R. The stability of the identified binding sites to A1R or A2AR with CG MD simulations was additionally investigated with potential of mean force calculations using umbrella sampling. We observed that the binding sites with residues to which cholesterol has a long residence time in A2AR have shallow binding free energy minima compared to the related binding sites in A1R, suggesting a stronger binding for cholesterol to A1R. The differences in binding sites in which cholesterol is stabilized and interacts with residues with a long residence time between active and inactive states of A1R and A2AR can be important for differences in functional activity and orthosteric agonist or antagonist affinity and can be used for the design of allosteric modulators, which can bind through lipid pathways. We observed a stronger binding for cholesterol to A1R (i.e., generally higher association rates) compared to A2AR, which remains to be demonstrated. For the active states, cholesterol binds to residues with much longer residence times compared to the inactive state for both A2AR and A1R. Taken together, binding sites of active A1R may be considered as promising allosteric targets.
Collapse
Affiliation(s)
- Efpraxia Tzortzini
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771Athens, Greece
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771Athens, Greece
| |
Collapse
|
9
|
Wu FJ, Rieder PS, Abiko LA, Rößler P, Gossert AD, Häussinger D, Grzesiek S. Nanobody GPS by PCS: An Efficient New NMR Analysis Method for G Protein Coupled Receptors and Other Large Proteins. J Am Chem Soc 2022; 144:21728-21740. [DOI: 10.1021/jacs.2c09692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Feng-Jie Wu
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Pascal S. Rieder
- Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | | | - Philip Rößler
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Daniel Häussinger
- Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
10
|
Abiko LA, Dias Teixeira R, Engilberge S, Grahl A, Mühlethaler T, Sharpe T, Grzesiek S. Filling of a water-free void explains the allosteric regulation of the β 1-adrenergic receptor by cholesterol. Nat Chem 2022; 14:1133-1141. [PMID: 35953642 DOI: 10.1038/s41557-022-01009-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Recent high-pressure NMR results indicate that the preactive conformation of the β1-adrenergic receptor (β1AR) harbours completely empty cavities of ~100 Å3 volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of xenon-derivatized β1AR crystals. One of the cavities is in direct contact with the cholesterol-binding pocket. Solution NMR shows that addition of the cholesterol analogue cholesteryl hemisuccinate impedes the formation of the active conformation of detergent-solubilized β1AR by blocking conserved G protein-coupled receptor microswitches, concomitant with an affinity reduction of both isoprenaline and G protein-mimicking nanobody Nb80 for β1AR detected by isothermal titration calorimetry. This wedge-like action explains the function of cholesterol as a negative allosteric modulator of β1AR. A detailed understanding of G protein-coupled receptor regulation by cholesterol by filling of a dry void and the easy scouting for such voids by xenon may provide new routes for the development of allosteric drugs.
Collapse
Affiliation(s)
| | | | - Sylvain Engilberge
- Paul Scherrer Institut, Villigen, Switzerland.,European Synchrotron Radiation Facility, Grenoble, France
| | - Anne Grahl
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
11
|
Pozza A, Giraud F, Cece Q, Casiraghi M, Point E, Damian M, Le Bon C, Moncoq K, Banères JL, Lescop E, Catoire LJ. Exploration of the dynamic interplay between lipids and membrane proteins by hydrostatic pressure. Nat Commun 2022; 13:1780. [PMID: 35365643 PMCID: PMC8975810 DOI: 10.1038/s41467-022-29410-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cell membranes represent a complex and variable medium in time and space of lipids and proteins. Their physico-chemical properties are determined by lipid components which can in turn influence the biological function of membranes. Here, we used hydrostatic pressure to study the close dynamic relationships between lipids and membrane proteins. Experiments on the β–barrel OmpX and the α–helical BLT2 G Protein-Coupled Receptor in nanodiscs of different lipid compositions reveal conformational landscapes intimately linked to pressure and lipids. Pressure can modify the conformational landscape of the membrane protein per se, but also increases the gelation of lipids, both being monitored simultaneously at high atomic resolution by NMR. Our study also clearly shows that a membrane protein can modulate, at least locally, the fluidity of the bilayer. The strategy proposed herein opens new perspectives to scrutinize the dynamic interplay between membrane proteins and their surrounding lipids. Direct information on the dynamic interplay between membrane proteins and lipids is scarce. Here the authors report a detailed description of these close relationships by combining lipid nanodiscs and high-pressure NMR. They report the link between pressure and lipid compositions to the conformational landscape of the β-barrel OmpX and the α-helical BLT2 G Protein-Coupled Receptor in nanodiscs.
