1
|
Sun YW, Tan HT, Sun SN, Li BJ. Iridium-Catalyzed Asymmetric β-Selective Hydroamination of Enamides for the Synthesis of 1,2-Diamines. Angew Chem Int Ed Engl 2025:e202507200. [PMID: 40302454 DOI: 10.1002/anie.202507200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/02/2025]
Abstract
An iridium-catalyzed highly enantioselective hydroamination of electron-rich alkenes has been developed. The coordination assistance of the amide group to the metal center effectively overrides the inherent electronic preference of N─H addition to an enamide, delivering unconventional β-selectivity. Phthalimide is utilized as a readily removable amination agent. This methodology enables direct access to enantio-enriched 1,2-diamines from readily available materials with 100% atom economy, exclusive regioselectivity, and excellent enantioselectivity (up to 99% ee).
Collapse
Affiliation(s)
- Yu-Wen Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hao-Tian Tan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Sheng-Nan Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Li PT, Mou Q, Yu W. Regioselective 1,4-Hydroamination of 1,3-Dienes by Photoredox/Cobalt Dual Catalysis. Org Lett 2025; 27:1973-1978. [PMID: 39951708 DOI: 10.1021/acs.orglett.5c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Herein, we report a visible-light-driven and cobalt-mediated 1,4-hydroamination reaction of 1,3-dienes with arylmines as the nucleophiles. The reaction involves regioselective addition of [CoIII]-H to 1,3-diene, followed by oxidation and nucleophilic substitution by amines. Using Ir(ppy)3 as the photocatalyst enables the cobalt redox cycle to be implemented without using an external oxidant and hydride regent. This protocol can be applied as well to forge the carbon-oxygen and carbon-sulfur bonds in an analogous way.
Collapse
Affiliation(s)
- Pei-Ting Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Quansheng Mou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| |
Collapse
|
3
|
Sun YW, Sun X, Tan HT, Li BJ. Synthesis of γ-Amino Amides by Iridium-Catalyzed Enantioselective Hydroamination of Internal Alkenes Directed by an Amide. Angew Chem Int Ed Engl 2025; 64:e202422944. [PMID: 39681522 DOI: 10.1002/anie.202422944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Catalytic regio- and enantioselective hydroamination of less activated internal alkenes presents a challenge to synthetic chemists due to their low reactivity and the difficulty in simultaneously controlling regio- and enantioselectivities. Here, we report an iridium-catalyzed enantioselective hydroamination of internal alkenes directed by an amide. The amide group on the alkene effectively directs the catalyst to overcome the low reactivity and control the regioselectivity and the enantiotopic face selection. Phthalimide serves as the amination agent, which could be readily removed to afford a primary amine. This coordination assistance enables hydroamination to occur selectively at the remote position with up to 97 % ee, delivering valuable enantio-enriched γ-amino acid derivatives that are otherwise challenging to access.
Collapse
Affiliation(s)
- Yu-Wen Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xin Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hao-Tian Tan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Stake Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Hu S, Wang X, Wu T, Ding Z, Wang M, Kong W. Ni-Catalyzed Enantioselective Reductive Cyclization/Amidation and Amination of 1,6-Enynes and 1,7-Enynes. Angew Chem Int Ed Engl 2025; 64:e202413892. [PMID: 39193806 DOI: 10.1002/anie.202413892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
Transition-metal-catalyzed hydroamination of unsaturated hydrocarbons is an appealing synthetic tool for the construction of high value-added chiral amines. Despite significant progress in the asymmetric hydroamination of alkenes, allenes, and 1,3-dienes, asymmetric hydroamination of 1,6-enynes or 1,7-enynes remains rather limited due to the enormous challenges in controlling the chemoselectivity and stereoselectivity of the reaction. Herein, we report a Ni-catalyzed chemo- and enantioselective reductive cyclization/amidation and amination of 1,6-enynes and 1,7-enynes using dioxazolones or anthranils as nitrene-transfer reagents. This mild, modular, and practical protocol provides rapid access to a variety of enantioenriched 2-pyrrolidone and 2-piperidone derivatives bearing an aminomethylene group at the 4-position in good yields (up to 83 %) with excellent enantioselectivities (46 examples, up to 99 % ee). Mechanistic experiments and density functional theory calculations indicate that the reaction is initiated by hydronickelation of alkynes followed by migratory insertion into alkenes, rather than by a [2+2+1] oxidative addition process of nickel to alkenes and alkynes.
Collapse
Affiliation(s)
- Shengwei Hu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Xiaoqin Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Tianbao Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhengtian Ding
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| |
Collapse
|
5
|
Wang F, Chen C, Zhang F, Meng Q. Theoretical study of Ni(0)-catalyzed intermolecular hydroamination of branched 1,3-dienes: reaction mechanism, regioselectivity, enantioselectivity, and prediction of the ligand. J Mol Model 2024; 31:17. [PMID: 39661131 DOI: 10.1007/s00894-024-06217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
CONTEXT Nickel-catalyzed hydroamination of dienes with phenylmethanamines was studied theoretically to investigate reaction mechanism. These calculated results revealed that Ni-catalyzed hydroamination began with the O - H bond activation of trifluoroethanol, including three important elementary steps: the ligand-to-ligand hydrogen migration, the nucleophilic attack of phenylmethanamine, and hydrogen migration. The nucleophilic attack of phenylmethanamine was the rate-determining step, and the branched product of 3,4-addition with (S)-chirality was the most dominant. The N - H bond activation of phenylmethanamine occurred more difficultly than the O - H bond of trifluoroethanol, because of high ΔG and ΔG≠. In addition, the origin of regioselectivity and enantioselectivity, and prediction of the ligand were also discussed in this text. METHODS All computations were performed with Gaussian09 program. All geometries were optimized at the ωB97XD/6-31G(d,p) level (SDD for Ni), and to obtain more accurate potential energy, single-point calculation was carried out at the ωB97XD/cc-pVDZ level (SDD for Ni). The Cramer-Truhlar continuum solvation model (SMD) was used to evaluate solvation effect of mesitylene, and a correction of the translational entropy was made with the procedure of Whitesides group.
Collapse
Affiliation(s)
- Fen Wang
- College of Chemistry and Chemical Engineering, Taishan University, Taian, Shandong, 271000, People's Republic of China
| | - Changbao Chen
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Feng Zhang
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, People's Republic of China.
| | - Qingxi Meng
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| |
Collapse
|
6
|
Wang SC, Liu L, Duan M, Xie W, Han J, Xue Y, Wang Y, Wang X, Zhu S. Regio- and Enantioselective Nickel-Catalyzed Ipso- and Remote Hydroamination Utilizing Organic Azides as Amino Sources for the Synthesis of Primary Amines. J Am Chem Soc 2024; 146:30626-30636. [PMID: 39442777 DOI: 10.1021/jacs.4c12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Primary amines serve as key synthetic precursors to most other N-containing compounds, which are important in organic and medicinal chemistry. Herein, we present a NiH-catalyzed mild ipso- and remote hydroamination technique that utilizes organic azides as deprotectable primary amine sources. This strategy offers a highly flexible platform for the efficient construction of α-chiral branched primary amines, as well as linear primary amines.
