1
|
Ramakrishnan S, Anjukandi P. Superoxide to Peroxide Interconversion in Ni-TMC Complexes: The Significance of Structure and Spin States. Inorg Chem 2024; 63:15186-15196. [PMID: 39072391 DOI: 10.1021/acs.inorgchem.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A deeper comprehension of the characteristics of metal-superoxide and metal-peroxide chemical species is imperative, considering their pivotal functions in oxygen transport, enzymatic activation, and catalytic oxygenations. O2 activation is mediated by the interconversion of superoxide and peroxide species. Even though there are multiple studies on metal-superoxide and -peroxide intermediates, robust examples of their interconversion processes are scarce synthetically. For example, Ni-superoxide/peroxide complexes have been characterized with N-Tetramethylated Cyclam (TMC) ligands with different ring sizes, i.e., Nickel(II)-superoxide complex is characterized with 14-TMC while Nickel(III)-peroxide complex with 12-TMC. Later, both complexes were obtained with 13-TMC ligand by employing different bases; interestingly, no evidence of interconversion between them was identified. What are the factors influencing these processes and why is this preference? We attempt a computational analysis of this issue and provide arguments based on our conclusions. 2-dimensional potential energy scan is performed on the 12-TMC, 13-TMC, and 14-TMC systems to identify the reaction path connecting superoxide and peroxide species. Analyses indicate that structure and spin states play a significant role in determining the probability of interconversion. The superoxide-peroxide interconversion process appears to be bound by their propensity for distinct structural features and spin states.
Collapse
Affiliation(s)
- Shyama Ramakrishnan
- Department of Chemistry, Indian Institute of Technology, Kanjikode, Palakkad, Kerala 678623, India
| | - Padmesh Anjukandi
- Department of Chemistry, Indian Institute of Technology, Kanjikode, Palakkad, Kerala 678623, India
| |
Collapse
|
2
|
Beckmann F, Woite P, Yelin S, Kass D, Usvyat D, Roemelt M, Limberg C. Two Allogons of an O 2 -activating Bis(disiloxido)ferrate(II) Accessible Selectively just by Variation of the Crystallization Temperature. Chemistry 2024; 30:e202303614. [PMID: 38055220 DOI: 10.1002/chem.202303614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Deprotonation of O(iPr2 SiOH)2 (iPr LH2 ) with LiOtBu followed by reaction with FeCl2 in THF led to the complex [iPr L2 Fe][Li(THF)2 ]2 , 2, which represents a structural and spectroscopic model of the α-Fe sites of Fe/ZSM-5. Reaction with O2 in THF solution proceeds rather fast and is complete within 200 ms; an intermediate O2 adduct could not be identified by stopped-flow methods. Cooling blue solutions of 2 to -80 °C led to the growth of blue crystals of 2⋅THF, the analysis of which by XRD revealed a FeO4 core that is somewhat distorted from planarity towards a tetrahedral structure. By contrast, cooling such solutions to -30 °C led to pink crystals of an allogon featuring a perfectly square planar FeO4 entity. Hence, 2 represents a unique case where two different structural isomers (allogons) can be crystallized from the same solvent selectively, controlled by the temperature. DFT calculations were performed to understand this finding.
