1
|
Zhang M, Niu T, Liang M, Xu F, Du Y, Zhuang H, Song RJ, Yang H, Yin Q. Consecutive Asymmetric Transfer Hydrogenation of C2-Acylated Quinolines and Quinoxalines: A Diastereodivergent Synthesis of Enantioenriched Tetrahydroquinolines and Tetrahydroquinoxalines Bearing Endo- and Exocyclic Chirality. J Am Chem Soc 2025; 147:18197-18207. [PMID: 40371465 DOI: 10.1021/jacs.5c04856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Consecutive asymmetric hydrogenation offers a direct and convenient approach to synthesizing complex C(sp3)-enriched products with multiple chirality. Herein, we report an asymmetric synthesis of chiral 1,2,3,4-tetrahydroquinolines (THQs) and tetrahydroquinoxalines bearing both endo- and exocyclic vicinal chirality through the consecutive transfer hydrogenation of easily accessible C2-acylated quinolines and quinoxalines. The method features mild conditions, easy operation, broad substrate scope (42 examples), and excellent asymmetric control (generally >90% ee and 20/1 dr). The key to success is the use of a water-soluble chiral aminobenzimidazole Ir catalyst. Mechanistic experiments support that the reaction involves the sequential reduction of the carbonyl group and then the quinoline core, with the asymmetric control of each step dominated by the catalyst. Remarkably, a diastereodivergent synthesis of all four stereoisomers of a chiral THQ has been successfully implemented.
Collapse
Affiliation(s)
- Mangang Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Tianyu Niu
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mingrong Liang
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Feng Xu
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Yongyi Du
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Haokun Zhuang
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qin Yin
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Moustafa R, Remete AM, Szakonyi Z, Szemerédi N, Spengler G, Le TM. Synthesis and Antimicrobial Evaluation of (+)-Neoisopulegol-Based Amino and Thiol Adducts. Int J Mol Sci 2025; 26:4791. [PMID: 40429932 DOI: 10.3390/ijms26104791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
A library of neoisopulegol-based amino and thiol adducts was developed from (+)-neoisopulegol, derived from commercially available (-)-isopulegol. Michael addition of different nucleophiles towards its highly active α,β-unsaturated γ-lactone motif was accomplished, resulting in diverse amino and thiol analogs in stereoselective reactions. Then, the lactone ring was opened, with NH3 and benzylamine furnishing primary amide and N-benzyl-substituted amide derivatives, respectively. The in vitro antimicrobial effect of prepared compounds was also explored. The results revealed that naphthylmethyl-substituted β-aminolactone, the most promising compound, displayed selective inhibition for the Gram-positive bacteria S. aureus with an MIC (minimum inhibitory concentration) value of 12.5 μM. A docking study was performed to interpret the obtained results.
Collapse
Affiliation(s)
- Reem Moustafa
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Attila Márió Remete
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- HUN-REN-SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Liang MR, Du X, Lin J, Rong N, Zhan X, Mao X, Zhuang H, Niu T, Yin Q. Dynamic Kinetic Resolution-Based Asymmetric Transfer Hydrogenation of Racemic 2-Substituted Quinolines. J Am Chem Soc 2025; 147:4239-4248. [PMID: 39841113 DOI: 10.1021/jacs.4c14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The synthesis of chiral tetrahydroquinolines (THQs) has garnered significant interest from medicinal chemists due to their frequent presence as pharmacophores in bioactive compounds. While existing synthetic methods have primarily focused on THQs with single or multiple endocyclic chiral centers, the selective construction of THQs with both endo- and exo-cyclic chiral centers remains a significant challenge that requires further development. This study introduces a dynamic kinetic resolution (DKR)-based transfer hydrogenation of racemic 2-substituted quinolines, which yields structurally novel chiral THQs with consecutive endo- and exo-cyclic chiral centers in excellent yields and stereoselectivities (59 examples, with generally >20:1 dr and >90% ee, up to three consecutive stereocenters). Our approach offers a mechanistically novel method for the asymmetric transformation of electron-deficient aromatic N-heterocycles and presents an innovative way to expand the chiral N-heterocycle chemical space for medicinal chemistry.
Collapse
Affiliation(s)
- Ming-Rong Liang
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Xian Du
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Jian Lin
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Nianxin Rong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaohang Zhan
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Xinyue Mao
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Haokun Zhuang
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Tianyu Niu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qin Yin
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Zhao Z, Dong W, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Catalytic Asymmetric Transfer Hydrogenation of β,γ-Unsaturated α-Diketones. J Am Chem Soc 2024; 146:33543-33560. [PMID: 39604061 DOI: 10.1021/jacs.4c11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Asymmetric transfer hydrogenation (ATH) has been recognized as a highly valuable strategy that allows access to enantioenriched substances and has been widely applied in the industrial production of drug molecules. However, despite the great success in ATH of ketones, highly efficient, regio- and stereoselective ATH on enones remains underdeveloped. Moreover, optically pure acyloins and 1,2-diols are both extremely useful building blocks in organic synthesis, medicinal chemistry, and materials science, but concise asymmetric approaches allowing access to different types of acyloins and 1,2-diols have scarcely been discovered. We report in this paper the first highly efficient ATH of readily accessible β,γ-unsaturated α-diketones. The protocol affords four types of enantioenriched acyloins and four types of optically pure 1,2-diols in highly regio- and stereoselective fashion. The synthetic value of this work has been showcased by the divergent synthesis of four related natural products. Moreover, systematic mechanistic studies and density functional theory (DFT) calculations have illustrated the origin of the reactivity divergence, revealed the different roles of aromatic and aliphatic substituents in the substrates, and provided a range of unique mechanistic rationales that have not been disclosed in ATH-related studies.