Collapse
Affiliation(s)
- Shi-Chao Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Lin Liu
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Mei Duan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Weijia Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jiabin Han
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuhang Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiaotai Wang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Liu ZL, Yan JL, Chen K, Xiang HY, Yang H. Enantioselective 1,2-Carboamination of 1,3-Dienes with N-Hydroxyphthalimide (NHP) Esters Enabled by a Photoinduced Pd Catalysis. Org Lett 2024; 26:8762-8767. [PMID: 39361810 DOI: 10.1021/acs.orglett.4c03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Herein, a photoinduced, Pd-catalyzed direct 1,2-carboamination of conjugated 1,3-dienes has been successfully achieved. Sequential regioselective C-C bond and enantioselective C-N bond formation allows rapid assembly of a wide range of value-added chiral allylic amines from readily available N-hydroxyphthalimide (NHP) esters and 1,3-dienes under mild conditions. This developed protocol further demonstrates the versatility and potency of the photoexcited Pd catalytic system with a bifunctional reagent in the streamlined difunctionalization of C═C bonds.
Collapse
Affiliation(s)
- Zhi-Lin Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jia-Le Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
8
|
Zhang WQ, Lin Z, Wu D, Wang Y, Hirao H, Gong LZ. Nickel-Catalyzed Enantioconvergent Allenylic Amination of Allenols Activated by Hydrogen-Bonding Interaction with Methanol. Angew Chem Int Ed Engl 2024; 63:e202410743. [PMID: 38963024 DOI: 10.1002/anie.202410743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The ubiquitous nature of amines in drug compounds, bioactive molecules and natural products has fueled intense interest in their synthesis. Herein, we introduce a nickel-catalyzed enantioconvergent allenylic amination of methanol-activated allenols. This protocol affords a diverse array of functionalized allenylic amines in high yields and with excellent enantioselectivities. The synthetic potential of this method is demonstrated by employing bioactive amines as nucleophiles and conducting gram-scale reactions. Furthermore, mechanistic investigations and DFT calculations elucidate the role of methanol as an activator in the nickel-catalyzed reaction, facilitating the oxidative addition of the C-O bond of allenols through hydrogen-bonding interactions. The remarkable outcomes arise from a rapid racemization of allenols enabled by the nickel catalyst and from highly enantioselective dynamic kinetic asymmetric transformation of η3-alkadienylnickel intermediates.
Collapse
Affiliation(s)
- Wen-Qian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zihan Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Danxing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuhao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
10
|
Wang C, Wang X, Wang Z, Wang X, Ding K. Nickel Catalyzed Enantioselective 1,4-Hydroamination of 1,3-Dienes. J Am Chem Soc 2024; 146:18440-18450. [PMID: 38949166 DOI: 10.1021/jacs.4c03854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Transition metal-catalyzed enantioselective hydroamination of 1,3-dienes provides a direct methodology for the construction of chiral allylamines. So far, all of the reported examples used nucleophilic amines and proceeded with 3,4-regioselectivity. Herein, we describe the first example of nickel-catalyzed enantioselective 1,4-hydroamination of 1,3-dienes using trimethoxysilane and hydroxylamines with a structurally adaptable aromatic spiroketal based chiral diphosphine (SKP) as the ligand, affording a wide array of α-substituted chiral allylamines in high yields with excellent regio- and enantioselectivities. This operationally simple protocol demonstrated a broad substrate scope and excellent functional group compatibility, significantly expanding the chemical space for chiral allylamines. Experimental and DFT studies were performed to elucidate the mechanism and to rationalize the regio- and enantioselectivities of the reaction.
Collapse
Affiliation(s)
- Chengdong Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xingheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kuiling Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
11
|
Nuñez Bahena E, Hosseini K, Curto SG, Schafer LL. Understanding mechanism driven regioselectivity in zirconium-catalysed hydroaminoalkylation: homoallylic amines from conjugated dienes. Chem Sci 2024; 15:10571-10576. [PMID: 38994433 PMCID: PMC11234830 DOI: 10.1039/d4sc00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/27/2024] [Indexed: 07/13/2024] Open
Abstract
The unexpected 4,1-hydroaminoalkylation of dienes provides selective access to linear homoallylic amines by zirconium catalysis. This switch from the traditional branched preferred regioselectivity to selective linear product formation using this early transition metal can be attributed to π-allyl intermediates. The reactivity of these isolated intermediates on a sterically accessible and coordinatively flexible chelating bis(ureate) Zr(iv) complex confirmed reversible C-C bond formation in hydroaminoalkylation catalysis.
Collapse
Affiliation(s)
- Erick Nuñez Bahena
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia Canada V6T 1Z1
| | - Kimia Hosseini
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia Canada V6T 1Z1
| | - Sheila Galván Curto
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia Canada V6T 1Z1
| | - Laurel L Schafer
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia Canada V6T 1Z1
| |
Collapse
|
12
|
Zhang C, Mazet C. Access to Cyclic Borates by Cu-Catalyzed Borylation of Unactivated Vinylcyclopropanes. Org Lett 2024; 26:5386-5390. [PMID: 38870414 PMCID: PMC11217945 DOI: 10.1021/acs.orglett.4c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
We report the copper-catalyzed borylation of unactivated vinylcyclopropanes to form six-membered cyclic borate salts. A copper complex bearing an N-heterocyclic ligand in combination with bis(pinacolato)diboron and LiOtBu catalyzes the ring-opening of the substrate under mild reaction conditions. The protocol can be applied to aryl- and heteroaryl-substituted vinylcyclopropanes and can be conducted on a gram scale. The synthetic utility of the lithium salts of the cyclic borate has been demonstrated through regioselective ring-opening functionalizations.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
13
|
Canfield AM, Rodina D, Paradine SM. Dienes as Versatile Substrates for Transition Metal-Catalyzed Reactions. Angew Chem Int Ed Engl 2024; 63:e202401550. [PMID: 38436553 PMCID: PMC11078299 DOI: 10.1002/anie.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Dienes have been of great interest to synthetic chemists as valuable substrates due to their abundance and ease of synthesis. Their unique stereoelectronic properties enable broad reactivity with a wide range of transition metals to construct molecular complexity facilitating synthesis of biologically active compounds. In addition, structural diene variation can result in substrate-controlled reactions, providing valuable mechanistic insights into reactivity and selectivity patterns. The last decade has seen a wealth of new methodologies involving diene substrates through the power of transition metal catalysis. This review summarizes recent advances and remaining opportunities for transition metal-catalyzed transformations involving dienes.