Collapse
Affiliation(s)
- Fabian Beckmann
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Philipp Woite
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Stefan Yelin
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Dustin Kass
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Denis Usvyat
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Michael Roemelt
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Christian Limberg
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
3
|
Lueckheide MJ, Ertem MZ, Michon MA, Chmielniak P, Robinson JR. Peroxide-Selective Reduction of O 2 at Redox-Inactive Rare-Earth(III) Triflates Generates an Ambiphilic Peroxide. J Am Chem Soc 2022; 144:17295-17306. [PMID: 36083877 DOI: 10.1021/jacs.2c08140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal peroxides are key species involved in a range of critical biological and synthetic processes. Rare-earth (group III and the lanthanides; Sc, Y, La-Lu) peroxides have been implicated as reactive intermediates in catalysis; however, reactivity studies of isolated, structurally characterized rare-earth peroxides have been limited. Herein, we report the peroxide-selective (93-99% O22-) reduction of dioxygen (O2) at redox-inactive rare-earth triflates in methanol using a mild metallocene reductant, decamethylferrocene (Fc*). The first molecular praseodymium peroxide ([PrIII2(O22-)(18C6)2(EG)2][OTf]4; 18C6 = 18-crown-6, EG = ethylene glycol, -OTf = -O3SCF3; 2-Pr) was isolated and characterized by single-crystal X-ray diffraction, Raman spectroscopy, and NMR spectroscopy. 2-Pr displays high thermal stability (120 °C, 50 mTorr), is protonated by mild organic acids [pKa1(MeOH) = 5.09 ± 0.23], and engages in electrophilic (e.g., oxygen atom transfer) and nucleophilic (e.g., phosphate-ester cleavage) reactivity. Our mechanistic studies reveal that the rate of oxygen reduction is dictated by metal-ion accessibility, rather than Lewis acidity, and suggest new opportunities for differentiated reactivity of redox-inactive metal ions by leveraging weak metal-ligand binding events preceding electron transfer.
Collapse
Affiliation(s)
- Matthew J Lueckheide
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael A Michon
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Pawel Chmielniak
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
4
|
Trzmiel SPO, Langmann J, Maichle-Mössmer C, Anwander R. Chromous siloxides of variable nuclearity and magnetism. Dalton Trans 2022; 51:5072-5081. [PMID: 35262151 DOI: 10.1039/d2dt00354f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment of Cr[N(SiMe3)2]2(thf)2 with HOSiR3 (R = Et, iPr) in THF afforded the bridged CrII siloxide complexes Cr3(OSiEt3)2(μ-OSiEt3)4(thf)2 and Cr2(OSiiPr3)2(μ-OSiiPr3)2(thf)2 in high yield. Exposure of these compounds to vacuum in aliphatic solvents led to the loss of coordinated THF and to the formation of the homoleptic chromous siloxides Cr4(μ-OSiEt3)8 and Cr3(OSiiPr3)2(μ-OSiiPr3)4, respectively, in moderate to high yield. Use of TMEDA as a potentially bidentate donor molecule gave the monomeric cis-coordinated siloxide Cr(OSiiPr3)2(tmeda) (tmeda = N,N,N',N'-tetramethylethane-1,2-diamine). Oxidation of Cr2(OSiiPr3)2(μ-OSiiPr3)2(thf)2 with CHI3 and C2Cl6 produced the trigonal bipyramidal chromic compound CrIII(OSiiPr)3(thf)2 and asymmetrically coordinated Cr2Cl3(OSiiPr3)3(thf)3, respectively. Magnetic measurements (Evans and SQUID) hinted at (a) antiferromagnetic interactions between the CrII centres, (b) revealed higher effective magnetic moments (μeff) for cis-coordinated monomeric heteroleptic complexes compared to trans-coordinated ones, and (c) pointed out the highest (μeff) for the tetranuclear complex Cr4(μ-OSiEt3)8 (6.26μB, SQUID, 300 K; Cr⋯Cradjacent avg. 2.535 A).