Collapse
Affiliation(s)
- Zhifei Zhao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
5
|
Lin Y, Xu G, Tang W. Chiral Polymeric Diamine Ligands for Iridium-Catalyzed Asymmetric Transfer Hydrogenation. J Am Chem Soc 2024; 146:27736-27744. [PMID: 39319748 DOI: 10.1021/jacs.4c09516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
A series of polymeric chiral diamine ligands are developed by diboron-templated asymmetric reductive couplings, and their iridium complexes Ir-polydiamines are efficient and recyclable catalysts for asymmetric transfer hydrogenation (ATH) of functionalized ketones, affording a series of optically active secondary alcohols in excellent enantioselectivities (up to 99% ee) and unprecedentedly high total TONs (12,000, six cycles). Ir-polydiamine catalysts with longer chains offered higher reactivities, providing a plausible deactivation mechanism and practical solutions of ATH for vitamin B5 and phenylephrine.
Collapse
Affiliation(s)
- Yaodong Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Guangqing Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Wenjun Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
6
|
Meng X, Lan S, Chen T, Luo H, Zhu L, Chen N, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Catalytic Asymmetric Transfer Hydrogenation of Acylboronates: BMIDA as the Privileged Directing Group. J Am Chem Soc 2024; 146:20357-20369. [PMID: 38869937 DOI: 10.1021/jacs.4c05924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Developing a general, highly efficient, and enantioselective catalytic method for the synthesis of chiral alcohols is still a formidable challenge. We report in this article the asymmetric transfer hydrogenation (ATH) of N-methyliminodiacetyl (MIDA) acylboronates as a general substrate-independent entry to enantioenriched secondary alcohols. ATH of acyl-MIDA-boronates with (het)aryl, alkyl, alkynyl, alkenyl, and carbonyl substituents delivers a variety of enantioenriched α-boryl alcohols. The latter are used in a range of stereospecific transformations based on the boron moiety, enabling the synthesis of carbinols with two closely related α-substituents, which cannot be obtained with high enantioselectivities using direct asymmetric hydrogenation methods, such as the (R)-cloperastine intermediate. Computational studies illustrate that the BMIDA group is a privileged enantioselectivity-directing group in Noyori-Ikariya ATH compared to the conventionally used aryl and alkynyl groups due to the favorable CH-O attractive electrostatic interaction between the η6-arene-CH of the catalyst and the σ-bonded oxygen atoms in BMIDA. The work expands the domain of conventional ATH and shows its huge potential in addressing challenges in symmetric synthesis.
Collapse
Affiliation(s)
- Xiangjian Meng
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350007, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Ting Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Lixuan Zhu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Nanchu Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
7
|
Liu W, Ren C, Zhou L, Luo H, Meng X, Luo P, Luo Y, Dong W, Lan S, Liu J, Yang S, Zhang Q, Fang X. Regio- and Stereoselective Transfer Hydrogenation of Aryloxy Group-Substituted Unsymmetrical 1,2-Diketones: Synthetic Applications and Mechanistic Studies. J Am Chem Soc 2024; 146:20092-20106. [PMID: 39007870 DOI: 10.1021/jacs.4c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Developing a general method that leads to the formation of different classes of chiral bioactive compounds and their stereoisomers is an attractive but challenging research topic in organic synthesis. Furthermore, despite the great value of asymmetric transfer hydrogenation (ATH) in both organic synthesis and the pharmaceutical industry, the monohydrogenation of unsymmetrical 1,2-diketones remains underdeveloped. Here, we report the aryloxy group-assisted highly regio-, diastereo-, and enantioselective ATH of racemic 1,2-diketones. The work produces a myriad of enantioenriched dihydroxy ketones, and further transformations furnish all eight stereoisomers of diaryl triols, polyphenol, emblirol, and glycerol-type natural products. Mechanistic studies and calculations reveal two working modes of the aryloxy group in switching the regioselectivity from a more reactive carbonyl to a less reactive one, and the potential of ATH on 1,2-diketones in solving challenging synthetic issues has been clearly demonstrated.
Collapse
Affiliation(s)
- Wenjun Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Caiyi Ren
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Liyuan Zhou
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiangjian Meng
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Peng Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Yingkun Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
8
|
Rong N, Zhou A, Liang M, Wang SG, Yin Q. Asymmetric Hydrogenation of Racemic 2-Substituted Indoles via Dynamic Kinetic Resolution: An Easy Access to Chiral Indolines Bearing Vicinal Stereogenic Centers. J Am Chem Soc 2024; 146:5081-5087. [PMID: 38358355 DOI: 10.1021/jacs.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The asymmetric hydrogenation (AH) of N-unprotected indoles is a straightforward, yet challenging method to access biologically interesting NH chiral indolines. This method has for years been limited to 2/3-monosubstituted or 2,3-disubstituted indoles, which produce chiral indolines bearing endocyclic chiral centers. Herein, we have reported an innovative Pd-catalyzed AH of racemic α-alkyl or aryl-substituted indole-2-acetates using an acid-assisted dynamic kinetic resolution (DKR) process, affording a range of structurally fascinating chiral indolines that contain exocyclic stereocenters with excellent yields, diastereoselectivities, and enantioselectivities. Mechanistic studies support that the DKR process relies on a rapid interconversion of each enantiomer of racemic substrates, leveraged by an acid-promoted isomerization between the aromatic indole and nonaromatic exocyclic enamine intermediate. The reaction can be performed on a gram scale, and the products can be derivatized into non-natural β-amino acids via facile debenzylation and amino alcohol upon reduction.