Collapse
Affiliation(s)
- Alexandre Pozza
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (IBPC, FRC 550), 75005, Paris, France
| | - François Giraud
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Quentin Cece
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (IBPC, FRC 550), 75005, Paris, France.,Laboratoire Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), UMR 8038, CNRS/Université de Paris, Faculté de Pharmacie, 75270, Paris, Cedex 06, France
| | - Marina Casiraghi
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (IBPC, FRC 550), 75005, Paris, France.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 94305, Stanford, CA, USA
| | - Elodie Point
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (IBPC, FRC 550), 75005, Paris, France
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, 34293, Montpellier, cedex 5, France
| | - Christel Le Bon
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (IBPC, FRC 550), 75005, Paris, France
| | - Karine Moncoq
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (IBPC, FRC 550), 75005, Paris, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, 34293, Montpellier, cedex 5, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Laurent J Catoire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (IBPC, FRC 550), 75005, Paris, France.
| |
Collapse
|
12
|
Huang SK, Prosser RS. Dynamics and Mechanistic Underpinnings to Pharmacology of Class A GPCRs - An NMR Perspective. Am J Physiol Cell Physiol 2022; 322:C739-C753. [PMID: 35235425 DOI: 10.1152/ajpcell.00044.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
One-third of current pharmaceuticals target G protein-coupled receptors (GPCRs), the largest receptor superfamily in humans and mediators of diverse physiological processes. This review summarizes the recent progress in GPCR structural dynamics, focusing on class A receptors and insights derived from nuclear magnetic resonance (NMR) and other spectroscopic techniques. We describe the structural aspects of GPCR activation and the various pharmacological models that capture aspects of receptor signaling behaviour. Spectroscopic studies revealed that receptors and their signaling complexes are dynamic allosteric systems that sample multiple functional states under basal conditions. The distribution of states within the conformational ensemble and the kinetics of transitions between states are regulated through the binding of ligands, allosteric modulators, and the membrane environment. This ensemble view of GPCRs provides a mechanistic framework for understanding many of the pharmacological phenomena associated with receptor signaling, such as basal activity, efficacy, and functional bias.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Huang SK, Almurad O, Pejana RJ, Morrison ZA, Pandey A, Picard LP, Nitz M, Sljoka A, Prosser RS. Allosteric modulation of the adenosine A 2A receptor by cholesterol. eLife 2022; 11:e73901. [PMID: 34986091 PMCID: PMC8730723 DOI: 10.7554/elife.73901] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Cholesterol is a major component of the cell membrane and commonly regulates membrane protein function. Here, we investigate how cholesterol modulates the conformational equilibria and signaling of the adenosine A2A receptor (A2AR) in reconstituted phospholipid nanodiscs. This model system conveniently excludes possible effects arising from cholesterol-induced phase separation or receptor oligomerization and focuses on the question of allostery. GTP hydrolysis assays show that cholesterol weakly enhances the basal signaling of A2AR while decreasing the agonist EC50. Fluorine nuclear magnetic resonance (19F NMR) spectroscopy shows that this enhancement arises from an increase in the receptor's active state population and a G-protein-bound precoupled state. 19F NMR of fluorinated cholesterol analogs reveals transient interactions with A2AR, indicating a lack of high-affinity binding or direct allosteric modulation. The combined results suggest that the observed allosteric effects are largely indirect and originate from cholesterol-mediated changes in membrane properties, as shown by membrane fluidity measurements and high-pressure NMR.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of TorontoTorontoCanada
- Department of Chemical and Physical Sciences, University of Toronto MississaugaMississaugaCanada
| | - Omar Almurad
- Department of Chemistry, University of TorontoTorontoCanada
- Department of Chemical and Physical Sciences, University of Toronto MississaugaMississaugaCanada
| | - Reizel J Pejana
- Department of Chemistry, University of TorontoTorontoCanada
- Department of Chemical and Physical Sciences, University of Toronto MississaugaMississaugaCanada
| | | | - Aditya Pandey
- Department of Chemistry, University of TorontoTorontoCanada
- Department of Chemical and Physical Sciences, University of Toronto MississaugaMississaugaCanada
| | - Louis-Philippe Picard
- Department of Chemistry, University of TorontoTorontoCanada