Collapse
Affiliation(s)
- Simon P O Trzmiel
- Institute of Inorganic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| | - Jan Langmann
- Institut für Physik, Universität Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany
| | - Cäcilia Maichle-Mössmer
- Institute of Inorganic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| | - Reiner Anwander
- Institute of Inorganic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| |
Collapse
|
5
|
Vargo NP, Harland JB, Musselman BW, Lehnert N, Ertem MZ, Robinson JR. Calcium‐Ion Binding Mediates the Reversible Interconversion of
Cis
and
Trans
Peroxido Dicopper Cores. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Natasha P. Vargo
- Department of Chemistry Brown University 324 Brook Street Providence RI 02912 USA
| | - Jill B. Harland
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Bradley W. Musselman
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Mehmed Z. Ertem
- Chemistry Division, Energy & Photon Sciences Brookhaven National Laboratory PO Box 5000 Upton NY 11973-5000 USA
| | - Jerome R. Robinson
- Department of Chemistry Brown University 324 Brook Street Providence RI 02912 USA
| |
Collapse
|
6
|
Vargo NP, Harland JB, Musselman BW, Lehnert N, Ertem MZ, Robinson JR. Calcium-Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores. Angew Chem Int Ed Engl 2021; 60:19836-19842. [PMID: 34101958 DOI: 10.1002/anie.202105421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Indexed: 01/27/2023]
Abstract
Coupled dinuclear copper oxygen cores (Cu2 O2 ) featured in type III copper proteins (hemocyanin, tyrosinase, catechol oxidase) are vital for O2 transport and substrate oxidation in many organisms. μ-1,2-cis peroxido dicopper cores (C P) have been proposed as key structures in the early stages of O2 binding in these proteins; their reversible isomerization to other Cu2 O2 cores are directly relevant to enzyme function. Despite the relevance of such species to type III copper proteins and the broader interest in the properties and reactivity of bimetallic C P cores in biological and synthetic systems, the properties and reactivity of C P Cu2 O2 species remain largely unexplored. Herein, we report the reversible interconversion of μ-1,2-trans peroxido (T P) and C P dicopper cores. CaII mediates this process by reversible binding at the Cu2 O2 core, highlighting the unique capability for metal-ion binding events to stabilize novel reactive fragments and control O2 activation in biomimetic systems.
Collapse
Affiliation(s)
- Natasha P Vargo
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, 02912, USA
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Bradley W Musselman
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, PO Box 5000, Upton, NY, 11973-5000, USA
| | - Jerome R Robinson
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, 02912, USA
| |
Collapse
|
7
|
Beckmann F, Kass D, Keck M, Yelin S, Hoof S, Cula B, Herwig C, Krause KB, Ar D, Limberg C. High‐spin square planar iron(II) alkali metal siloxide complexes – influence of the alkali metal and reactivity towards O
2
and NO. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabian Beckmann
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Dustin Kass
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Matthias Keck
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Stefan Yelin
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Santina Hoof
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Beatrice Cula
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian Herwig
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Konstantin B. Krause
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Deniz Ar
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian Limberg
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
8
|
Wind ML, Hoof S, Braun-Cula B, Herwig C, Limberg C. Routes to Heterotrinuclear Metal Siloxide Complexes for Cooperative Activation of O2. Inorg Chem 2020; 59:6866-6875. [DOI: 10.1021/acs.inorgchem.0c00279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marie-Louise Wind
- Chemistry Department, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Santina Hoof
- Chemistry Department, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Beatrice Braun-Cula
- Chemistry Department, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Christian Herwig
- Chemistry Department, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Christian Limberg
- Chemistry Department, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
9
|