Collapse
Affiliation(s)
- Nianxin Rong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ao Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingrong Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
9
|
Lan S, Huang H, Liu W, Xu C, Lei X, Dong W, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Asymmetric Transfer Hydrogenation of Cyclobutenediones. J Am Chem Soc 2024; 146:4942-4957. [PMID: 38326715 DOI: 10.1021/jacs.3c14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Four-membered carbocycles are fundamental substructures in bioactive molecules and approved drugs and serve as irreplaceable building blocks in organic synthesis. However, developing efficient protocols furnishing diversified four-membered ring compounds in a highly regio-, diastereo-, and enantioselective fashion remains challenging but very desirable. Here, we report the unprecedented asymmetric transfer hydrogenation of cyclobutenediones. The reaction can selectively afford three types of four-membered products in high yields with high stereoselectivities, and the highly functionalized products enable a series of further transformations to form more diversified four-membered compounds. Asymmetric synthesis of di-, tri-, and tetrasubstituted bioactive molecules has also been achieved. Systematic mechanistic studies and theoretical calculations have revealed the origin of the regioselectivity, the key hydrogenation transition state models, and the sequence of the double and triple hydrogenation processes. The work provides a new choice for the catalytic asymmetric synthesis of cyclobutanes and related structures and demonstrates the robustness of asymmetric transfer hydrogenation in the accurate selectivity control of highly functionalized substrates.
Collapse
Affiliation(s)
- Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Huangjiang Huang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Wenjun Liu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Chao Xu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiang Lei
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
10
|
Sterle M, Huš M, Lozinšek M, Zega A, Cotman AE. Hydrogen-Bonding Ability of Noyori-Ikariya Catalysts Enables Stereoselective Access to CF 3-Substituted syn-1,2-Diols via Dynamic Kinetic Resolution. ACS Catal 2023; 13:6242-6248. [PMID: 37180962 PMCID: PMC10167654 DOI: 10.1021/acscatal.3c00980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Stereopure CF3-substituted syn-1,2-diols were prepared via the reductive dynamic kinetic resolution of the corresponding racemic α-hydroxyketones in HCO2H/Et3N. (Het)aryl, benzyl, vinyl, and alkyl ketones are tolerated, delivering products with ≥95% ee and ≥87:13 syn/anti. This methodology offers rapid access to stereopure bioactive molecules. Furthermore, DFT calculations for three types of Noyori-Ikariya ruthenium catalysts were performed to show their general ability of directing stereoselectivity via the hydrogen bond acceptor SO2 region and CH/π interactions.
Collapse
Affiliation(s)
- Maša Sterle
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matej Huš
- National
Institute of Chemistry, Department of Catalysis
and Chemical Reaction Engineering, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia
- Association
for Technical Culture of Slovenia, Zaloška cesta 65, SI-1000 Ljubljana, Slovenia
- Institute
for the Protection of Cultural Heritage of Slovenia, Poljanska 40, SI-1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Andrej Emanuel Cotman
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Chen T, Liu W, Gu W, Niu S, Lan S, Zhao Z, Gong F, Liu J, Yang S, Cotman AE, Song J, Fang X. Dynamic Kinetic Resolution of β-Substituted α-Diketones via Asymmetric Transfer Hydrogenation. J Am Chem Soc 2023; 145:585-599. [PMID: 36563320 DOI: 10.1021/jacs.2c11149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing innovative dynamic kinetic resolution (DKR) modes and achieving the highly regio- and enantioselective semihydrogenation of unsymmetrical α-diketones are two formidable challenges in the field of contemporary asymmetric (transfer) hydrogenation. In this work, we report the highly regio- and stereoselective asymmetric semi-transfer hydrogenation of unsymmetrical α-diketones through a unique DKR mode, which features the reduction of the carbonyl group distal from the labile stereocenter, while the proximal carbonyl remains untouched. Moreover, the protocol affords a variety of enantioenriched acyclic ketones with α-hydroxy-α'-C(sp2)-functional groups, which represent a new product class that has not been furnished in known arts. The utilities of the products have been demonstrated in a series of further transformations including the rapid synthesis of drug molecules. Density functional theory calculations and plenty of control experiments have also been conducted to gain more mechanistic insights into the highly selective semihydrogenation.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wenjun Liu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wei Gu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shengtong Niu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Zhifei Zhao
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Fan Gong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
12
|
Wang F, Zhang Z, Chen Y, Ratovelomanana-Vidal V, Yu P, Chen GQ, Zhang X. Stereodivergent synthesis of chiral succinimides via Rh-catalyzed asymmetric transfer hydrogenation. Nat Commun 2022; 13:7794. [PMID: 36528669 PMCID: PMC9759521 DOI: 10.1038/s41467-022-35124-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Chiral succinimide moieties are ubiquitous in biologically active natural products and pharmaceuticals. Until today, despite the great interest, little success has been made for stereodivergent synthesis of chiral succinimides. Here, we report a general and efficient method for accessing 3,4-disubstituted succinimides through a dynamic kinetic resolution strategy based on asymmetric transfer hydrogenation. The Rh catalyst system exhibit high activities, enantioselectivities, and diastereoselectivities (up to 2000 TON, up to >99% ee, and up to >99:1 dr). Products with syn- and anti-configuration are obtained separately by control of the reaction conditions. For the N-unprotected substrates, both the enol and the imide group can be reduced by control of reaction time and catalyst loading. In addition, the detailed reaction pathway and origin of stereoselectivity are elucidated by control experiments and theoretical calculations. This study offers a straightforward and stereodivergent approach to the valuable enantioenriched succinimides (all 4 stereoisomers) from cheap chemical feedstocks in a single reaction step.
