1
|
Wu MX, Li Y, Liu J, Huang B, Hong QY, Jiang WL, Zhao Y, Dai G, Hu B, Shi X, Yang HB. Dihydrophenazine Derived Pd 6L 12 Cage: Self-Assembly, Polyradical Cations, and Lithium Battery Cathode Application. Angew Chem Int Ed Engl 2025:e202503151. [PMID: 40325353 DOI: 10.1002/anie.202503151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/07/2025]
Abstract
In this study, we present the self-assembly of a dihydrophenazine-based Pd6L12-type coordination cage 1 showing excellent redox activity and demonstrate the use as the cathode for lithium batteries. The structure of cage 1 was confirmed by single-crystal X-ray diffraction analysis. The excellent reversible redox performance of 1 and its electrochromic properties induced by radical species were systematically characterized using in situ UV-vis-NIR and EPR spectroelectrochemistry. Notably, a highly stable radical cationic species 112•+, containing 12 radical cations, was successfully obtained through the chemical oxidation of 1, and its single-crystal structure was resolved. The excellent redox properties of 1 enable its application as a cathode material for lithium batteries. The 1|Li cell exhibited good cycling stability, nearly 100% coulombic efficiency, and an initial discharge capacity of 84 mAh g⁻¹ within a voltage range of 2.5-4.0 V. Furthermore, in situ 2D EPR experiments on lithium batteries visually revealed the excellent cycling stability of the 1-based cathode material and its reversible two-step electron transfer process. This study provides important insights into the design, synthesis, and properties of functionalized redox-active coordination cages, offering a reference for their application in energy storage and functional materials research.
Collapse
Affiliation(s)
- Meng-Xiang Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yingli Li
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang, 311121, China
| | - Jiefan Liu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Bin Huang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qiong-Yan Hong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei-Ling Jiang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu Zhao
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang, 311121, China
| | - Gaole Dai
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang, 311121, China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
2
|
Ma S, Wen X, Jiang Y, Jiang J, Hao W, Zhang L, Liu M. Fluoride binding-modulated supramolecular chirality of urea-containing triarylamine and its photo-manifestation. NANOSCALE 2025; 17:4400-4407. [PMID: 39807012 DOI: 10.1039/d4nr04175e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In recent years, the regulation of anion-mediated chiral assemblies has gained significant interest. This study investigated the modulation of supramolecular chiroptical signals and chiral assembled structures in a triarylamine system containing a urea moiety through fluoride ion-urea bond interactions, aiming to understand the chiral sense amplification in supramolecular assemblies. Chiral triarylamine derivatives containing urea or amide units were synthesized and the self-assemblies were examined in the absence and presence of fluoride ions. The results revealed that the addition of F- led to an increase in the circular dichroism (CD) intensity for the triarylamine compounds containing urea, accompanied by a transformation of the nanofiber structure into chiral twists. Comparative studies with other anions confirmed the selective specificity for F-. Additionally, the combination of photo-induced triarylamine anion radicals allowed the F- in the system to be visualized through photoirradiation, resulting in distinct colour changes that were detectable by the naked eye. The research demonstrates that F- can selectively amplify supramolecular chirality through urea-F- interactions, which may have promising applications in the fields of sensing and chiroptical devices.