Collapse
Affiliation(s)
- Amanda M. Canfield
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627
| | - Dasha Rodina
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627
| | - Shauna M. Paradine
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627
| |
Collapse
|
14
|
Ruan XY, Wu DX, Li WA, Lin Z, Sayed M, Han ZY, Gong LZ. Photoinduced Pd-Catalyzed Enantioselective Carboamination of Dienes via Aliphatic C-H Bond Elaboration. J Am Chem Soc 2024; 146:12053-12062. [PMID: 38622809 DOI: 10.1021/jacs.4c01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Three-component diene carboaminations offer a potent means to access synthetically valuable allylic amines with rapid molecular complexity escalation. The existing literature primarily discloses racemic examples, necessitating the use of halides/pseudohalides as substrates. This paper introduces a photoinduced Pd-catalyzed enantioselective three-component carboamination of aryl-substituted 1,3-dienes, leveraging aliphatic C-H bonds for rapid synthesis. The reaction employs 10 mol % of chiral palladium catalyst and an excess aryl bromide as the HAT reagent. This approach yields diverse chiral allylamines with moderate to excellent enantioselectivities. Notably, it stands as the first instance of an asymmetric three-component diene carboamination reaction, directly utilizing abundant C(sp3)-H bearing partners, such as toluene-type substrates, ethers, amines, esters, and ketones. The protocol exhibits versatility across amines, encompassing aliphatic, aromatic, primary, and secondary derivatives. This method could serve as a versatile platform for stereoselective incorporation of various nucleophiles, dienes, and C(sp3)-H bearing partners.
Collapse
Affiliation(s)
- Xiao-Yun Ruan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Dan-Xing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Ao Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zihan Lin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Mostafa Sayed
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Yong Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Khan S, Zhang J, Khan A. Molybdenum-Catalyzed Regio- and Enantioselective Amination of Allylic Carbonates: Total Synthesis of ( S)-Clopidogrel. Org Lett 2024; 26:2758-2762. [PMID: 37515783 DOI: 10.1021/acs.orglett.3c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
The first molybdenum-catalyzed highly regio- and enantioselective allylic amination of both aryl- and alkyl-substituted branched allylic carbonates has been developed. A wide variety of amines, including drugs and complex bioactive molecules, underwent successful amination with excellent reaction outcomes (up to 96% yield, >99% ee, and >20:1 b/l). The reaction could be scaled up and has been applied to the total synthesis of chiral drug molecule (S)-clopidogrel (Plavix).
Collapse
Affiliation(s)
- Shahid Khan
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, P. R. China
| | - Junjie Zhang
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
16
|
Lee C, Kang HJ, Hong S. NiH-catalyzed C-N bond formation: insights and advancements in hydroamination of unsaturated hydrocarbons. Chem Sci 2024; 15:442-457. [PMID: 38179526 PMCID: PMC10763554 DOI: 10.1039/d3sc05589b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
The formation of C-N bonds is a fundamental aspect of organic synthesis, and hydroamination has emerged as a pivotal strategy for the synthesis of essential amine derivatives. In recent years, there has been a surge of interest in metal hydride-catalyzed hydroamination reactions of common alkenes and alkynes. This method avoids the need for stoichiometric organometallic reagents and overcomes problems associated with specific organometallic compounds that may impact functional group compatibility. Notably, recent developments have brought to the forefront olefinic hydroamination and hydroamidation reactions facilitated by nickel hydride (NiH) catalysis. The inclusion of suitable chiral ligands has paved the way for the realization of asymmetric hydroamination reactions in the realm of olefins. This review aims to provide an in-depth exploration of the latest achievements in C-N bond formation through intermolecular hydroamination catalyzed by nickel hydrides. Leveraging this innovative approach, a diverse range of alkene and alkyne substrates can be efficiently transformed into value-added compounds enriched with C-N bonds. The intricacies of C-N bond formation are succinctly elucidated, offering a concise overview of the underlying reaction mechanisms. It is our aspiration that this comprehensive review will stimulate further progress in NiH-catalytic techniques, fine-tune reaction systems, drive innovation in catalyst design, and foster a deeper understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Changseok Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Hyung-Joon Kang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| |
Collapse
|
17
|
Ma X, Malcolmson SJ. Palladium-Catalyzed Regiodivergent Three-Component Alkenylamination of 1,3-Dienes with Alkyl and Aryl Amines. J Am Chem Soc 2023; 145:27680-27689. [PMID: 38054457 PMCID: PMC10802114 DOI: 10.1021/jacs.3c09873] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
We report a palladium-catalyzed method for 4,3- or 4,1-selective alkenylamination of terminal dienes. Three-component couplings proceed with alkenyl triflates and several amines, giving vicinal carboamination with a Xantphos-supported catalyst and distal difunctionalization with a phosphoramidite ligand. A number of constitutionally different disubstituted dienes also participate in regiodivergent carboaminations. Experimental evidence indicates that selectivity in the Xantphos reactions is largely influenced by the substrate, whereas the phosphoramidite-promoted process is catalyst controlled, orchestrated by a key π-stacking interaction among the ligand, solvent, and substrate.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
18
|
Tang MQ, Yang ZJ, He ZT. Asymmetric formal sp 2-hydrocarbonations of dienes and alkynes via palladium hydride catalysis. Nat Commun 2023; 14:6303. [PMID: 37813855 PMCID: PMC10562392 DOI: 10.1038/s41467-023-42160-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023] Open
Abstract
Transition metal-catalyzed asymmetric hydrofunctionalizations of unsaturated bonds via π-ƞ3 substitution have emerged as a reliable method to construct stereogenic centers, and mainly rely on the use of heteroatom-based or carbon nucleophiles bearing acidic C-H bonds. In comparison, sp2 carbon nucleophiles are generally not under consideration because of enormous challenges in cleaving corresponding inert sp2 C-H bonds. Here, we report a protocol to achieve asymmetric formal sp2 hydrocarbonations, including hydroalkenylation, hydroallenylation and hydroketenimination of both 1,3-dienes and alkynes via hydroalkylation and Wittig reaction cascade. A series of unachievable motifs via hydrofunctionalizations, such as di-, tri- and tetra-substituted alkenes, di-, tri- and tetra-substituted allenes, and tri-substituted ketenimines in allyl skeletons are all facilely constructed in high regio-, diastereo- and enantioselectivities with this cascade design. Stereodivergent synthesis of all four stereoisomers of 1,4-diene bearing a stereocenter and Z/E-controllable olefin unit highlights the power of present protocol. An interesting mechanistic feature is revealed that alkyne actually undergoes hydrocarbonation via the formation of conjugated diene intermediate, different from conventional viewpoint that the hydrofunctionalization of alkynes only involves allene species.