Collapse
Affiliation(s)
- Fangyuan Wang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Zongpeng Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Yu Chen
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Virginie Ratovelomanana-Vidal
- grid.4444.00000 0001 2112 9282PSL University, Chimie ParisTech, CNRS, Institute1 of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Peiyuan Yu
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Gen-Qiang Chen
- grid.263817.90000 0004 1773 1790Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Xumu Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| |
Collapse
|
13
|
Cotman AE, Dub PA, Sterle M, Lozinšek M, Dernovšek J, Zajec Ž, Zega A, Tomašič T, Cahard D. Catalytic Stereoconvergent Synthesis of Homochiral β-CF 3, β-SCF 3, and β-OCF 3 Benzylic Alcohols. ACS ORGANIC & INORGANIC AU 2022; 2:396-404. [PMID: 36217345 PMCID: PMC9542724 DOI: 10.1021/acsorginorgau.2c00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
We describe an efficient
catalytic strategy for enantio- and diastereoselective
synthesis of homochiral β-CF3, β-SCF3, and β-OCF3 benzylic alcohols. The approach is
based on dynamic kinetic resolution (DKR) with Noyori–Ikariya
asymmetric transfer hydrogenation leading to simultaneous construction
of two contiguous stereogenic centers with up to 99.9% ee, up to 99.9:0.1
dr, and up to 99% isolated yield. The origin of the stereoselectivity
and racemization mechanism of DKR is rationalized by density functional
theory calculations. Applicability of the previously inaccessible
chiral fluorinated alcohols obtained by this method in two directions
is further demonstrated: As building blocks for pharmaceuticals, illustrated
by the synthesis of heat shock protein 90 inhibitor with in vitro
anticancer activity, and in particular, needle-shaped crystals of
representative stereopure products that exhibit either elastic or
plastic flexibility, which opens the door to functional materials
based on mechanically responsive chiral molecular crystals.
Collapse
Affiliation(s)
- Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Maša Sterle
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Jaka Dernovšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Živa Zajec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Dominique Cahard
- CNRS UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| |
Collapse
|
14
|
Lin Z, Huang B, Ouyang L, Zheng L. Synthesis of Cyclic Fragrances via Transformations of Alkenes, Alkynes and Enynes: Strategies and Recent Progress. Molecules 2022; 27:3576. [PMID: 35684511 PMCID: PMC9182196 DOI: 10.3390/molecules27113576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
With increasing demand for customized commodities and the greater insight and understanding of olfaction, the synthesis of fragrances with diverse structures and odor characters has become a core task. Recent progress in organic synthesis and catalysis enables the rapid construction of carbocycles and heterocycles from readily available unsaturated molecular building blocks, with increased selectivity, atom economy, sustainability and product diversity. In this review, synthetic methods for creating cyclic fragrances, including both natural and synthetic ones, will be discussed, with a focus on the key transformations of alkenes, alkynes, dienes and enynes. Several strategies will be discussed, including cycloaddition, catalytic cyclization, ring-closing metathesis, intramolecular addition, and rearrangement reactions. Representative examples and the featured olfactory investigations will be highlighted, along with some perspectives on future developments in this area.
Collapse
Affiliation(s)
| | | | | | - Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Z.L.); (B.H.); (L.O.)
| |
Collapse
|
15
|
Xie QX, Liu LX, Zhu ZH, Yu CB, Zhou YG. Asymmetric Transfer Hydrogenation of 2,3-Disubstituted Flavanones through Dynamic Kinetic Resolution Enabled by Retro-Oxa-Michael Addition: Construction of Three Contiguous Stereogenic Centers. J Org Chem 2022; 87:7521-7530. [PMID: 35605190 DOI: 10.1021/acs.joc.2c00418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A ruthenium-catalyzed asymmetric transfer hydrogenation of 2,3-disubstituted flavanones was developed for the construction of three contiguous stereocenters under basic conditions through a combination of dynamic kinetic resolution and retro-oxa-Michael addition, giving chiral flavanols with excellent enantioselectivities and diastereoselectivities. The reaction proceeded via a base-catalyzed retro-oxa-Michael addition to racemize two stereogenic centers simultaneously in concert with a highly enantioselective ketone transfer hydrogenation step. The asymmetric transfer hydrogenation could be achieved at gram scale without loss of the activity and enantioselectivity.
Collapse
Affiliation(s)
- Qing-Xian Xie
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li-Xia Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Zhou-Hao Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Chang-Bin Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| |
Collapse
|
16
|
Li J, Ye J, Zhou J, Li J, Liu D, Zhang W. RuPHOX-Ru Catalyzed Asymmetric Hydrogenation of α-Substituted Tetralones via a Dynamic Kinetic Resolution. Chem Commun (Camb) 2022; 58:4905-4908. [DOI: 10.1039/d2cc01193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient RuPHOX-Ru catalyzed asymmetric hydrogenation of α-substituted tetralones via a dynamic kinetic resolution has been achieved for the synthesis of chiral tetrahydronaphthols. The mechanism study indicated that the hydrogenation...