Collapse
Affiliation(s)
- Sijia Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Xin Wen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqian Jiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Jian Jiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Wenchao Hao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Tang L, Gao Y, Cong N, Cui Z, Zhang M, Li F. Photo-Induced Ultrafast Charge Transfer and Air-Stable Radical Formation in Tetraphenylpyrene Derivatives. Angew Chem Int Ed Engl 2025; 64:e202414374. [PMID: 39183178 DOI: 10.1002/anie.202414374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Stable organic radicals generated by photo-excitation hold applications in molecular switching devices and information storage. It remains challenging to develop photo-generated radical materials with rapid response and air stability in the solid state. Here, we report a structure based on 1,3,6,8-tetraphenylpyrene derivative (Py-TTAc) displaying photo-induced radicals with air stability in the solid state. Photo-induced electron transfer, exposed to a 365 nm ultraviolet lamp for 1 minute, affords radicals in Py-TTAc powder as confirmed by electron paramagnetic resonance (EPR) spectroscopy. The maximum radical concentration reaches 2.21 % after continuous irradiation for 1 hour and recurs more than 10 times without any chemical degradation. The mechanistic study according to the femtosecond transient absorption (fsTA) and X-ray technology suggests that the radicals are derived from photo-induced symmetry-breaking charge separation (SB-CS) and stabilized through non-covalent interactions. The photo-generated stable radical system is employed in anti-counterfeiting paper and optoelectronic device applications. This study will provide insights into the development of photoactive organic radical materials.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, 130012, Changchun, P. R. China
| | - Yuhang Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, 130012, Changchun, P. R. China
| | - Nannan Cong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, 130012, Changchun, P. R. China
| | - Zhiyuan Cui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, 130012, Changchun, P. R. China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, 130012, Changchun, P. R. China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, 130012, Changchun, P. R. China
| |
Collapse
|
4
|
Zhang B, Du C, Wen X, Zhang L, Duan R, Liu M. Supramolecular Chiral Aggregation of Porphyrin Induced by Photo-Generated Triphenylamines Radical Cations. SMALL METHODS 2025; 9:e2400538. [PMID: 38988148 DOI: 10.1002/smtd.202400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Here, it is shown that photoirradiation triggered chiral J-aggregates formation of an achiral anionic porphyrin, TPPS (tetrakis(4-sulfonatophenyl) porphyrin), in the presence of chiral triphenylamine (TPA) derivatives. A series of chiral triarylamines linked with aromatic rings is designed through urea or amide bonds. UV-irradiation of self-assembled urea-linked triphenylamine derivatives causes the formation of persistent radical cations in the chlorinated solvents, which subsequently induces the aggregation of TPPS. Transferring chirality of TPA derivatives to achiral TPPS J-aggregates leads to the chiral assemblies with remarkable chiroptical signals. The experimental results demonstrate that, TPA derivatives linked by the urea bond can effectively promote the aggregation of TPPS rather than those with the amide bond although the photo-generated radical cations are both produced. It is suggested that the urea-linked TPA derivatives are more favorable to stable radical cations and thus cause the formation of TPPS chiral J-aggregation. This work may open up an avenue for designing photo-modulated chiral supramolecular assemblies.
Collapse
Affiliation(s)
- Bojia Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Materials Science and Engineering, and Key Lab for Special Functional Materials of Ministry of Education, Henan University, Kaifeng, 475004, P. R. China
| | - Xin Wen
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ran Duan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Park S, Lee J, Kim B, Jung CY, Bae SE, Kang J, Moon D, Park J. Radical-Driven Crystal-Amorphous-Crystal Transition of a Metal-Organic Framework. J Am Chem Soc 2024; 146:9293-9301. [PMID: 38516847 DOI: 10.1021/jacs.4c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Self-assembly-based structural transition has been explored for various applications, including molecular machines, sensors, and drug delivery. In this study, we developed new redox-active metal-organic frameworks (MOFs) called DGIST-10 series that comprise π-acidic 1,4,5,8-naphthalenediimide (NDI)-based ligands and Ni2+ ions, aiming to boost ligand-self-assembly-driven structural transition and study the involved mechanism. Notably, during the synthesis of the MOFs, a single-crystal-amorphous-single-crystal structural transition occurred within the MOFs upon radical formation, which was ascribed to the fact that radicals prefer spin-pairing or through-space electron delocalization by π-orbital overlap. The radical-formation-induced structural transitions were further confirmed by the postsynthetic solvothermal treatment of isolated nonradical MOF crystals. Notably, the transient amorphous phase without morphological disintegration was clearly observed, contributing to the seminal structural change of the MOF. We believe that this unprecedented structural transition triggered by the ligand self-assembly magnifies the structural flexibility and diversity of MOFs, which is one of the pivotal aspects of MOFs.