Kim H, Rogler PJ, Sharma SK, Schaefer AW, Solomon EI, Karlin KD. Heme-Fe III Superoxide, Peroxide and Hydroperoxide Thermodynamic Relationships: Fe III-O 2•- Complex H-Atom Abstraction Reactivity. J Am Chem Soc 2020; 142:3104-3116. [PMID: 31913628 PMCID: PMC7034651 DOI: 10.1021/jacs.9b12571] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Establishing redox and thermodynamic relationships between metal-ion-bound O2 and its reduced (and protonated) derivatives is critically important for a full understanding of (bio)chemical processes involving dioxygen processing. Here, a ferric heme peroxide complex, [(F8)FeIII-(O22-)]- (P) (F8 = tetrakis(2,6-difluorophenyl)porphyrinate), and a superoxide complex, [(F8)FeIII-(O2•-)] (S), are shown to be redox interconvertible. Using Cr(η-C6H6)2, an equilibrium state where S and P are present is established in tetrahydrofuran (THF) at -80 °C, allowing determination of the reduction potential of S as -1.17 V vs Fc+/0. P could be protonated with 2,6-lutidinium triflate, yielding the low-spin ferric hydroperoxide species, [(F8)FeIII-(OOH)] (HP). Partial conversion of HP back to P using a derivatized phosphazene base gave a P/HP equilibrium mixture, leading to the determination of pKa = 28.8 for HP (THF, -80 °C). With the measured reduction potential and pKa, the O-H bond dissociation free energy (BDFE) of hydroperoxide species HP was calculated to be 73.5 kcal/mol, employing the thermodynamic square scheme and Bordwell relationship. This calculated O-H BDFE of HP, in fact, lines up with an experimental demonstration of the oxidizing ability of S via hydrogen atom transfer (HAT) from TEMPO-H (2,2,6,6-tetramethylpiperdine-N-hydroxide, BDFE = 66.5 kcal/mol in THF), forming the hydroperoxide species HP and TEMPO radical. Kinetic studies carried out with TEMPO-H(D) reveal second-order behavior, kH = 0.5, kD = 0.08 M-1 s-1 (THF, -80 °C); thus, the hydrogen/deuterium kinetic isotope effect (KIE) = 6, consistent with H-atom abstraction by S being the rate-determining step. This appears to be the first case where experimentally derived thermodynamics lead to a ferric heme hydroperoxide OO-H BDFE determination, that FeIII-OOH species being formed via HAT reactivity of the partner ferric heme superoxide complex.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Patrick J Rogler
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Savita K Sharma
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Andrew W Schaefer
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Kenneth D Karlin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
10
|
Zhao R, Guo J, Zhang C, Lu Y, Dagnaw WM, Wang ZX. DFT Mechanistic Insight into the Dioxygenase-like Reactivity of a Co III-peroxo Complex: O–O Bond Cleavage via a [1,3]-Sigmatropic Rearrangement-like Mechanism. Inorg Chem 2020; 59:2051-2061. [DOI: 10.1021/acs.inorgchem.9b03470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruihua Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Jia #19, Yuquan Road, Beijing 100039, China
| | - Jiandong Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Jia #19, Yuquan Road, Beijing 100039, China
| | - Chaoshen Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Jia #19, Yuquan Road, Beijing 100039, China
| | - Yu Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Jia #19, Yuquan Road, Beijing 100039, China
| | - Wasihun Menberu Dagnaw
- School of Chemical Sciences, University of Chinese Academy of Sciences, Jia #19, Yuquan Road, Beijing 100039, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Jia #19, Yuquan Road, Beijing 100039, China
| |
Collapse
|
11
|
Fukuzumi S, Cho KB, Lee YM, Hong S, Nam W. Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chem Soc Rev 2020; 49:8988-9027. [DOI: 10.1039/d0cs01251c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review article focuses on various mechanistic dichotomies in redox reactions of metal–oxygen intermediates with the emphasis on understanding and controlling their redox reactivity from experimental and theoretical points of view.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Engineering
| | - Kyung-Bin Cho
- Department of Chemistry
- Jeonbuk National University
- Jeonju 54896
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Seungwoo Hong
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- School of Chemistry and Chemical Engineering
| |
Collapse
|
12
|
Devi T, Lee YM, Nam W, Fukuzumi S. Tuning Electron-Transfer Reactivity of a Chromium(III)–Superoxo Complex Enabled by Calcium Ion and Other Redox-Inactive Metal Ions. J Am Chem Soc 2019; 142:365-372. [DOI: 10.1021/jacs.9b11014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tarali Devi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
13
|
Wind M, Braun‐Cula B, Schax F, Herwig C, Limberg C. A Polysiloxide Complex with two Chromium(III) η
2
‐Superoxo Moieties. Isr J Chem 2019. [DOI: 10.1002/ijch.201900119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Marie‐Louise Wind
- Humboldt-Universität zu Berlin Department of Chemistry Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Beatrice Braun‐Cula
- Humboldt-Universität zu Berlin Department of Chemistry Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Fabian Schax
- Humboldt-Universität zu Berlin Department of Chemistry Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Christian Herwig
- Humboldt-Universität zu Berlin Department of Chemistry Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Christian Limberg
- Humboldt-Universität zu Berlin Department of Chemistry Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|