1
|
Lopez Lemus MS, Kavthe RD, Thomas RM, Baumann M, Iyer KS, Lipshutz BH. Nickel-Catalyzed Hydro- and Deutero-dehalogenations of (Hetero)Aryl Halides under Aqueous Micellar Catalysis Conditions. CHEMSUSCHEM 2025:e202500043. [PMID: 40273112 DOI: 10.1002/cssc.202500043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/28/2025] [Indexed: 04/26/2025]
Abstract
Efficient Ni-catalyzed hydrodehalogenations and deuterodehalogenations of aryl/heteroaryl halides are reported herein. This new technology can be used to incorporate not only hydrogen, but also deuterium into various aromatic/heteroaromatic compounds with high efficiency, using 2-6 mol % nickel in the presence of stoichiometric NaBH4. Over 40 examples have been successfully converted to the corresponding (hetero)arenes in excellent yields. The process is conducted under green chemistry conditions: in water enabled by designer surfactants, a medium which can be readily recycled. Minimal organic solvent, needed given the small (academic) scale of the reactions, is used for product isolation, resulting in low E-Factors. Additionally, sterically hindered substrates are amenable, as are selected APIs that feature carbon-fluorine bonds.
Collapse
Affiliation(s)
- Monica S Lopez Lemus
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Rahul D Kavthe
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Rohan M Thomas
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Max Baumann
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Karthik S Iyer
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
2
|
Fang YJ, Wu XB, Wang QM, Xie ZK, Yao CZ, Jiang HJ, Yu J. High-performance anionic stereogenic-at-cobalt(III) complex/halide salts/oxone catalytic system for enantioselective halocyclization of olefins. Chem Commun (Camb) 2025; 61:2814-2817. [PMID: 39838888 DOI: 10.1039/d4cc06610c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
A high-performance anionic stereogenic-at-cobalt(III) complex/oxone catalytic system was developed for various enantioselective intramolecular halocyclizations of olefins using halide salts as halogen sources, delivering structurally diverse halogenated heterocyclic compounds with outstanding stereoselectivity (up to 97 : 3 e.r.). In this protocol, ultra-low catalyst loadings can be routinely used, since the stereogenic-at-cobalt(III) complexes were the sole counteranions of cationic halonium intermediates, minimizing background reactions to the greatest extent possible.
Collapse
Affiliation(s)
- Yi-Jun Fang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Xiao-Bao Wu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Qi-Ming Wang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Zu-Kui Xie
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Chuan-Zhi Yao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Denner TC, Heise NV, Al-Harrasi A, Csuk R. Synthesis and Enzymatic Evaluation of a Small Library of Substituted Phenylsulfonamido-Alkyl Sulfamates towards Carbonic Anhydrase II. Molecules 2024; 29:3015. [PMID: 38998967 PMCID: PMC11243685 DOI: 10.3390/molecules29133015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
A small library of 79 substituted phenylsulfonamidoalkyl sulfamates, 1b-79b, was synthesized starting from arylsulfonyl chlorides and amino alcohols with different numbers of methylene groups between the hydroxyl and amino moieties yielding intermediates 1a-79a, followed by the reaction of the latter with sulfamoyl chloride. All compounds were screened for their inhibitory activity on bovine carbonic anhydrase II. Compounds 1a-79a showed no inhibition of the enzyme, in contrast to sulfamates 1b-79b. Thus, the inhibitory potential of compounds 1b-79b towards this enzyme depends on the substituent and the substitution pattern of the phenyl group as well as the length of the spacer. Bulkier substituents in the para position proved to be better for inhibiting CAII than compounds with the same substituent in the meta or ortho position. For many substitution patterns, compounds with shorter spacer lengths were superior to those with long chain spacers. Compounds with shorter spacer lengths performed better than those with longer chain spacers for a variety of substitution patterns. The most active compound held inhibition constant as low as Ki = 0.67 μM (for 49b) and a tert-butyl substituent in para position and acted as a competitive inhibitor of the enzyme.
Collapse
Affiliation(s)
- Toni C. Denner
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| | - Niels V. Heise
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| |
Collapse
|
4
|
Desai SP, Yatzoglou G, Turner JA, Taylor MS. Boronic Acid-Catalyzed Regio- and Stereoselective N-Glycosylations of Purines and Other Azole Heterocycles: Access to Nucleoside Analogues. J Am Chem Soc 2024; 146:4973-4984. [PMID: 38330907 DOI: 10.1021/jacs.3c14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
In the presence of an arylboronic acid catalyst, azole-type heterocycles, including purines, tetrazoles, triazoles, indazoles, and benzo-fused congeners, undergo regio- and stereoselective N-glycosylations with furanosyl and pyranosyl trichloroacetimidate donors. The protocol, which does not require stoichiometric activators, specialized leaving groups, or drying agents, provides access to nucleoside analogues and enables late-stage N-glycosylation of azole-containing pharmaceutical agents. A mechanism involving simultaneous activation of the glycosyl donor and acceptor by the organoboron catalyst has been proposed, supported by kinetic analysis and computational modeling.