Collapse
Affiliation(s)
- Ming-Qiao Tang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zi-Jiang Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
19
|
Xiao WG, Xuan B, Xiao LJ, Zhou QL. Practical synthesis of allylic amines via nickel-catalysed multicomponent coupling of alkenes, aldehydes, and amides. Chem Sci 2023; 14:8644-8650. [PMID: 37592986 PMCID: PMC10430692 DOI: 10.1039/d3sc03233g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
Molecules with an allylic amine motif provide access to important building blocks and versatile applications of biologically relevant chemical space. The need for diverse allylic amines requires the development of increasingly general and modular multicomponent reactions for allylic amine synthesis. Herein, we report an efficient catalytic multicomponent coupling reaction of simple alkenes, aldehydes, and amides by combining nickel catalysis and Lewis acid catalysis, thus providing a practical, environmentally friendly, and modular protocol to build architecturally complex and functionally diverse allylic amines in a single step. The method is remarkably simple, shows broad functional-group tolerance, and facilitates the synthesis of drug-like allylic amines that are not readily accessible by other methods. The utilization of accessible starting materials and inexpensive Ni(ii) salt as the alternative precatalyst offers a significant practical advantage. In addition, the practicality of the process was also demonstrated in an efficient, gram-scale preparation of the prostaglandin agonist.
Collapse
Affiliation(s)
- Wei-Guo Xiao
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University Tianjin 300071 China
| | - Bin Xuan
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University Tianjin 300071 China
| | - Li-Jun Xiao
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University Tianjin 300071 China
| | - Qi-Lin Zhou
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University Tianjin 300071 China
| |
Collapse
|
20
|
Ma S, Hartwig JF. Progression of Hydroamination Catalyzed by Late Transition-Metal Complexes from Activated to Unactivated Alkenes. Acc Chem Res 2023; 56:1565-1577. [PMID: 37272995 PMCID: PMC11620761 DOI: 10.1021/acs.accounts.3c00141] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
ConspectusCatalytic intermolecular hydroamination of alkenes is an atom- and step-economical method for the synthesis of amines, which have important applications as pharmaceuticals, agrochemicals, catalysts, and materials. However, hydroaminations of alkenes in high yield with high selectivity are challenging to achieve because these reactions often lack a thermodynamic driving force and often are accompanied by side reactions, such as alkene isomerization, telomerization, and oxidative amination. Consequently, early examples of hydroamination were generally limited to the additions of N-H bonds to conjugated alkenes or strained alkenes, and the catalytic hydroamination of unactivated alkenes with late transition metals has only been disclosed recently. Many classes of catalysts, including early transition metals, late transition metals, rare-earth metals, acids, and photocatalysts, have been reported for catalytic hydroamination. Among them, late transition-metal complexes possess several advantages, including their relative ease of handling and their high compatibility of substrates containing polar or sensitive functional groups.This Account describes the progression in our laboratory of hydroaminations catalyzed by late transition-metal complexes from the initial additions of N-H bonds to activated alkenes to the more recent additions to unactivated alkenes. Our developments include the Markovnikov and anti-Markovnikov hydroamination of vinylarenes with palladium, rhodium, and ruthenium, the hydroamination of dienes and trienes with nickel and palladium, the hydroanimation of bicyclic strained alkenes with neutral iridium, and the hydroamination of unactivated terminal and internal alkenes with cationic iridium and ruthenium. Enantioselective hydroaminations of these classes of alkenes to form enantioenriched, chiral amines also have been developed.Mechanistic studies have elucidated the elementary steps and the turnover-limiting steps of these catalytic reactions. The hydroamination of conjugated alkenes catalyzed by palladium, rhodium, nickel, and ruthenium occurs by turnover-limiting nucleophilic attack of the amine on a coordinated benzyl, allyl, alkene, or arene ligand. On the other hand, the hydroamination of unconjugated alkenes catalyzed by ruthenium and iridium occurs by turnover-limiting migratory insertion of the alkene into a metal-nitrogen bond. In addition, pathways for the formation of side products, including isomeric alkenes and enamines, have been identified during our studies. During studies on enantioselective hydroamination, the reversibility of the hydroamination has been shown to erode the enantiopurity of the products. Based on our mechanistic understandings, new generations of catalysts that promote catalytic hydroaminations with higher rates, chemoselectivity, and enantioselectivity have been developed. We hope that our discoveries and mechanistic insights will facilitate the further development of catalysts that promote selective, practical, and efficient hydroamination of alkenes.
Collapse
Affiliation(s)
- Senjie Ma
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Taylor CJ, Pomberger A, Felton KC, Grainger R, Barecka M, Chamberlain TW, Bourne RA, Johnson CN, Lapkin AA. A Brief Introduction to Chemical Reaction Optimization. Chem Rev 2023; 123:3089-3126. [PMID: 36820880 PMCID: PMC10037254 DOI: 10.1021/acs.chemrev.2c00798] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 02/24/2023]
Abstract
From the start of a synthetic chemist's training, experiments are conducted based on recipes from textbooks and manuscripts that achieve clean reaction outcomes, allowing the scientist to develop practical skills and some chemical intuition. This procedure is often kept long into a researcher's career, as new recipes are developed based on similar reaction protocols, and intuition-guided deviations are conducted through learning from failed experiments. However, when attempting to understand chemical systems of interest, it has been shown that model-based, algorithm-based, and miniaturized high-throughput techniques outperform human chemical intuition and achieve reaction optimization in a much more time- and material-efficient manner; this is covered in detail in this paper. As many synthetic chemists are not exposed to these techniques in undergraduate teaching, this leads to a disproportionate number of scientists that wish to optimize their reactions but are unable to use these methodologies or are simply unaware of their existence. This review highlights the basics, and the cutting-edge, of modern chemical reaction optimization as well as its relation to process scale-up and can thereby serve as a reference for inspired scientists for each of these techniques, detailing several of their respective applications.
Collapse
Affiliation(s)
- Connor J. Taylor
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K.