Collapse
Affiliation(s)
- Seonghun Park
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Juhyung Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Bongkyeom Kim
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Chan-Yong Jung
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Sang-Eun Bae
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Joongoo Kang
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory/POSTECH, Pohang 37673, Republic of Korea
| | - Jinhee Park
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
6
|
Kelestemur S, Maity P, Visaveliya NR, Halpern D, Parveen S, Khatoon F, Khalil A, Greenberg M, Jiang Q, Ng K, Eisele DM. Solution-based Supramolecular Hierarchical Assembly of Frenkel Excitonic Nanotubes Driven by Gold Nanoparticle Formation and Temperature. J Phys Chem B 2024; 128:329-339. [PMID: 38157497 DOI: 10.1021/acs.jpcb.3c05681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Translating nature's successful design principle of solution-based supramolecular self-assembling to broad applications─ranging from renewable energy and information technology to nanomedicine─requires a fundamental understanding of supramolecular hierarchical assembly. Though the forces behind self-assembly (e.g., hydrophobicity) are known, the specific mechanism by which monomers form the hierarchical assembly still remains an open question. A crucial step toward formulating a complete mechanism is understanding not only how the monomer's specific molecular structure but also how manifold environmental conditions impact the self-assembling process. Here, we elucidate the complex correlation between the environmental self-assembling conditions and the resulting structural properties by utilizing a well-characterized model system: well-defined supramolecular Frenkel excitonic nanotubes (NTs), self-assembled from cyanine dye molecules in aqueous solution, which further self-assemble into bundled nanotubes (b-NTs). The NTs and b-NTs inhabit distinct spectroscopic signatures, which allows the use of steady-state absorption spectroscopy to monitor the transition from NTs to b-NTs directly. Specifically, we investigate the impact of temperature (ranging from 23 °C, 55 °C, 70 °C, 85 °C, up to 100 °C) during in situ formation of gold nanoparticles to determine their role in the formation of b-NTs. The considered time regime for the self-assembling process ranges from 1 min to 8 days. With our work, we contribute to a basic understanding of how environmental conditions impact solution-based hierarchical supramolecular self-assembly in both the thermodynamic and the kinetic regime.
Collapse
Affiliation(s)
- Seda Kelestemur
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
- Biotechnology Department, Institute of Health Sciences, University of Health Sciences, Istanbul, 34668, Turkey
| | - Piyali Maity
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Nikunjkumar R Visaveliya
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Damien Halpern
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Sadiyah Parveen
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Firdaus Khatoon
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Ali Khalil
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Matthew Greenberg
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Qingrui Jiang
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Kara Ng
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
- PhD Program in Chemistry, Graduate Center of The City University of New York, New York City, New York 10016, United States
| | - Dorthe M Eisele
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| |
Collapse
|
7
|
Shen Q, Gao K, Zhao Z, Gao A, Xu Y, Wang H, Meng L, Zhang M, Dang D. Aggregation-induced emission (AIE)-active metallacycles with near-infrared emission for photodynamic therapy. Chem Commun (Camb) 2023; 59:14021-14024. [PMID: 37946537 DOI: 10.1039/d3cc04166b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Multifunctional metallacycles with solid-state emission are highly important in cancer therapy. Here, an aggregation-induced emission (AIE)-active metallacycle of DTPABT-MC-R is developed with efficient emission in the NIR region in the solid state (PLQYs = 4.92%). DTPABT-MC-R-based nanoparticles also display excellent photo-stability, and impressive photosensitive characteristics (ROS efficiency = 10.74%), finally leading to applications in cellular imaging and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Qifei Shen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Kai Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhiqin Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Anran Gao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Yanzi Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lingjie Meng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