Collapse
Affiliation(s)
- Shrey P Desai
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Giorgos Yatzoglou
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
5
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
6
|
Liu ZQ. Is it still worth renewing nucleoside anticancer drugs nowadays? Eur J Med Chem 2024; 264:115987. [PMID: 38056297 DOI: 10.1016/j.ejmech.2023.115987] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Nucleoside has situated the convergence point in the discovery of novel drugs for decades, and a large number of nucleoside derivatives have been constructed for screening novel pharmacological properties at various experimental platforms. Notably, nearly 20 nucleosides are approved to be used in the clinic treatment of various cancers. Nevertheless, the blossom of synthetic nucleoside analogs in comparison with the scarcity of nucleoside anticancer drugs leads to a question: Is it still worth insisting on the screening of novel anticancer drugs from nucleoside derivatives? Hence, this review attempts to emphasize the importance of nucleoside analogs in the discovery of novel anticancer drugs. Firstly, we introduce the metabolic procedures of nucleoside anticancer drug (such as 5-fluorouracil) and summarize the designing of novel nucleoside anticancer candidates based on clinically used nucleoside anticancer drugs (such as gemcitabine). Furthermore, we collect anticancer properties of some recently synthesized nucleoside analogs, aiming at emphasizing the availability of nucleoside analogs in the discovery of anticancer drugs. Finally, a variety of synthetic strategies including the linkage of sugar moiety with nucleobase scaffold, modifications on the sugar moiety, and variations on the nucleobase structure are collected to exhibit the abundant protocols in the achievement of nucleoside analogs. Taken the above discussions collectively, nucleoside still advantages for the finding of novel anticancer drugs because of the clearly metabolic procedures, successfully clinic applications, and abundantly synthetic routines.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
7
|
Wang P, Cheng T, Pan J. Nucleoside Analogs: A Review of Its Source and Separation Processes. Molecules 2023; 28:7043. [PMID: 37894522 PMCID: PMC10608831 DOI: 10.3390/molecules28207043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nucleoside analogs play a crucial role in the production of high-value antitumor and antimicrobial drugs. Currently, nucleoside analogs are mainly obtained through nucleic acid degradation, chemical synthesis, and biotransformation. However, these methods face several challenges, such as low concentration of the main product, the presence of complex matrices, and the generation of numerous by-products that significantly limit the development of new drugs and their pharmacological studies. Therefore, this work aims to summarize the universal separation methods of nucleoside analogs, including crystallization, high-performance liquid chromatography (HPLC), column chromatography, solvent extraction, and adsorption. The review also explores the application of molecular imprinting techniques (MITs) in enhancing the identification of the separation process. It compares existing studies reported on adsorbents of molecularly imprinted polymers (MIPs) for the separation of nucleoside analogs. The development of new methods for selective separation and purification of nucleosides is vital to improving the efficiency and quality of nucleoside production. It enables us to obtain nucleoside products that are essential for the development of antitumor and antiviral drugs. Additionally, these methods possess immense potential in the prevention and control of serious diseases, offering significant economic, social, and scientific benefits to the fields of environment, biomedical research, and clinical therapeutics.
Collapse
Affiliation(s)
| | | | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (P.W.); (T.C.)
| |
Collapse
|
8
|
Wang Q, Mu J, Zeng J, Wan L, Zhong Y, Li Q, Li Y, Wang H, Chen F. Additive-controlled asymmetric iodocyclization enables enantioselective access to both α- and β-nucleosides. Nat Commun 2023; 14:138. [PMID: 36627283 PMCID: PMC9831021 DOI: 10.1038/s41467-022-35610-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
β-Nucleosides and their analogs are dominant clinically-used antiviral and antitumor drugs. α-Nucleosides, the anomers of β-nucleosides, exist in nature and have significant potential as drugs or drug carriers. Currently, the most widely used methods for synthesizing β- and α-nucleosides are via N-glycosylation and pentose aminooxazoline, respectively. However, the stereoselectivities of both methods highly depend on the assisting group at the C2' position. Herein, we report an additive-controlled stereodivergent iodocyclization method for the selective synthesis of α- or β-nucleosides. The stereoselectivity at the anomeric carbon is controlled by the additive (NaI for β-nucleosides; PPh3S for α-nucleosides). A series of β- and α-nucleosides are prepared in high yields (up to 95%) and stereoselectivities (β:α up to 66:1, α:β up to 70:1). Notably, the introduced iodine at the C2' position of the nucleoside is readily functionalized, leading to multiple structurally diverse nucleoside analogs, including stavudine, an FDA-approved anti-HIV agent, and molnupiravir, an FDA-approved anti-SARS-CoV-2 agent.