- Innovation
Centre in Digital Molecular Technologies, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Alexander Pomberger
- Innovation
Centre in Digital Molecular Technologies, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Kobi C. Felton
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Rachel Grainger
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K.
| | - Magda Barecka
- Chemical
Engineering Department, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Chemistry
and Chemical Biology Department, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Cambridge
Centre for Advanced Research and Education in Singapore, 1 Create Way, 138602 Singapore
| | - Thomas W. Chamberlain
- Institute
of Process Research and Development, School of Chemistry and School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Richard A. Bourne
- Institute
of Process Research and Development, School of Chemistry and School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Alexei A. Lapkin
- Innovation
Centre in Digital Molecular Technologies, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
22
|
Wu KQ, Li H, Zhou A, Yang WR, Yin Q. Palladium-Catalyzed Chemo- and Regioselective C-H Bond Functionalization of Phenols with 1,3-Dienes. J Org Chem 2023; 88:2599-2604. [PMID: 36701645 DOI: 10.1021/acs.joc.2c02697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chemo- and site-selective functionalization of phenols offers a rapid strategy for the synthesis of phenol derivatives with diverse structures. Herein, we report a Pd-catalyzed regioselective C-H bond allylic alkylation of phenols with 1,3-dienes, which has precision reactivity at the ortho C-H bond of 2-naphthols, 1-naphthols, and electron-rich phenols. The reaction is accelerated by a diphosphine ligand, does not need any other additive, and features broad substrate scope and good chemo- and regioselectivity. In addition, we have also investigated the asymmetric variant, and the product could be achieved in up to 55% ee.
Collapse
Affiliation(s)
- Ke-Qin Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ao Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei-Ran Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
23
|
Yang SQ, Han AJ, Liu Y, Tang XY, Lin GQ, He ZT. Catalytic Asymmetric Hydroalkoxylation and Formal Hydration and Hydroaminoxylation of Conjugated Dienes. J Am Chem Soc 2023; 145:3915-3925. [PMID: 36763785 DOI: 10.1021/jacs.2c11843] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The straightforward construction of stereogenic centers bearing unprotected functional groups, as in nature, has been a persistent pursuit in synthetic chemistry. Abundant applications of free enantioenriched allyl alcohol and allyl hydroxylamine motifs have made the asymmetric hydration and hydroaminoxylation of conjugated dienes from water and hydroxylamine, respectively, intriguing and efficient routes that have, however, been unachievable thus far. A fundamental challenge is the failure to realize transition-metal-catalyzed enantioselective C-O bond constructions via hydrofunctionalization of conjugated dienes. Here, we perform a comprehensive study toward the stereoselective formal hydration and hydroaminoxylation of conjugated dienes by synthesizing a set of new P,N-ligands and identifying an aryl-derived oxime as a surrogate for both water and hydroxylamine. Asymmetric hydroalkoxylation with new P,N-ligands is also elucidated. Furthermore, versatile derivatizations following hydration provide indirect but concise routes to formal hydrophenoxylation, hydrofluoroalkoxylation, and hydrocarboxylation of conjugated dienes that have been unreported thus far. Finally, a ligand-to-ligand hydrogen transfer process is proposed based on the results of preliminary mechanistic experiments.
Collapse
Affiliation(s)
- Shao-Qian Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ai-Jun Han
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin-Yuan Tang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Qiang Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
24
|
Li Q, Wang Z, Dong VM, Yang XH. Enantioselective Hydroalkoxylation of 1,3-Dienes via Ni-Catalysis. J Am Chem Soc 2023; 145:3909-3914. [PMID: 36763788 PMCID: PMC9951252 DOI: 10.1021/jacs.2c12779] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Indexed: 02/12/2023]
Abstract
As an advance in hydrofunctionalization, we herein report that alcohols add to 1,3-dienes with high regio- and enantioselectivity. Using Ni-DuPhos, we access enantioenriched allylic ethers. Through the choice of solvent-free conditions, we control the reversibility of C-O bond formation. This work showcases a rare example of methanol as a reagent in asymmetric synthesis.
Collapse
Affiliation(s)
- Qi Li
- Advanced
Research Institute of Multidisciplinary Science, School of Chemistry
and Chemical Engineering, Key Laboratory of Medical Molecule Science
and Pharmaceutical Engineering, Ministry of Industry and Information
Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhen Wang
- Advanced
Research Institute of Multidisciplinary Science, School of Chemistry
and Chemical Engineering, Key Laboratory of Medical Molecule Science
and Pharmaceutical Engineering, Ministry of Industry and Information
Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Vy M. Dong
- Department
of Chemistry, University of California−Irvine, Irvine, California 92697, United States
| | - Xiao-Hui Yang
- Advanced
Research Institute of Multidisciplinary Science, School of Chemistry
and Chemical Engineering, Key Laboratory of Medical Molecule Science
and Pharmaceutical Engineering, Ministry of Industry and Information
Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
25
|
Ji DW, Hu YC, Min XT, Liu H, Zhang WS, Li Y, Zhou YJ, Chen QA. Skeleton-Reorganizing Coupling Reactions of Cycloheptatriene and Cycloalkenones with Amines. Angew Chem Int Ed Engl 2023; 62:e202213074. [PMID: 36372782 DOI: 10.1002/anie.202213074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/15/2022]
Abstract
Skeletal reorganization reactions have emerged as an intriguing tool for converting readily available compounds into complicated molecules inaccessible by traditional methods. Herein, we report a unique skeleton-reorganizing coupling reaction of cycloheptatriene and cycloalkenones with amines. In the presence of Rh/acid catalysis, cycloheptatriene can selectively couple with anilines to deliver fused 1,2-dihydroquinoline products. Mechanistic studies indicate that the retro-Mannich type ring-opening and subsequent intramolecular Povarov reaction account for the ring reorganization. Our mechanistic studies also revealed that skeleton-reorganizing amination between anilines and cycloalkenones can be achieved with acid. The synthetic utilization of this skeleton-reorganizing coupling reaction was showcased with a gram-scale reaction, synthetic derivatizations, and the late-stage modification of commercial drugs.
Collapse
Affiliation(s)
- Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Heng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Song Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjin J Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
26
|
Miao H, Guan M, Xiong T, Zhang G, Zhang Q. Cobalt-Catalyzed Enantioselective Hydroamination of Arylalkenes with Secondary Amines. Angew Chem Int Ed Engl 2023; 62:e202213913. [PMID: 36342476 DOI: 10.1002/anie.202213913] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Catalytic asymmetric hydroamination of alkenes with Lewis basic amines is of great interest but remains a challenge in synthetic chemistry. Here, we developed a Co-catalyzed asymmetric hydroamination of arylalkenes directly using commercially accessible secondary amines. This process enables the efficient access to valuable α-chiral tertiary amines in good to excellent yields and enantioselectivities. Mechanistic studies suggest that the reaction includes a CoH-mediated hydrogen atom transfer (MHAT) with arylalkenes, followed by a pivotal catalyst controlled SN 2-like pathway between in situ generated electrophilic cationic alkylcobalt(IV) species and free amines. This radical-polar crossover strategy not only provides a straightforward and alternative approach for the synthesis of enantioenriched α-tertiary amines, but also underpins the substantial opportunities in developing asymmetric radical functionalization of alkenes with various free nucleophiles in oxidative MHAT catalysis.