Collapse
|
17
|
Hu ZQ, Li X, Liu LX, Yu CB, Zhou YG. Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of β-Substituted α-Oxobutyrolactones. J Org Chem 2021; 86:17453-17461. [PMID: 34730976 DOI: 10.1021/acs.joc.1c02156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A concise and effective ruthenium-catalyzed asymmetric transfer hydrogenation of β-substituted α-oxobutyrolactones has been developed, delivering a series of cis-β-substituted α-hydroxybutyrolactone derivatives with excellent yields, enantioselectivities, and diastereoselectivities. Two consecutive stereogenic centers were constructed in one step through dynamic kinetic resolution under basic conditions. The reaction could be conducted on a gram scale without loss of activity and enantioselectivity. The reductive products could be easily transformed into useful building blocks.
Collapse
Affiliation(s)
- Zi-Qi Hu
- Zhang Dayu School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | | | | | | | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
18
|
Xiong Y, Lin H, Zhu CL, Chen YH, Ye R, Hu GW, Xie JH, Zhou QL. Asymmetric Hydrogenation of Racemic α-Aryl-β-ethoxycarbonyl Cyclopentanones via Dynamic Kinetic Resolution and Its Application to the Synthesis of (+)-Burmaniol A. Org Lett 2021; 23:8883-8887. [PMID: 34709843 DOI: 10.1021/acs.orglett.1c03384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An efficient asymmetric hydrogenation of racemic α-aryl-β-ethoxycarbonyl cyclopentanones via dynamic kinetic resolution is reported. Via catalysis by a chiral iridium Ir-SpiroPAP catalyst, a range of racemic α-aryl-β-ethoxycarbonyl cyclopentanones were hydrogenated to the corresponding ester-functionalized chiral 2-arylcyclopentanols with three contiguous stereocenters in high yields with excellent enantio- and diastereoselectivities. This method was successfully applied in the enantioselective synthesis of cyclopentane-based γ-amino ester/alcohol derivatives and phenylpropanoid (+)-burmaniol A.
Collapse
Affiliation(s)
- Ying Xiong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Han Lin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chang-Liang Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong-Hong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guan-Wen Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Luo Z, Sun G, Wu S, Chen Y, Lin Y, Zhang L, Wang Z. η6‐Arene CH−O Interaction Directed Dynamic Kinetic Resolution – Asymmetric Transfer Hydrogenation (DKR‐ATH) of α‐Keto/enol‐Lactams. Adv Synth Catal 2021; 363:3030-3034. [DOI: 10.1002/adsc.202100288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/16/2022]
Abstract
AbstractA dynamic kinetic resolution – asymmetric transfer hydrogenation (DKR‐ATH) methodology of α‐keto/enol‐lactams was developed. We also propose a possible catalytic mechanism evolving a transition state stabilized by η6‐arene CH−O interaction. The efficient approach can be applied to a wide range of substrates including non‐aryl ones which would be difficult to prepare by other asymmetric reduction methods.magnified image
Collapse
Affiliation(s)
- Zhonghua Luo
- School of Biology and biological Engineering South China University of Technology Guangzhou 510640 People's Republic of China
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357) Sunshine Lake Pharma Co., Ltd Dongguan 523871 People's Republic of China
| | - Guodong Sun
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357) Sunshine Lake Pharma Co., Ltd Dongguan 523871 People's Republic of China
- Department of Process Research and Development HEC Pharm Group Dongguan 523871 People's Republic of China
| | - Shuming Wu
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357) Sunshine Lake Pharma Co., Ltd Dongguan 523871 People's Republic of China
- Department of Process Research and Development HEC Pharm Group Dongguan 523871 People's Republic of China
| | - Yong Chen
- Department of Process Research and Development HEC Pharm Group Dongguan 523871 People's Republic of China
- School of Pharmacy Xiangnan University Chenzhou 423000 Hunan People's Republic of China
| | - Yicao Lin
- Department of Process Research and Development HEC Pharm Group Dongguan 523871 People's Republic of China
| | - Lei Zhang
- School of Biology and biological Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Zhongqing Wang
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357) Sunshine Lake Pharma Co., Ltd Dongguan 523871 People's Republic of China
- Department of Process Research and Development HEC Pharm Group Dongguan 523871 People's Republic of China
- School of Pharmacy Xiangnan University Chenzhou 423000 Hunan People's Republic of China
| |
Collapse
|
20
|
Yabe R, Ebe Y, Nishimura T. Iridium-catalyzed stereoselective [3+2] annulation of α-oxocarboxylic acids with 1,3-dienes. Chem Commun (Camb) 2021; 57:5917-5920. [PMID: 34008643 DOI: 10.1039/d1cc02003j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The stereoselective annulation of α-oxocarboxylic acids with 1,3-dienes proceeded in the presence of a hydroxoiridium catalyst to give α-hydroxy-γ-lactones in good yields with high 3,5-trans relative stereochemistry. The use of a chiral diene ligand for a cationic iridium complex enabled asymmetric annulation with high enantioselectivity.