Collapse
Affiliation(s)
- Qi Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiayi Mu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jie Zeng
- Pharmaceutical Research Institute, Wuhan Institute of Technology, 430205, Wuhan, China
| | - Linxi Wan
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yangyang Zhong
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qiuhong Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yitong Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Huijing Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China. .,Engineering Center of Catalysis and synthesis for Chiral Molecules, Department of chemistry, Fudan University, Shanghai, 200433, China. .,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China.
| |
Collapse
|
9
|
Liao L, Xu X, Ji J, Zhao X. Asymmetric Intermolecular Iodinative Difunctionalization of Allylic Sulfonamides Enabled by Organosulfide Catalysis: Modular Entry to Iodinated Chiral Molecules. J Am Chem Soc 2022; 144:16490-16501. [PMID: 36053004 DOI: 10.1021/jacs.2c05668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electrophilic halogenation of alkenes is a powerful transformation offering a convenient route for the construction of valuable functionalized molecules. However, as a highly important reaction in this field, catalytic asymmetric intermolecular iodinative difunctionalization remains a formidable challenge. Herein, we report that an efficient Lewis basic chiral sulfide-catalyzed approach enables this reaction. By this approach, challenging substrates such as γ,γ-disubstituted allylic sulfonamides and 1,1-disubstituted alkenes with an allylic sulfonamide unit undergo electrophilic iodinative difunctionalization to give a variety of iodine-functionalized chiral molecules in good yields with excellent enantio- and diastereoselectivities. A series of free phenols as nucleophiles are successfully incorporated into the substrates. Aside from phenols, primary and secondary alcohols, fluoride, and azide also serve as efficient nucleophiles. The obtained iodinated products are a good platform molecule, which can be easily transformed into various chiral compounds such as α-aryl ketones, chiral secondary amines, and aziridines via rearrangement or substitution. Mechanistic studies revealed that the chiral sulfide catalyst displays a superior effect on control of the reactivity of electrophilic iodine and the enantioselective construction of the chiral iodiranium ion intermediate and catalyst aggregates might be formed as a resting state in the reactions.
Collapse
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xinru Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jieying Ji
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Murtinho D, Elisa da Silva Serra M. Transition Metal Catalysis in Synthetic Heterocyclic Chemistry. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Seo K, Jang SH, Rhee YH. Sequential Metal Catalysis towards 7‐Oxostaurosporine and Its Non‐Natural Septanose Analogue. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kyeongdeok Seo
- Department of Chemistry Pohang University of Science and Technology Cheongam-Ro 77, Nam-Gu Pohang, Kyeongbuk 37673 Republic of Korea
| | - Seok Hyeon Jang
- Department of Chemistry Pohang University of Science and Technology Cheongam-Ro 77, Nam-Gu Pohang, Kyeongbuk 37673 Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry Pohang University of Science and Technology Cheongam-Ro 77, Nam-Gu Pohang, Kyeongbuk 37673 Republic of Korea
| |
Collapse
|
12
|
Wang H, Zhong YY, Xiao YC, Chen FE. Chemical and chemoenzymatic stereoselective synthesis of β-nucleosides and their analogues. Org Chem Front 2022. [DOI: 10.1039/d1qo01936h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-Nucleosides are fundamental building blocks of biological systems that are widely used as therapeutic agents for treating cancer and viral infections among others. In the last two years, nucleoside analogues...
Collapse
|
13
|
Seo K, Jang SH, Rhee YH. Sequential Metal Catalysis towards 7-Oxostaurosporine and Its Non-Natural Septanose Analogue. Angew Chem Int Ed Engl 2021; 61:e202112524. [PMID: 34786807 DOI: 10.1002/anie.202112524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 11/09/2022]
Abstract
We report sequential metal catalysis towards indolocarbazole glycosides. The signature event is highlighted by i) Pd0 -catalyzed addition of indolocarbazole to alkoxyallene combined with ring-closing-metathesis; ii) Ru-catalyzed chemoselective olefin migration; iii) PdII -catalyzed oxidative cyclization to build the bicyclic core structure of the target compounds. This approach gave access to both natural pyranose- and non-natural septanose glycosides. A short formal synthesis of 7-oxostaurosporine was achieved via this strategy.
Collapse
Affiliation(s)
- Kyeongdeok Seo
- Department of Chemistry, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Kyeongbuk, 37673, Republic of Korea
| | - Seok Hyeon Jang
- Department of Chemistry, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Kyeongbuk, 37673, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Kyeongbuk, 37673, Republic of Korea
| |
Collapse
|
14
|
Gui J, Cai X, Chen L, Zhou Y, Zhu W, Jiang Y, Hu M, Chen X, Hu Y, Zhang S. Facile and practical hydrodehalogenations of organic halides enabled by calcium hydride and palladium chloride. Org Chem Front 2021. [DOI: 10.1039/d1qo00758k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For the first time, calcium hydride and palladium chloride were used to reduce a wide range of organic halides including aromatic bromides, aromatic chlorides, aromatic triflates, aliphatic bromides, aliphatic chlorides and trihalomethyl compounds.