Collapse
Affiliation(s)
- Huanran Miao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Meihui Guan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, 130024, Changchun, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| |
Collapse
|
27
|
Wang YC, Xiao ZX, Wang M, Yang SQ, Liu JB, He ZT. Umpolung Asymmetric 1,5-Conjugate Addition via Palladium Hydride Catalysis. Angew Chem Int Ed Engl 2023; 62:e202215568. [PMID: 36374273 DOI: 10.1002/anie.202215568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Electronically matched nucleophilic 1,6-conjugate addition has been well studied and widely applied in synthetic areas. In contrast, nucleophilic 1,5-conjugate addition represents an electronically forbidden process and is considered unfeasible. Here, we describe modular protocols for 1,5-conjugate addition reactions via palladium hydride catalysis. Both palladium and synergistic Pd/organocatalyst systems are developed to catalyze 1,5-conjugate reaction, followed by inter- or intramolecular [3+2] cyclization. A migratory 1,5-addition protocol is established to corroborate the feasibility of this umpolung concept. The 1,5-addition products are conveniently transformed into a series of privileged enantioenriched motifs, including polysubstituted tetrahydrofuran, dihydrofuran, cyclopropane, cyclobutane, azetidine, oxetane, thietane, spirocycle and bridged rings. Preliminary mechanistic studies corroborate the involvement of palladium hydride catalysis.
Collapse
Affiliation(s)
- Yu-Chao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhao-Xin Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Miao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shao-Qian Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jin-Biao Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
28
|
Flaget A, Zhang C, Mazet C. Ni-Catalyzed Enantioselective Hydrofunctionalizations of 1,3-Dienes. ACS Catal 2022; 12:15638-15647. [PMID: 36570078 PMCID: PMC9765749 DOI: 10.1021/acscatal.2c05251] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Ni-catalyzed enantioselective hydrofunctionalizations of conjugated dienes are particularly demanding reactions to devise because they require not only addressing the inherent challenges associated with the development of an enantioselective transformation but also overcoming all other aspects of selective catalysis (chemoselectivity, regioselectivity, diastereoselectivity, etc.). However, the value-added nature of the chiral allylic and homoallylic derivatives obtained by these methods, the lack of efficient alternatives, and the use of an earth-abundant first-row transition metal have led to renewed interest over the past decade. In this Perspective, we give an overview of the developments in this field, from the original findings (often dating back to the last century) to the most recent contributions. Emphasis is placed on the nature of the hydrofunctionalization agent (C(sp), C(sp2), C(sp3), N, P, or O).
Collapse
Affiliation(s)
| | | | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
29
|
Liao L, Zhang Y, Wu ZW, Ye ZT, Zhang XX, Chen G, Yu JS. Nickel-catalyzed regio- and enantio-selective Markovnikov hydromonofluoroalkylation of 1,3-dienes. Chem Sci 2022; 13:12519-12526. [PMID: 36382272 PMCID: PMC9629049 DOI: 10.1039/d2sc03958c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
A highly enantio- and regio-selective Markovnikov hydromonofluoro(methyl)alkylation of 1,3-dienes was developed using redox-neutral nickel catalysis. It provided a facile strategy to construct diverse monofluoromethyl- or monofluoroalkyl-containing chiral allylic molecules. Notably, this represents the first catalytic asymmetric Markovnikov hydrofluoroalkylation of olefins. The practicability of this methodology is further highlighted by its broad substrate scope, mild base-free conditions, excellent enantio- and regio-selectivity, and diversified product elaborations to access useful fluorinated building blocks.
Collapse
Affiliation(s)
- Ling Liao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Ying Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Zhong-Wei Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| |
Collapse
|
30
|
Enantioselective synthesis of α-aminoboronates by NiH-catalysed asymmetric hydroamidation of alkenyl boronates. Nat Commun 2022; 13:5630. [PMID: 36163363 PMCID: PMC9512809 DOI: 10.1038/s41467-022-33411-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
Abstract
Chiral α-aminoboronic acids and their derivatives are generally useful as bioactive compounds and some have been approved as therapeutic agents. Here we report a NiH-catalysed asymmetric hydroamidation process that with a simple amino alcohol ligand can easily produce a wide range of highly enantioenriched α-aminoboronates from alkenyl boronates and dioxazolones under mild conditions. The reaction is proposed to proceed by an enantioselective hydrometallation followed by an inner-sphere nitrenoid transfer and C–N bond forming sequence. The synthetic utility of this transformation was demonstrated by the efficient synthesis of a current pharmaceutical agent, Vaborbactam. Enantioenriched α-aminoboronic acid, a structural unit in many bioactive molecules, is also a valuable synthon in organic synthesis. Here, the authors disclose a NiH-catalysed asymmetric hydroamidation process for their direct synthesis.
Collapse
|
31
|
Wang Y, Yin J, Li Y, Yuan X, Xiong T, Zhang Q. Copper-Catalyzed Asymmetric Conjugate Addition of Alkene-Derived Nucleophiles to Alkenyl-Substituted Heteroarenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - JianJun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
32
|
Yamun P, Philip RM, Anilkumar G. Nickel catalyzed hydroamination reactions: An overview. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Li Q, Fang X, Pan R, Yao H, Lin A. Palladium-Catalyzed Asymmetric Sequential Hydroamination of 1,3-Enynes: Enantioselective Syntheses of Chiral Imidazolidinones. J Am Chem Soc 2022; 144:11364-11376. [PMID: 35687857 DOI: 10.1021/jacs.2c03620] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pd-catalyzed sequential hydroamination of readily available 1,3-enynes is reported. The redox-neutral process provides an efficient route to synthesize a broad scope of imidazolidinones, thiadiazolidines, and imidazolidines. Asymmetric sequential hydroamination generates a series of synthetically valuable, enantioenriched imidazolidinones. Mechanistic studies revealed that the transformation occurred via an intermolecular enyne hydroamination pathway to give an allene intermediate. Subsequent intramolecular hydroamination of the allene intermediate proceeded under the Curtin-Hammett principle to provide enantioenriched imidazolidinone products.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinxin Fang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Rui Pan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
34
|
Lee C, Kang HJ, Seo H, Hong S. Nickel-Catalyzed Regio- and Enantioselective Hydroamination of Unactivated Alkenes Using Carbonyl Directing Groups. J Am Chem Soc 2022; 144:9091-9100. [PMID: 35538676 DOI: 10.1021/jacs.2c02343] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The asymmetric addition of an N-H bond to various alkenes via a direct catalytic method is a powerful way of synthesizing value-added chiral amines. Therefore, the enantio- and regioselective hydroamination of unactivated alkenes remains an appealing goal. Here, we report the highly enantio- and regioselective Ni-catalyzed hydroamination of readily available unactivated alkenes bearing weakly coordinating native amides or esters. This method succeeds for both terminal and internal unactivated alkenes and has a broad amine coupling partner scope. The mild reaction process is well suited for the late-stage functionalization of complex molecules and has the potential to gain modular access to enantioenriched β- or γ-amino acid derivatives and 1,2- or 1,3-diamines. Mechanistic studies reveal that a chiral bisoxazoline-bound Ni specie effectively leverages carbonyl coordination to achieve enantio- and regioselective NiH insertion into alkenes.