Collapse
Affiliation(s)
- Ryota Yabe
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan.
| | - Yusuke Ebe
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takahiro Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan.
| |
Collapse
|
21
|
Nakamura H, Yoshida M, Matsunami A, Kuwata S, Kayaki Y. Oxy-tethered Cp*Ir(III) complex as a competent catalyst for selective dehydrogenation from formic acid. Chem Commun (Camb) 2021; 57:5534-5537. [PMID: 33960337 DOI: 10.1039/d1cc01712h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bifunctional tethered iridium catalyst containing a 1,2-diphenylethylenediamine framework was synthesised for the first time. The ethereal tether chain was easily constructed via the intramolecular oxydefluorination of a perfluorophenylsulfonyl substituent by using a modified 1,2,3,4,5-pentamethylcyclopentadienyl ligand with a hydroxyalkyl chain. The conformationally constrained structure could hamper deactivation pathways in the catalytic hydrogen generation from formic acid, leading to advanced durability and complete conversion.
Collapse
Affiliation(s)
- Hitomi Nakamura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Minori Yoshida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Asuka Matsunami
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Shigeki Kuwata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Yoshihito Kayaki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
22
|
Mishra AA, Bhanage BM. Ru-TsDPEN catalysts and derivatives in asymmetric transfer hydrogenation reactions. Chirality 2021; 33:337-378. [PMID: 34010454 DOI: 10.1002/chir.23317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
This review summarizes current developments, novel synthetic routes for Ruthenium tethered chiral catalyst, and its derivatives along with its application in asymmetric synthesis. The review also covers derivatization in tethering unit, modification in N-monofunctionalized ligand as well as ligation of other ligand with Ru metal in chiral catalyst. Apparently, the effect of a modified tethered catalyst in the enantioselective synthesis of chiral products as well as in synthetic chemistry is also discussed in detail.
Collapse
Affiliation(s)
- Ashish A Mishra
- Department of Chemistry, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
23
|
Dub PA, Tkachenko NV, Vyas VK, Wills M, Smith JS, Tretiak S. Enantioselectivity in the Noyori–Ikariya Asymmetric Transfer Hydrogenation of Ketones. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nikolay V. Tkachenko
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Vijyesh K. Vyas
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Martin Wills
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Justin S. Smith
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
24
|
Touge T, Nara H, Kida M, Matsumura K, Kayaki Y. Convincing Catalytic Performance of Oxo-Tethered Ruthenium Complexes for Asymmetric Transfer Hydrogenation of Cyclic α-Halogenated Ketones through Dynamic Kinetic Resolution. Org Lett 2021; 23:3070-3075. [PMID: 33780258 DOI: 10.1021/acs.orglett.1c00739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient dynamic kinetic resolution of cyclic halohydrins was achieved by the asymmetric transfer hydrogenation of racemic α-haloketones. Bifunctional oxo-tethered Ru(II) catalysts could promote the reduction without deterioration of halogens. By structural tuning of the catalyst, chiral alcohols having halogen, ester, carboxamide, and sulfone functions were obtained variably with excellent diastereo- and enantioselectivities (up to >99:1 d.r. and >99.9 ee), which provided a concise synthetic approach to a dopamine D3 receptor ligand, (+)-PHNO.
Collapse
Affiliation(s)
- Taichiro Touge
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishi-Yawata, Hiratsuka, Kanagawa 254-0073, Japan
| | - Hideki Nara
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishi-Yawata, Hiratsuka, Kanagawa 254-0073, Japan
| | - Michio Kida
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishi-Yawata, Hiratsuka, Kanagawa 254-0073, Japan
| | - Kazuhiko Matsumura
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishi-Yawata, Hiratsuka, Kanagawa 254-0073, Japan
| | - Yoshihito Kayaki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
25
|
Caleffi GS, Brum JDOC, Costa AT, Domingos JLO, Costa PRR. Asymmetric Transfer Hydrogenation of Arylidene-Substituted Chromanones and Tetralones Catalyzed by Noyori–Ikariya Ru(II) Complexes: One-Pot Reduction of C═C and C═O bonds. J Org Chem 2021; 86:4849-4858. [DOI: 10.1021/acs.joc.0c02981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guilherme S. Caleffi
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Juliana de O. C. Brum
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, Brazil
| | - Angela T. Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jorge L. O. Domingos
- Departamento de Química Orgânica, Instituto de Química, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil
| | - Paulo R. R. Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Wang F, Yang T, Wu T, Zheng LS, Yin C, Shi Y, Ye XY, Chen GQ, Zhang X. Asymmetric Transfer Hydrogenation of α-Substituted-β-Keto Carbonitriles via Dynamic Kinetic Resolution. J Am Chem Soc 2021; 143:2477-2483. [PMID: 33529522 DOI: 10.1021/jacs.0c13273] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A catalytic protocol for the enantio- and diastereoselective reduction of α-substituted-β-keto carbonitriles is described. The reaction involves a DKR-ATH process with the simultaneous construction of β-hydroxy carbonitrile scaffolds with two contiguous stereogenic centers. A wide range of α-substituted-β-keto carbonitriles were obtained in high yields (94%-98%) and excellent enantio- and diastereoselectivities (up to >99% ee, up to >99:1 dr). The origin of the diastereoselectivity was also rationalized by DFT calculations. Furthermore, this methodology offers rapid access to the pharmaceutical intermediates of Ipenoxazone and Tapentadol.