Collapse
Affiliation(s)
- Jingjing Gui
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Xin Cai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Lingyun Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Yuxin Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Wenjing Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Yuanrui Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Min Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Xiaobei Chen
- State Key Laboratory of Bioreactor Engineering, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, P.R. China
| | - Yanwei Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Shilei Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|
15
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
16
|
Wang HX, Li WP, Zhang MM, Xie MS, Qu GR, Guo HM. Synthesis of chiral pyrimidine-substituted diester D-A cyclopropanes via asymmetric cyclopropanation of phenyliodonium ylides. Chem Commun (Camb) 2020; 56:11649-11652. [PMID: 33000801 DOI: 10.1039/d0cc04536e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly enantioselective cyclopropanation to synthesize pyrimidine-substituted diester D-A cyclopropanes is reported. Various N1-vinylpyrimidines react well with phenyliodonium ylides, delivering chiral cyclopropanes in up to 97% yield with up to 99% ee. Through simple [3+2] annulation with benzaldehyde or ethyl glyoxylate, different chiral pyrimidine nucleoside analogues with a sugar ring could be obtained.
Collapse
Affiliation(s)
- Hai-Xia Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Wen-Peng Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Mi-Mi Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
17
|
Chen A, Yu H, Yan J, Huang H. Lewis Acid Catalyzed Electrophilic Aminomethyloxygenative Cyclization of Alkynols with N,O-Aminals. Org Lett 2020; 22:755-759. [DOI: 10.1021/acs.orglett.9b04630] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Anrong Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Houjian Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Jiaqi Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
18
|
Mangoni AA, Eynde JJV, Jampilek J, Hadjipavlou-Litina D, Liu H, Reynisson J, Sousa ME, Gomes PAC, Prokai-Tatrai K, Tuccinardi T, Sabatier JM, Luque FJ, Rautio J, Karaman R, Vasconcelos MH, Gemma S, Galdiero S, Hulme C, Collina S, Gütschow M, Kokotos G, Siciliano C, Capasso R, Agrofoglio LA, Ragno R, Muñoz-Torrero D. Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes-5. Molecules 2019; 24:molecules24132415. [PMID: 31262039 PMCID: PMC6650823 DOI: 10.3390/molecules24132415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/04/2023] Open
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Jean Jacques Vanden Eynde
- Formerly head of the Department of Organic Chemistry (FS), University of Mons-UMONS, 7000 Mons, Belgium
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jóhannes Reynisson
- School of Pharmacy, Keele University, Hornbeam building, Staffordshire ST5 5BG, UK
| | - Maria Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências, Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N 4450-208 Matosinhos, Portugal
| | - Paula A C Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard - CS80011, 13344 Marseille CEDEX 15, France
| | - F Javier Luque
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Rafik Karaman
- Pharmaceutical & Medicinal Chemistry Department, Faculty of Pharmacy, Al-Quds University, POB 20002 Jerusalem, Palestine
- Department of Sciences, University of Basilicata, Viadell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - M Helena Vasconcelos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group-IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sandra Gemma
- Department of Biotechnology, chemistry and pharmacy, University of Siena via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Christopher Hulme
- Department of Pharmacology and Toxicology, and Department of Chemistry and Biochemistry, College of Pharmacy, The University of Arizona, Biological Sciences West Room 351, 1041 East Lowell Street, Tucson, AZ 85721, USA
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53115 Bonn, Germany
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Arcavacata di Rende, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Luigi A Agrofoglio
- ICOA, CNRS UMR 7311, Universite d'Orleans, Rue de Chartres, 45067 Orleans CEDEX 2, France
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
19
|
Huang KX, Xie MS, Wang DC, Sang JW, Qu GR, Guo HM. Palladium-catalyzed asymmetric formal [3+2] cycloaddition of α-N-heterocyclic acrylates with vinyl epoxides for construction of isonucleoside analogs. Chem Commun (Camb) 2019; 55:13550-13553. [DOI: 10.1039/c9cc07571b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient Pd-catalyzed asymmetric formal [3+2] cycloaddition of α-N-heterocyclic acrylates with vinyl epoxides has been developed for the first time.
Collapse
Affiliation(s)
- Ke-Xin Huang
- School of Environment
- Henan Normal University
- Xinxiang
- China
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Dong-Chao Wang
- Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Ji-Wei Sang
- Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Hai-Ming Guo
- School of Environment
- Henan Normal University
- Xinxiang
- China
- Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation
| |
Collapse
|