8
|
Chen W, Chen Z, Chi Y, Tian W. Double Cation-π Directed Two-Dimensional Metallacycle-Based Hierarchical Self-Assemblies for Dual-Mode Catalysis. J Am Chem Soc 2023; 145:19746-19758. [PMID: 37657081 DOI: 10.1021/jacs.3c05143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Hierarchical self-assembly of Pt(II) metallacycles for the construction of functional materials has received considerable research interest, owing to their potential to meet increasing complexity and functionality demands while being based on well-defined scaffolds. However, the fabrication of long-range-ordered Pt(II) metallacycle-based two-dimensional hierarchical self-assemblies (2D HSAs) remains a challenge, primarily because of the limitations of conventional orthogonal noncovalent interaction (NCI) motifs and the intrinsic characteristics of Pt(II) metallacycles, making the delicate self-assembly processes difficult to control. Herein, we prepare well-regulated Pt(II)-metallacycle-based 2D HSAs through a directed strategy involving double cation-π interactions derived from C3-symmetric hexagonal Pt(II) metallacycles and C2-symmetric sodium phenate monomers. Spatially confined arrays of planar Pt(II) metallacycles and the selective growth of self-assemblies at desired locations are achieved by employing strong cation-π driving forces with well-defined directionality as the second orthogonal NCI, realizing the bottom-up, three-stage construction of Pt(II)-metallacycle-based 2D HSAs. The resultant 2D HSAs are applied as dual-mode catalysis platforms, which are loaded with two different nanocatalysts, one promoting catalytic oxidation and the other promoting photocatalytic reduction.
Collapse
Affiliation(s)
- Wenzhuo Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Zipei Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
9
|
Zhang S, Hao A, Xing P. Solvent-resolved self-assemblies of cholesteryl-cyanostilbene conjugates with photo- and thermo-responsiveness. NANOSCALE 2023. [PMID: 37191115 DOI: 10.1039/d3nr01056b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It remains challenging to construct multifunctional chiral stimulus-responsive molecules and to modulate their morphology at the nanoscale. In this paper, we synthesized a novel chiral molecule with both photoactive and potentially bioactive properties and found that the morphological changes of its self-assembly were influenced by solvent polarity and light exposure. This work enabled the synthesized molecule to undergo Z-E isomerization efficiently under light irradiation by introducing highly oriented hydrogen bonds into the cyanostilbene part. The photoisomerization of the cyanostilbene part from Z- to E-type was further exploited, leading to morphological changes from nanohelices to vesicles with chiroptical evolution. The light-modulated supramolecular chirality and nanostructure provide a green and efficient method for the design of responsive chiral materials.
Collapse
Affiliation(s)
- Shuqing Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
10
|
Hong D, Shi L, Liu X, Ya H, Han X. Photocatalysis in Water-Soluble Supramolecular Metal Organic Complex. Molecules 2023; 28:molecules28104068. [PMID: 37241809 DOI: 10.3390/molecules28104068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
As an emerging subset of organic complexes, metal complexes have garnered considerable attention owing to their outstanding structures, properties, and applications. In this content, metal-organic cages (MOCs) with defined shapes and sizes provide internal spaces to isolate water for guest molecules, which can be selectively captured, isolated, and released to achieve control over chemical reactions. Complex supramolecules are constructed by simulating the self-assembly behavior of the molecules or structures in nature. For this purpose, massive amounts of cavity-containing supramolecules, such as metal-organic cages (MOCs), have been extensively explored for a large variety of reactions with a high degree of reactivity and selectivity. Because sunlight and water are necessary for the process of photosynthesis, water-soluble metal-organic cages (WSMOCs) are ideal platforms for photo-responsive stimulation and photo-mediated transformation by simulating photosynthesis due to their defined sizes, shapes, and high modularization of metal centers and ligands. Therefore, the design and synthesis of WSMOCs with uncommon geometries embedded with functional building units is of immense importance for artificial photo-responsive stimulation and photo-mediated transformation. In this review, we introduce the general synthetic strategies of WSMOCs and their applications in this sparking field.