Collapse
Affiliation(s)
- Changseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Hyung-Joon Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Huiyeong Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
35
|
Wang H, Xu Y, Zhang F, Liu Y, Feng X. Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic C-H Alkylation via a Transient Chiral Nucleophile Strategy. Angew Chem Int Ed Engl 2022; 61:e202115715. [PMID: 35040550 DOI: 10.1002/anie.202115715] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 01/08/2023]
Abstract
An asymmetric allylic C-H functionalization has been developed by making use of transient chiral nucleophiles, as well as bimetallic synergistic catalysis with an achiral Pd0 catalyst and a chiral N,N'-dioxide-CoII complex. A variety of β-ketoesters and N-Boc oxindoles coupled with allylbenzenes and aliphatic terminal alkenes were well tolerated, furnishing the desired allylic alkylation products in high yields (up to 99 %) with excellent regioselectivities and enantioselectivities (up to 99 % ee).
Collapse
Affiliation(s)
- Hongkai Wang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yang Xu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Fangqing Zhang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yangbin Liu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xiaoming Feng
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
36
|
Long J, Li Y, Zhao W, Yin G. Nickel/Brønsted acid dual-catalyzed regio- and enantioselective hydrophosphinylation of 1,3-dienes: access to chiral allylic phosphine oxides. Chem Sci 2022; 13:1390-1397. [PMID: 35222923 PMCID: PMC8809419 DOI: 10.1039/d1sc05651d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/26/2021] [Indexed: 02/04/2023] Open
Abstract
While chiral allylic organophosphorus compounds are widely utilized in asymmetric catalysis and for accessing bioactive molecules, their synthetic methods are still very limited. We report the development of asymmetric nickel/Brønsted acid dual-catalyzed hydrophosphinylation of 1,3-dienes with phosphine oxides. This reaction is characterized by an inexpensive chiral catalyst, broad substrate scope, and high regio- and enantioselectivity. This study allows the construction of chiral allylic phosphine oxides in a highly economic and efficient manner. Preliminary mechanistic investigations suggest that the 1,3-diene insertion into the chiral Ni-H species is a highly regioselective process and the formation of the chiral C-P bond is an irreversible step.
Collapse
Affiliation(s)
- Jiao Long
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| | - Yuqiang Li
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University Shenzhen 518118 China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| |
Collapse
|
37
|
Wang H, Xu Y, Zhang F, Liu Y, Feng X. Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic C−H Alkylation via Transient Chiral Nucleophile Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hongkai Wang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yang Xu
- Shenzhen Bay Laboratory Chemical Biology CHINA
| | - Fangqing Zhang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yangbin Liu
- Shenzhen Bay Laboratory Chemical Biology CHINA
| | - Xiaoming Feng
- Sichuan University College of Chemistry 29 Wangjiang Road, Jiuyan Bridge 610064 Chengdu CHINA
| |
Collapse
|
38
|
Fan T, Liu Y. Recent Advances in Synthesis of Chiral Tertiary Amines via Asymmetric Catalysis Involving Metal-Hydride Species. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Long J, Ding C, Yin G. Nickel/Brønsted acid dual-catalyzed regioselective C–H bond allylation of phenols with 1,3-dienes. Org Chem Front 2022. [DOI: 10.1039/d2qo00637e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel/Brønsted acid dual-catalyzed C-H bond ortho-allylation of phenols with 1,3-dienes has been developed. This methodology is readily applicable to the modification of complex pharmaceutical molecules.
Collapse
Affiliation(s)
- Jiao Long
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chao Ding
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
40
|
Meng L, Yang J, Duan M, Wang Y, Zhu S. Facile Synthesis of Chiral Arylamines, Alkylamines and Amides by Enantioselective NiH-Catalyzed Hydroamination. Angew Chem Int Ed Engl 2021; 60:23584-23589. [PMID: 34449971 DOI: 10.1002/anie.202109881] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Regio- and enantioselective hydroarylamination, hydroalkylamination and hydroamidation of styrenes have been developed by NiH catalysis with a simple bioxazoline ligand under mild conditions. A wide range of enantioenriched benzylic arylamines, alkylamines and amides can be easily accessed by nitroarenes, hydroxylamines and dioxazolones, respectively as amination reagents. The chiral induction in these reactions is proposed to proceed through an enantiodifferentiating syn-hydronickellation step.
Collapse
Affiliation(s)
- Lingpu Meng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jingjie Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mei Duan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
41
|
Meng L, Yang J, Duan M, Wang Y, Zhu S. Facile Synthesis of Chiral Arylamines, Alkylamines and Amides by Enantioselective NiH‐Catalyzed Hydroamination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lingpu Meng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jingjie Yang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Mei Duan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - You Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
42
|
Wu J, Wu H, Li X, Liu X, Zhao Q, Huang G, Zhang C. Copper-Catalyzed Highly Selective Protoboration of CF 3 -Containing 1,3-Dienes. Angew Chem Int Ed Engl 2021; 60:20376-20382. [PMID: 34146388 DOI: 10.1002/anie.202105896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The copper-catalyzed highly selective protoboration of CF3 -containing conjugated diene with proton source and B2 Pin2 has been developed. This chemistry could suppress the well-known defluorination and provide borated reagents with an intact CF3 -group. Further studies indicated that the functional group tolerance of this chemistry is very well, and the products could be used as versatile precursors for different types of transformations. Importantly, using chiral diphosphine ligand, we have developed the first example for using such starting material to synthesis allylic boron-reagents which bearing a CF3 -containing chiral center. Notably, the reaction mechanism was intensively studied by DFT calculations, which could reveal the reason that defluorination was inhibited.