- Department of Chemical and Physical Sciences, University of Toronto MississaugaMississaugaCanada
| | - Mark Nitz
- Department of Chemistry, University of TorontoTorontoCanada
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence ProjectTokyoJapan
- York University, Department of ChemistryTorontoCanada
| | - R Scott Prosser
- Department of Chemistry, University of TorontoTorontoCanada
- Department of Chemical and Physical Sciences, University of Toronto MississaugaMississaugaCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| |
Collapse
|
14
|
Hilger D. The role of structural dynamics in GPCR‐mediated signaling. FEBS J 2021; 288:2461-2489. [DOI: 10.1111/febs.15841] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel Hilger
- Department of Pharmaceutical Chemistry Philipps‐University Marburg Germany
| |
Collapse
|
15
|
Abiko LA, Rogowski M, Gautier A, Schertler G, Grzesiek S. Efficient production of a functional G protein-coupled receptor in E. coli for structural studies. JOURNAL OF BIOMOLECULAR NMR 2021; 75:25-38. [PMID: 33501610 PMCID: PMC7897205 DOI: 10.1007/s10858-020-00354-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane signal transducers which regulate many key physiological process. Since their discovery, their analysis has been limited by difficulties in obtaining sufficient amounts of the receptors in high-quality, functional form from heterologous expression hosts. Albeit highly attractive because of its simplicity and the ease of isotope labeling for NMR studies, heterologous expression of functional GPCRs in E. coli has proven particularly challenging due to the absence of the more evolved protein expression and folding machinery of higher eukaryotic hosts. Here we first give an overview on the previous strategies for GPCR E. coli expression and then describe the development of an optimized robust protocol for the E. coli expression and purification of two mutants of the turkey β1-adrenergic receptor (β1AR) uniformly or selectively labeled in 15N or 2H,15N. These mutants had been previously optimized for thermal stability using insect cell expression and used successfully in crystallographic and NMR studies. The same sequences were then used for E. coli expression. Optimization of E. coli expression was achieved by a quantitative analysis of losses of receptor material at each step of the solubilization and purification procedure. Final yields are 0.2-0.3 mg receptor per liter culture. Whereas both expressed mutants are well folded and competent for orthosteric ligand binding, the less stable YY-β1AR mutant also comprises the two native tyrosines Y5.58 and Y7.53, which enable G protein binding. High-quality 1H-15N TROSY spectra were obtained for E. coli-expressed YY-β1AR in three different functional states (antagonist, agonist, and agonist + G protein-mimicking nanobody-bound), which are identical to spectra obtained of the same forms of the receptor expressed in insect cells. NdeI and AgeI restriction sites introduced into the expression plasmid allow for the easy replacement of the receptor gene by other GPCR genes of interest, and the provided quantitative workflow analysis may guide the respective adaptation of the purification protocol.
Collapse
Affiliation(s)
- Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Marco Rogowski
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Antoine Gautier
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
16
|
GPCR Activation States Induced by Nanobodies and Mini-G Proteins Compared by NMR Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25245984. [PMID: 33348734 PMCID: PMC7767065 DOI: 10.3390/molecules25245984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
In this work, we examine methyl nuclear magnetic resonance (NMR) spectra of the methionine ε-[13CH3] labelled thermostabilized β1 adrenergic receptor from turkey in association with a variety of different effectors, including mini-Gs and nanobody 60 (Nb60), which have not been previously studied in complex with β1 adrenergic receptor (β1AR) by NMR. Complexes with pindolol and Nb60 induce highly similar inactive states of the receptor, closely resembling the resting state conformational ensemble. We show that, upon binding of mini-Gs or nanobody 80 (Nb80), large allosteric changes throughout the receptor take place. The conformation of tβ1AR stabilized by the native-like mini-Gs protein is highly similar to the conformation induced by the currently used surrogate Nb80. Interestingly, in both cases residual dynamics are present, which were not observed in the resting states. Finally, we reproduce a pharmaceutically relevant situation, where an antagonist abolishes the interaction of the receptor with the mini-G protein in a competitive manner, validating the functional integrity of our preparation. The presented system is therefore well suited for reproducing the individual steps of the activation cycle of a G protein-coupled receptor (GPCR) in vitro and serves as a basis for functional and pharmacological characterizations of more native-like systems in the future.