Collapse
Affiliation(s)
- Dongfeng Hong
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang 471934, China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xianghui Liu
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang 471934, China
| | - Huiyuan Ya
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang 471934, China
| | - Xin Han
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Zhang H, Li Y, Zhang YF, Qiao XJ, Sun LY, Li J, Wang YY, Han YF. Solvato-Controlled Assembly and Structural Transformation of Emissive Poly-NHC-Based Organometallic Cages and Their Applications in Amino Acid Sensing and Fluorescence Imaging. Chemistry 2023; 29:e202300209. [PMID: 36762405 DOI: 10.1002/chem.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Stimuli-induced structural transformation of supramolecular cages has drawn increasing attention because of their sensitive feature to external variations as model systems to simulate biological processes. However, combining structural transformation and useful functions has remained a difficult task. This study reports the solvato-controlled self-assembly of two unique topologies with different emission characteristics, a water-soluble Ag8 L4 cage (A) and an Ag4 L2 cage (B), produced from the same sulfonate-pendant tetraphenylethene (TPE) bridged tetrakis-(1,2,4-triazolium) ligand. Both cages show interesting solvent-responsive reversible structural transformation, and the change of fluorescence signals can efficiently track the process. Additionally, water-soluble cage A exhibits unique properties in thermochromism, thiol amino acid sensing, and subcellular imaging in aqueous media.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yi-Fan Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiu-Juan Qiao
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Li-Ying Sun
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
12
|
Lianglu J, Hu W, Zhu X, Zhang HY, Shi L, Hao XQ, Song MP. Synthesis of a Tetrahedral Metal-Organic Supramolecular Cage with Dendritic Carbazole Arms. Int J Mol Sci 2022; 23:15580. [PMID: 36555222 PMCID: PMC9779595 DOI: 10.3390/ijms232415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
In recent years, incredible endeavors have been devoted to the design and self-assembly of discrete metal-organic cages (MOCs) with expanding intricacy and functionality. The controlled synthesis of metal-organic supramolecular cages with large branched chains remains an interesting and challenging work in supramolecular chemistry. Herein, a tetrahedral metal-organic supramolecular cage (ZnII4L4) containing 12 dendritic carbazole arms is unprecedentedly constructed through coordination-driven subcomponent self-assembly and characterized in different ways. Interestingly, tetrahedral supramolecular Cage-1 exhibited the potential for aggregation-induced emission (AIE) performance and stimulus-responsive luminescence features, and it achieved color-tunable photoluminescence due to the introduction of dendritic carbazole arms. Crucially, owing to the great photophysical properties of Cage-1 in solution, Cage-1 was enabled to act as a fluorescent ink for the vapor-responsive recording and wiping of information.
Collapse
Affiliation(s)
- Juanzi Lianglu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Weinan Hu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Yu Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
13
|
Gong Z, Yan Q. Photoregulated supramolecular hydrogels driven by polyradical interactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
14
|
Zhang S, Ma L, Ma W, Chen L, Gao K, Yu S, Zhang M, Zhang L, He G. Selenoviologen‐Appendant Metallacycles with Highly Stable Radical Cations and Long‐Lived Charge Separation States for Electrochromism and Photocatalysis. Angew Chem Int Ed Engl 2022; 61:e202209054. [DOI: 10.1002/anie.202209054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Sikun Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Wenqiang Ma
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Long Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Kai Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Shi Yu
- School of Materials Science & Engineering Chang'an University Xi'an Shaanxi 710064 China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Lei Zhang
- School of Optoelectronic Engineering Xidian University Xi'an Shaanxi 710126 China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| |
Collapse
|
15
|
Zhang S, Ma L, Ma W, Chen L, Gao K, Yu S, Zhang M, Zhang L, He G. Selenoviologen‐Appendant Metallacycles with Highly Stable Radical Cations and Long‐Lived Charge Separation States for Electrochromism and Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sikun Zhang