Collapse
Affiliation(s)
- Juanjuan Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Hongli Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xinzhi Li
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xinyu Liu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Qian Zhao
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Genping Huang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
43
|
Wu J, Wu H, Li X, Liu X, Zhao Q, Huang G, Zhang C. Copper‐Catalyzed Highly Selective Protoboration of CF
3
‐Containing 1,3‐Dienes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Juanjuan Wu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Hongli Wu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xinzhi Li
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xinyu Liu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Qian Zhao
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Genping Huang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| |
Collapse
|
44
|
Jiu AY, Slocumb HS, Yeung CS, Yang XH, Dong VM. Enantioselective Addition of Pyrazoles to Dienes*. Angew Chem Int Ed Engl 2021; 60:19660-19664. [PMID: 34145705 PMCID: PMC8889753 DOI: 10.1002/anie.202105679] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Indexed: 11/05/2022]
Abstract
We report the first enantioselective addition of pyrazoles to 1,3-dienes. Secondary and tertiary allylic pyrazoles can be generated with excellent regioselectivity. Mechanistic studies support a pathway distinct from previous hydroaminations: a Pd0 -catalyzed ligand-to-ligand hydrogen transfer (LLHT). This hydroamination tolerates a range of functional groups and advances the field of diene hydrofunctionalization.
Collapse
Affiliation(s)
- Alexander Y Jiu
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hannah S Slocumb
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Charles S Yeung
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, 02115, USA
| | - Xiao-Hui Yang
- Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
45
|
Jiu AY, Slocumb HS, Yeung CS, Yang X, Dong VM. Enantioselective Addition of Pyrazoles to Dienes**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander Y. Jiu
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Hannah S. Slocumb
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | | | - Xiao‐Hui Yang
- Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Vy M. Dong
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| |
Collapse
|
46
|
Taillemaud S, Rosset S, Mazet C. Teflon
Magnetic Stirring Capsules (TMSC) as a Practical and Reusable Delivery System for Sensitive Reagents and Catalysts. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sylvain Taillemaud
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva Switzerland
| | - Stéphane Rosset
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva Switzerland
| | - Clément Mazet
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva Switzerland
| |
Collapse
|
47
|
Fiorito D, Simon M, Thomas CM, Mazet C. Access to Highly Stereodefined 1,4- cis-Polydienes by a [Ni/Mg] Orthogonal Tandem Catalytic Polymerization. J Am Chem Soc 2021; 143:13401-13407. [PMID: 34379408 DOI: 10.1021/jacs.1c06553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A [Ni/Mg]-catalyzed orthogonal tandem polymerization has been developed starting from enol phosphates. Initial investigations conducted on branched 1,3-dienes as monomers enabled identification of a Mg-initiated polymerization process leading to 1,4-cis-polydienes. When aryl enol phosphates are used as monomers, the [Ni/Mg]-catalyzed tandem polymerization affords 1,4-cis-polydienes with selectivities up to 99%. Elastomeric or crystalline materials were obtained by simple structural modifications of the monomeric unit. This tandem approach appears as a straightforward and efficient way to enforce diversity and selectivity in diene polymerization while retaining a fair degree of control, just as observed for stepwise systems that are accessible through established time- and manpower-consuming synthetic procedures.
Collapse
Affiliation(s)
- Daniele Fiorito
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Malaury Simon
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Christophe M Thomas
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
48
|
Wang H, Zhang R, Zhang Q, Zi W. Synergistic Pd/Amine-Catalyzed Stereodivergent Hydroalkylation of 1,3-Dienes with Aldehydes: Reaction Development, Mechanism, and Stereochemical Origins. J Am Chem Soc 2021; 143:10948-10962. [PMID: 34264662 DOI: 10.1021/jacs.1c02220] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal-hydride-catalyzed hydroalkylation of 1,3-dienes with enolizable carbonyl compounds is an atom- and step-economical method for preparing chiral molecules with allylic stereocenters. Although high diastereo- and enantioselectivities have been achieved for many coupling partners, aldehydes have not yet been used for this purpose because they are less stable than other carbonyl compounds under basic conditions and they have the potential to rapidly epimerize at the α-position. Moreover, stereodivergent hydroalkylation reactions of 1,3-dienes to access complementary diastereomers with vicinal stereocenters is challenging. Herein, we describe a synergistic palladium/amine catalyst system that allowed us to achieve the first stereodivergent hydroalkylation reactions of 1,3-dienes with aldehydes. By choosing an appropriate combination of chiral palladium and amine catalysts, we could obtain either syn or anti coupling products, and this method therefore provides highly diastereo- and enantioselective access to complementary diastereomers of chiral aldehydes with α,β-vicinal stereocenters. Density functional theory calculations revealed a mechanism involving PdH formation and migratory insertion into the alkene, followed by C-C bond formation. The origin of the stereoselectivities was investigated by means of distortion/interaction analysis.
Collapse
Affiliation(s)
- Hongfa Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ruiyuan Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
49
|
Xu WB, Sun M, Shu M, Li C. Rhodium-Catalyzed Regio- and Enantioselective Allylic Amination of Racemic 1,2-Disubstituted Allylic Phosphates. J Am Chem Soc 2021; 143:8255-8260. [PMID: 34029072 DOI: 10.1021/jacs.1c04016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alkynylphosphines are rarely used as ligands in asymmetric metal catalysis. We synthesized a series of chiral bis(oxazoline)alkynylphosphine ligands and used them in Rh-catalyzed highly regio- and enantioselective allylic amination reactions of 1,2-disubstituted allylic phosphates. Chiral 1,2-disubstituted allylic amines were synthesized in up to 95% yield with >20:1 branched/linear (b/l) ratio and 99% ee from racemic 1,2-disubstituted allylic precursors. The sterically smaller linear alkynyl group on the P atom in the bis(oxazoline)alkynylphosphine ligands was the key to fit the new requirements of the introduction of bulky 2-R' groups.
Collapse
Affiliation(s)
- Wen-Bin Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Minghe Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mouhai Shu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
50
|
Earth-Abundant 3d Transition Metal Catalysts for Hydroalkoxylation and Hydroamination of Unactivated Alkenes. Catalysts 2021. [DOI: 10.3390/catal11060674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review summarizes the most noteworthy achievements in the field of C–O and C–N bond formation by hydroalkoxylation and hydroamination reactions on unactivated alkenes (including 1,2- and 1,3-dienes) promoted by earth-abundant 3d transition metal catalysts based on manganese, iron, cobalt, nickel, copper and zinc. The relevant literature from 2012 until early 2021 has been covered.
Collapse
|