Collapse
|
17
|
Viewing rare conformations of the β 2 adrenergic receptor with pressure-resolved DEER spectroscopy. Proc Natl Acad Sci U S A 2020; 117:31824-31831. [PMID: 33257561 DOI: 10.1073/pnas.2013904117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The β2 adrenergic receptor (β2AR) is an archetypal G protein coupled receptor (GPCR). One structural signature of GPCR activation is a large-scale movement (ca. 6 to 14 Å) of transmembrane helix 6 (TM6) to a conformation which binds and activates a cognate G protein. The β2AR exhibits a low level of agonist-independent G protein activation. The structural origin of this basal activity and its suppression by inverse agonists is unknown but could involve a unique receptor conformation that promotes G protein activation. Alternatively, a conformational selection model proposes that a minor population of the canonical active receptor conformation exists in equilibrium with inactive forms, thus giving rise to basal activity of the ligand-free receptor. Previous spin-labeling and fluorescence resonance energy transfer experiments designed to monitor the positional distribution of TM6 did not detect the presence of the active conformation of ligand-free β2AR. Here we employ spin-labeling and pressure-resolved double electron-electron resonance spectroscopy to reveal the presence of a minor population of unliganded receptor, with the signature outward TM6 displacement, in equilibrium with inactive conformations. Binding of inverse agonists suppresses this population. These results provide direct structural evidence in favor of a conformational selection model for basal activity in β2AR and provide a mechanism for inverse agonism. In addition, they emphasize 1) the importance of minor populations in GPCR catalytic function; 2) the use of spin-labeling and variable-pressure electron paramagnetic resonance to reveal them in a membrane protein; and 3) the quantitative evaluation of their thermodynamic properties relative to the inactive forms, including free energy, partial molar volume, and compressibility.
Collapse
|
18
|
Jones AJY, Gabriel F, Tandale A, Nietlispach D. Structure and Dynamics of GPCRs in Lipid Membranes: Physical Principles and Experimental Approaches. Molecules 2020; 25:E4729. [PMID: 33076366 PMCID: PMC7587580 DOI: 10.3390/molecules25204729] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the vast amount of information generated through structural and biophysical studies of GPCRs has provided unprecedented mechanistic insight into the complex signalling behaviour of these receptors. With this recent information surge, it has also become increasingly apparent that in order to reproduce the various effects that lipids and membranes exert on the biological function for these allosteric receptors, in vitro studies of GPCRs need to be conducted under conditions that adequately approximate the native lipid bilayer environment. In the first part of this review, we assess some of the more general effects that a membrane environment exerts on lipid bilayer-embedded proteins such as GPCRs. This is then followed by the consideration of more specific effects, including stoichiometric interactions with specific lipid subtypes. In the final section, we survey a range of different membrane mimetics that are currently used for in vitro studies, with a focus on NMR applications.
Collapse
Affiliation(s)
| | | | | | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (A.J.Y.J.); (F.G.); (A.T.)
| |
Collapse
|
19
|
Schuster M, Deluigi M, Pantić M, Vacca S, Baumann C, Scott DJ, Plückthun A, Zerbe O. Optimizing the α 1B-adrenergic receptor for solution NMR studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183354. [PMID: 32413443 DOI: 10.1016/j.bbamem.2020.183354] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/01/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022]
Abstract
Sample preparation for NMR studies of G protein-coupled receptors faces special requirements: Proteins need to be stable for prolonged measurements at elevated temperatures, they should ideally be uniformly labeled with the stable isotopes 13C, 15N, and all carbon-bound protons should be replaced by deuterons. In addition, certain NMR experiments require protonated methyl groups in the presence of a perdeuterated background. All these requirements are most easily satisfied when using Escherichia coli as the expression host. Here we describe a workflow, starting from a temperature-stabilized mutant of the α1B-adrenergic receptor, obtained using the CHESS methodology, into an even more stable species, in which flexible parts from termini were removed and the intracellular loop 3 (ICL3) was stabilized against proteolytic cleavage. The yield after purification corresponds to 1-2 mg/L of D2O culture. The final purification step is ligand-affinity chromatography to ensure that only well-folded ligand-binding protein is isolated. Proper selection of detergent has a remarkable influence on the quality of NMR spectra. All optimization steps of sequence and detergent are monitored on a small scale by monitoring the melting temperature and long-term thermal stability to allow for screening of many conditions. The stabilized mutant of the α1B-adrenergic receptor was additionally incorporated in nanodiscs, but displayed slightly inferior spectra compared to a sample in detergent micelles. Finally, both [15N,1H]- as well as [13C,1H]-HSQC spectra are shown highlighting the high quality of the final NMR sample. Importantly, the quality of [13C,1H]-HSQC spectra indicates that the so prepared receptor could be used for studying side-chain dynamics.