- Xi'an Jiaotong University Frontier Institute of Science and Technology Xi'an CHINA
| | - Lingzhi Ma
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Wenqiang Ma
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Long Chen
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Kai Gao
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Shi Yu
- Chang'an University School of Materials Science & Engineering CHINA
| | - Mingming Zhang
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Lei Zhang
- Xidian University School of Optoelectronic Engineering CHINA
| | - Gang He
- Xi'an Jiaotong University Frontier Institute of Science and Technology No 99, Yanxiang Road 710054 Xi'an CHINA
| |
Collapse
|
16
|
Facile construction of luminescent silicone elastomers from the compatibilization of porphyrins via the Piers-Rubinsztajn reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Kumar S, Jana A, Bhowmick S, Das N. Topical progress in medicinal applications of self‐assembled organoplatinum complexes using diverse Pt (II)– and N–based tectons. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Saurabh Kumar
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| | - Achintya Jana
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| | - Sourav Bhowmick
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| | - Neeladri Das
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| |
Collapse
|
18
|
Lee H, Kim MY, Lee H. Structural and anionic effects of microcrystalline Zn-CPs on 4-nitrophenol sensing performances. RSC Adv 2022; 12:12957-12966. [PMID: 35497009 PMCID: PMC9049022 DOI: 10.1039/d2ra01239a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022] Open
Abstract
Coordination polymers (CPs: [ZnL3]n(X)2n, L = trans-1,4-bis(imidazolyl)-2-butene; X− = BF4−, ClO4−, NO3−) allow for detection of the 4-nitrophenol (4-NP) oxidation process by enhanced electrochemical signals. Electrochemical measurement is a highly sensitive method providing much evidence of chemical reactions on an electrode surface. In the present study, we designed and synthesized, with reference to X-ray diffraction data and by spectroscopic analyses, new 3D coordination structures containing imidazolyl donors and zinc(ii). The presence of microcrystals [ZnL3]n(BF4)2n on the working electrode enhanced the redox signals. Therefore, we propose a simple catalytic process that can explain these results and clarify the influence of anions that constitute CP materials used to improve electrochemical detection applications. The CP materials were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (IR), thermogravimetric (TG) analyses, single crystal X-ray diffraction (SC-XRD), and electrochemical analyses. To investigate structural and anionic effects of coordination polymers (CPs) on electrochemical sensors, Zn-CPs were synthesized and used for 4-nitrophenol oxidation sensors.![]()
Collapse
Affiliation(s)
- Hyemin Lee
- Department of Chemistry, Hannam University Daejeon 34054 Republic of Korea
| | - Min-Yeong Kim
- Department of Electrochemistry, Korea Institute of Materials Science (KIMS) Changwon 51508 Republic of Korea
| | - Haeri Lee
- Department of Chemistry, Hannam University Daejeon 34054 Republic of Korea
| |
Collapse
|
19
|
Liu Y, Dai G, Chen Y, Wang R, Li H, Shi X, Zhang X, Xu Y, Zhao Y. Effective Design Strategy of Small Bipolar Molecules through Fused Conjugation toward 2.5 V Based Redox Flow Batteries. ACS ENERGY LETTERS 2022; 7:1274-1283. [PMID: 35572819 PMCID: PMC9097584 DOI: 10.1021/acsenergylett.2c00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 06/15/2023]
Abstract
Using bipolar redox-active molecules (BRMs) as active materials is a practical way to address electrolyte crossover and resultant unpredictable side reactions in redox-flow batteries. However, the development of BRMs is greatly hindered by difficulties in finding new molecules from limited redox-active moieties and in achieving high cell voltage to compete with existing flow battery chemistries. This study proposes a strategy for design of high-voltage BRMs using fused conjugation that regulates the redox potential of integrated redox-active moieties. As a demonstration, quaternary N and ketone redox moieties are used to construct a new BRM that shows a prominent voltage gap with good electrochemical stability. A symmetrical redox-flow cell based on this molecule exhibits a high voltage of 2.5 V and decent cycling stability. This study provides a general strategy for designing new BRMs that may enrich the cell chemistries of organic redox-flow batteries.