Collapse
Affiliation(s)
- Fangyuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Tilong Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Ting Wu
- College of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Long-Sheng Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Congcong Yin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yongjie Shi
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Xiang-Yu Ye
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | | | | |
Collapse
|
27
|
Cotman AE. Escaping from Flatland: Stereoconvergent Synthesis of Three-Dimensional Scaffolds via Ruthenium(II)-Catalyzed Noyori-Ikariya Transfer Hydrogenation. Chemistry 2021; 27:39-53. [PMID: 32691439 DOI: 10.1002/chem.202002779] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/17/2020] [Indexed: 01/12/2023]
Abstract
Noyori-Ikariya-type ruthenium(II)-catalysts for asymmetric transfer hydrogenation (ATH) have been known for 25 years and have proved as a well-behaved and user-friendly platform for the synthesis of chiral secondary alcohols. A progress has been made in the past five years in understanding the asymmetric reduction of complex ketones, where up to four stereocenters can be controlled in a single chemical transformation. Intriguing multi-chiral molecular architectures are therefore available in few well understood and robust synthetic steps from commercially available building blocks and possess handles for additional functionalization. The aim of this Review is to showcase the availability of three-dimensional scaffolds and homochiral lead-like compounds via ATH and inspire their direct use in drug discovery endeavors. Basic mechanistic insights are provided to demystify the stereo-chemical outcomes, as well as examples of diastereoselective transformations of enantiopure alcohols to give a feeling of how these rigid non-planar molecules can be further elaborated.
Collapse
Affiliation(s)
- Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| |
Collapse
|
28
|
Kuwana M, Touge T, Komatsuki Y, Saito T. Establishment of the Continuous Synthesis of Ceramide (D-erythro-CER [NDS]) via Oxo-Tethered Ruthenium Complex-Catalyzed Asymmetric Transfer Hydrogenation Using Pipe-Flow Reactor. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.1184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masahiro Kuwana
- Corporate Research & Development Division, Takasago International Corporation
- Process Development Department, Takasago Chemical Corporation
| | - Taichiro Touge
- Corporate Research & Development Division, Takasago International Corporation
| | - Yasuhiro Komatsuki
- Corporate Research & Development Division, Takasago International Corporation
| | - Takao Saito
- Corporate Research & Development Division, Takasago International Corporation
- Process Development Department, Takasago Chemical Corporation
| |
Collapse
|
29
|
Phansavath P, Ratovelomanana-Vidal V, Molina Betancourt R, Echeverria PG, Ayad T. Recent Progress and Applications of Transition-Metal-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones and Imines through Dynamic Kinetic Resolution. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1705918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractBased on the ever-increasing demand for enantiomerically pure compounds, the development of efficient, atom-economical, and sustainable methods to produce chiral alcohols and amines is a major concern. Homogeneous asymmetric catalysis with transition-metal complexes including asymmetric hydrogenation (AH) and transfer hydrogenation (ATH) of ketones and imines through dynamic kinetic resolution (DKR) allowing the construction of up to three stereogenic centers is the main focus of the present short review, emphasizing the development of new catalytic systems combined to new classes of substrates and their applications as well.1 Introduction2 Asymmetric Hydrogenation via Dynamic Kinetic Resolution2.1 α-Substituted Ketones2.2 α-Substituted β-Keto Esters and Amides2.3 α-Substituted Esters2.4 Imine Derivatives3 Asymmetric Transfer Hydrogenation via Dynamic Kinetic Resolution3.1 α-Substituted Ketones3.2 α-Substituted β-Keto Esters, Amides, and Sulfonamides3.3 α,β-Disubstituted Cyclic Ketones3.4 β-Substituted Ketones3.5 Imine Derivatives4. Conclusion
Collapse
Affiliation(s)
- Phannarath Phansavath
- CSB2D Team, Institute of Chemistry for Life & Health Sciences, Chimie ParisTech-CNRS, PSL University
| | | | - Ricardo Molina Betancourt
- CSB2D Team, Institute of Chemistry for Life & Health Sciences, Chimie ParisTech-CNRS, PSL University
| | | | - Tahar Ayad
- CSB2D Team, Institute of Chemistry for Life & Health Sciences, Chimie ParisTech-CNRS, PSL University
| |
Collapse
|
30
|
Na F, Lopez SS, Beauseigneur A, Hernandez LW, Sun Z, Antilla JC. Catalytic Asymmetric Transfer Hydrogenation of trans-Chalcone Derivatives Using BINOL-derived Boro-phosphates. Org Lett 2020; 22:5953-5957. [PMID: 32692927 DOI: 10.1021/acs.orglett.0c02042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral phosphoric-acid-catalyzed asymmetric reductions of trans-chalcones have been investigated in this work. A BINOL-derived boro-phosphate-catalyzed asymmetric transfer hydrogenation of the carbon-carbon double bond of trans-chalcone derivatives employing borane as a hydride source was realized. This methodology provides a convenient procedure to access chiral dihydrochalone derivatives in high yields and with high enantioselectivities under mild conditions.