Collapse
Affiliation(s)
- Matthias Schuster
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mattia Deluigi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Milica Pantić
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Santiago Vacca
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Christian Baumann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel J Scott
- Florey Institute of Neuroscience and Mental Health, Department of Biochemistry and Molecular Biology, The University of Melbourne, 30 Royal Parade Parkville, 3052, Victoria, Australia
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
20
|
Grahl A, Abiko LA, Isogai S, Sharpe T, Grzesiek S. A high-resolution description of β 1-adrenergic receptor functional dynamics and allosteric coupling from backbone NMR. Nat Commun 2020; 11:2216. [PMID: 32371991 PMCID: PMC7200737 DOI: 10.1038/s41467-020-15864-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 04/01/2020] [Indexed: 12/29/2022] Open
Abstract
Signal transmission and regulation of G-protein-coupled receptors (GPCRs) by extra- and intracellular ligands occurs via modulation of complex conformational equilibria, but their exact kinetic details and underlying atomic mechanisms are unknown. Here we quantified these dynamic equilibria in the β1-adrenergic receptor in its apo form and seven ligand complexes using 1H/15N NMR spectroscopy. We observe three major exchanging conformations: an inactive conformation (Ci), a preactive conformation (Cp) and an active conformation (Ca), which becomes fully populated in a ternary complex with a G protein mimicking nanobody. The Ci ↔ Cp exchange occurs on the microsecond scale, the Cp ↔ Ca exchange is slower than ~5 ms and only occurs in the presence of two highly conserved tyrosines (Y5.58, Y7.53), which stabilize the active conformation of TM6. The Cp→Ca chemical shift changes indicate a pivoting motion of the entire TM6 that couples the effector site to the orthosteric ligand pocket. Signal transmission and regulation of G-protein-coupled receptors (GPCRs) by ligands occurs via modulation of complex conformational equilibria. Here authors quantify these equilibria and their dynamics in the β1-adrenergic receptor in its apo form and seven ligand complexes using NMR.
Collapse
Affiliation(s)
- Anne Grahl
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Shin Isogai
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Timothy Sharpe
- Biophysics Core Facility, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
21
|
Beyond structure: emerging approaches to study GPCR dynamics. Curr Opin Struct Biol 2020; 63:18-25. [PMID: 32305785 DOI: 10.1016/j.sbi.2020.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/22/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest superfamily of membrane proteins that are involved in regulation of sensory and physiological processes and implicated in many diseases. The last decade revolutionized the GPCR field by unraveling multiple high-resolution structures of many different receptors in complexes with various ligands and signaling partners. A complete understanding of the complex nature of GPCR function is, however, impossible to attain without combining static structural snapshots with information about GPCR dynamics obtained by complementary spectroscopic techniques. As illustrated in this review, structure and dynamics studies are now paving the way for understanding important questions of GPCR biology such as partial and biased agonism, allostery, oligomerization, and other fundamental aspects of GPCR signaling.
Collapse
|
22
|
Spotlight on the Ballet of Proteins: The Structural Dynamic Properties of Proteins Illuminated by Solution NMR. Int J Mol Sci 2020; 21:ijms21051829. [PMID: 32155847 PMCID: PMC7084655 DOI: 10.3390/ijms21051829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Solution NMR spectroscopy is a unique and powerful technique that has the ability to directly connect the structural dynamics of proteins in physiological conditions to their activity and function. Here, we summarize recent studies in which solution NMR contributed to the discovery of relationships between key dynamic properties of proteins and functional mechanisms in important biological systems. The capacity of NMR to quantify the dynamics of proteins over a range of time scales and to detect lowly populated protein conformations plays a critical role in its power to unveil functional protein dynamics. This analysis of dynamics is not only important for the understanding of biological function, but also in the design of specific ligands for pharmacologically important proteins. Thus, the dynamic view of structure provided by NMR is of importance in both basic and applied biology.
Collapse
|