Collapse
Affiliation(s)
- Yue Liu
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-based Functional Materials & Devices, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, People’s
Republic of China
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Gaole Dai
- College
of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, People’s Republic of China
| | - Yuanyuan Chen
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-based Functional Materials & Devices, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, People’s
Republic of China
| | - Ru Wang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-based Functional Materials & Devices, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, People’s
Republic of China
| | - Huamei Li
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-based Functional Materials & Devices, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, People’s
Republic of China
| | - Xueliang Shi
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, 500 Dongchuan Road, Shanghai 200062, People’s Republic of China
| | - Xiaohong Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-based Functional Materials & Devices, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, People’s
Republic of China
| | - Yang Xu
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Yu Zhao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-based Functional Materials & Devices, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, People’s
Republic of China
- College
of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, People’s Republic of China
| |
Collapse
|
20
|
Zhou M, Mao L, Niu YF, Zhao XL, Shi X, Yang HB. Triphenylamines consisting of bulky 3,5-di‑tert‑butyl‑4-anisyl group: Synthesis, redox properties and their radical cation species. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Liu W, Liu G, Zhu X, Han X, Lu A, Lu S, Shi L, Hao XQ, Song MP. Tailored metal–organic tetrahedral nanocages with aggregation-induced emission for an anti-counterfeiting ink and stimulus-responsive luminescence. NEW J CHEM 2022. [DOI: 10.1039/d2nj00382a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tailored metal–organic tetrahedral nanocages with aggregation-induced emission for an anti-counterfeiting ink and stimulus-responsive luminescence.
Collapse
Affiliation(s)
- Wenxiu Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Guoxing Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- College of Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xinju Zhu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xin Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Anting Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shuai Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Linlin Shi
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xin-Qi Hao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mao-Ping Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
22
|
Jiang WL, Huang B, Wu MX, Zhu YK, Zhao XL, Shi X, Yang HB. Post-Synthetic Modification of Metal-Organic Frameworks Bearing Phenazine Radical Cations for aza-Diels-Alder Reactions. Chem Asian J 2021; 16:3985-3992. [PMID: 34652071 DOI: 10.1002/asia.202100883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/22/2021] [Indexed: 11/07/2022]
Abstract
Metal-organic frameworks (MOFs) consisting of organic radicals are of great interest because they have exhibited unique and intriguing optical, electronic, magnetic, and chemo-catalytic properties, and thus have demonstrated great potential applications in optical, electronic, and magnetic devices, and as catalysts. However, the preparation of MOFs bearing stable organic radicals is very challenging because most organic radicals are highly reactive and difficult to incorporate into the framework of MOFs. Herein we reported a post-synthetic modification strategy to prepare a novel MOF containing phenazine radical cations, which was used as heterogeneous catalyst for aza-Diels-Alder reaction. The zinc-based metal-organic framework Zn2 (PHZ)2 (dabco) (N) was successfully synthesized from 5,10-di(4-benzoic acid)-5,10-dihydrophenazine (PHZ), triethylene diamine (dabco) with Zn(NO3 )2 ⋅ 6H2 O by solvothermal method. The as-synthesized MOF N was partially oxidized by AgSbF6 to form MOF R containing ∼10% phenazine radical cation species. The resultant MOF R was found to keep the original crystal type of N and very persistent under ambient conditions. Consequently, MOF R was successfully employed in radical cation-catalyzed aza-Diels-Alder reactions with various imine substrates at room temperature with high reaction conversion. Moreover, heterogeneous catalyst MOF R was reusable up to five times without much loss of catalytic activity, demonstrating its excellent stability and recyclability. Therefore, the post-synthetic modification developed in this work is expected to become a versatile strategy to prepare radical-based MOFs for the application of heterogeneous catalysts in organic synthesis.