Collapse
Affiliation(s)
- Fei Na
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Susana S Lopez
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Alice Beauseigneur
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lucas W Hernandez
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Zhuoxin Sun
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jon C Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
31
|
Armanino N, Charpentier J, Flachsmann F, Goeke A, Liniger M, Kraft P. Heiße Luft oder cooler Duft? Die Trends der letzten 20 Jahre in der Riechstoffchemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicolas Armanino
- Givaudan Schweiz AGFragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Schweiz
| | - Julie Charpentier
- Givaudan Schweiz AGFragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Schweiz
| | - Felix Flachsmann
- Givaudan Schweiz AGFragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Schweiz
| | - Andreas Goeke
- Givaudan Schweiz AGFragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Schweiz
| | - Marc Liniger
- Givaudan Schweiz AGFragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Schweiz
| | - Philip Kraft
- Givaudan Schweiz AGFragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Schweiz
| |
Collapse
|
32
|
Armanino N, Charpentier J, Flachsmann F, Goeke A, Liniger M, Kraft P. What's Hot, What's Not: The Trends of the Past 20 Years in the Chemistry of Odorants. Angew Chem Int Ed Engl 2020; 59:16310-16344. [DOI: 10.1002/anie.202005719] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Nicolas Armanino
- Givaudan Schweiz AG Fragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Switzerland
| | - Julie Charpentier
- Givaudan Schweiz AG Fragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Switzerland
| | - Felix Flachsmann
- Givaudan Schweiz AG Fragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Switzerland
| | - Andreas Goeke
- Givaudan Schweiz AG Fragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Switzerland
| | - Marc Liniger
- Givaudan Schweiz AG Fragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Switzerland
| | - Philip Kraft
- Givaudan Schweiz AG Fragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Switzerland
| |
Collapse
|
33
|
Luo Z, Wang Z, Sun G, Jian W, Jiang F, Luan B, Li R, Zhang L. Ruthenium-Catalyzed Highly Enantioselective Synthesis of cis-3-Quinuclidinols via DKR Asymmetric Transfer Hydrogenation. Org Lett 2020; 22:4322-4326. [PMID: 32407110 DOI: 10.1021/acs.orglett.0c01361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A method for the enantioselective synthesis of cis-3-quinuclidinols by Ru-catalyzed asymmetric transfer hydrogenation via dynamic kinetic resolution is described. The reaction proceeded under mild conditions using ammonium formate as the hydrogen donor, affording the products in high yields (up to 99%) with excellent diastereoselectivity (up to 99:1 dr) and enantioselectivity (95-99% ee). This protocol was applicable to gram-scale preparation with perfect enantioselectivity through simple recrystallization.
Collapse
Affiliation(s)
- Zhonghua Luo
- School of Biology and biological Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd., Dongguan 523871, P.R. China
| | - Zhongqing Wang
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd., Dongguan 523871, P.R. China
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, Xiangnan University, Chenzhou 423000, China
| | - Guodong Sun
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd., Dongguan 523871, P.R. China
| | - Weilin Jian
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd., Dongguan 523871, P.R. China
| | - Fengkai Jiang
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd., Dongguan 523871, P.R. China
| | - Baolei Luan
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd., Dongguan 523871, P.R. China
| | - Ridong Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Lei Zhang
- School of Biology and biological Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| |
Collapse
|
34
|
Wang H, Zhao Y, Ding Y, Yu C, Zhou Y. Synthesis of
cis
β‐Hydroxy Ketones by Desymmetrization of 1,3‐Cyclopentanediones through Ruthenium‐Catalyzed Hydrogen Transfer. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Han Wang
- Zhang Dayu School of ChemistryDalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Yang Zhao
- State Key Laboratory of CatalysisDalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Yi‐Xuan Ding
- State Key Laboratory of CatalysisDalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Chang‐Bin Yu
- State Key Laboratory of CatalysisDalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Yong‐Gui Zhou
- Zhang Dayu School of ChemistryDalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
- State Key Laboratory of CatalysisDalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| |
Collapse
|
35
|
Wang F, Zheng LS, Lang QW, Yin C, Wu T, Phansavath P, Chen GQ, Ratovelomanana-Vidal V, Zhang X. Rh(iii)-Catalyzed diastereoselective transfer hydrogenation: an efficient entry to key intermediates of HIV protease inhibitors. Chem Commun (Camb) 2020; 56:3119-3122. [DOI: 10.1039/c9cc09793g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A highly efficient diastereoselective transfer hydrogenation of α-aminoalkyl α′-chloromethyl ketones catalyzed by a tethered rhodium complex was developed and successfully utilized in the synthesis of the key intermediates of HIV protease inhibitors.
Collapse
Affiliation(s)
- Fangyuan Wang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
- Shenzhen Grubbs Institute and Department of Chemistry
| | - Long-Sheng Zheng
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | - Qi-Wei Lang
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | - Congcong Yin
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | - Ting Wu
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | - Phannarath Phansavath
- PSL University
- Chimie ParisTech
- CNRS
- Institute of Chemistry for Life and Health Sciences
- CSB2D team
| | - Gen-Qiang Chen
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | | | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| |
Collapse
|
36
|
Li C, Lu W, Lu B, Li W, Xie X, Zhang Z. Ru-Catalyzed Chemo- and Enantioselective Hydrogenation of 2,4-Pentadien-1-ones: Synthesis of Chiral 2,4-Pentadien-1-ols. J Org Chem 2019; 84:16086-16094. [PMID: 31736310 DOI: 10.1021/acs.joc.9b02576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The asymmetric hydrogenation of 2,4-pentadien-1-ones has been achieved by using trans-RuCl2[(R)-XylylSunPhos][(R)-Daipen] as a catalyst under basic conditions. This hydrogenation demonstrated exclusive C1-carbonyl selectivity, and thus the conjugated 2,4-diene motifs remained untouched, which provides a synthetically useful method for various chiral 2,4-pentadien-1-ols.
Collapse
Affiliation(s)
- Chengyang Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Wenkui Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Bin Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Wanfang Li
- College of Science , University of Shanghai for Science and Technology , Shanghai 200093 , China
| | - Xiaomin Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China.,Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|