Collapse
Affiliation(s)
- Wei-Ling Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Meng-Xiang Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Ye-Kai Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
23
|
Cai X, Ji L, Tang H, Wang R, Feng F. One pot synthesis and self-assembly of methylene blue-backboned polymers. Chem Commun (Camb) 2021; 57:12313-12316. [PMID: 34734930 DOI: 10.1039/d1cc04769h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Studies of methylene blue-backboned polymers (MBPs) are hindered by the limited availability of polymerization methods. Herein, we developed an oxidative polymerization method to produce MBPs. The polymerization is performed in aqueous medium, and is organic solvent-free, heavy metal-free, time-efficient (on a timescale of minutes), and does not need pre-formed methylene blue chromophores. The effects of the alkyl chains of the MBPs on the photophysical properties and self-assembly behavior (e.g., vesicles and nanorings) are significant, which highlights the possibility of controlling the MBP properties via rationally tailoring the functionality of the MBP monomers prior to polymerization. Importantly, the self-assembly structures can be predicted using the dissipative particle dynamics (DPD) simulation method.
Collapse
Affiliation(s)
- Xuetong Cai
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Luyang Ji
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Hao Tang
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Rong Wang
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Fude Feng
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
24
|
Cai C, Wu S, Tan Z, Li F, Dong S. On-Site Supramolecular Adhesion to Wet and Soft Surfaces via Solvent Exchange. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53083-53090. [PMID: 34711056 DOI: 10.1021/acsami.1c15959] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A series of poly(thioctic acid-catechol)s was prepared by supramolecular copolymerization of two low-molecular-weight monomers, thioctic acid (TA) and catechol (CA). The addition of a small amount of CA molecules significantly improved the adhesion ability of poly(TA) and transformed it into an applicable supramolecular polymer adhesive material. The robust adhesion of poly(TA-CA)s to soft surfaces was achieved by employing a hot-melt method. However, the supramolecular adhesion via the hot-melt method failed to perform in the presence of water. On-site supramolecular adhesion to wet and soft substrates was successfully realized through the solvent exchange behavior between water and the poly(TA-CA)s ethanol solution. Compared to the hot-melt method, the solvent exchange method displays various fascinating advantages and is suitable for adhesion conditions normally under the presence of water.
Collapse
Affiliation(s)
- Changyong Cai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Shuanggen Wu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Zhijian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, P.R. China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| |
Collapse
|
25
|
Mao L, Zhou M, Shi X, Yang HB. Triphenylamine (TPA) radical cations and related macrocycles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Huang B, Mao L, Shi X, Yang HB. Recent advances and perspectives on supramolecular radical cages. Chem Sci 2021; 12:13648-13663. [PMID: 34760150 PMCID: PMC8549795 DOI: 10.1039/d1sc01618k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Supramolecular radical chemistry has been emerging as a cutting-edge interdisciplinary field of traditional supramolecular chemistry and radical chemistry in recent years. The purpose of such a fundamental research field is to combine traditional supramolecular chemistry and radical chemistry together, and take the benefit of both to eventually create new molecules and materials. Recently, supramolecular radical cages have been becoming one of the most frontier and challenging research focuses in the field of supramolecular chemistry. In this Perspective, we give a brief introduction to organic radical chemistry, supramolecular chemistry, and the emerging supramolecular radical chemistry along with their history and application. Subsequently, we turn to the main part of this topic: supramolecular radical cages. The design and synthesis of supramolecular cages consisting of redox-active building blocks and radical centres are summarized. The host-guest interactions between supramolecular (radical) cages and organic radicals are also surveyed. Some interesting properties and applications of supramolecular radical cages such as their unique spin-spin interactions and intriguing confinement effects in radical-mediated/catalyzed reactions are comprehensively discussed and highlighted in the main text. The purpose of this Perspective is to help students and researchers understand the development of supramolecular radical cages, and potentially to stimulate innovation and creativity and infuse new energy into the fields of traditional supramolecular chemistry and radical chemistry as well as supramolecular radical chemistry.
Collapse
Affiliation(s)
- Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Lijun Mao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
27
|
Yin Y, Chen Z, Li RH, Yuan C, Shao TY, Wang K, Tan H, Sun Y. Ligand-Triggered Platinum(II) Metallacycle with Mechanochromic and Vapochromic Responses. Inorg Chem 2021; 60:9387-9393. [PMID: 33881317 DOI: 10.1021/acs.inorgchem.1c00233] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supramolecular coordination complexes with solid-state stimuli-responsive characteristics are highly desirable but are rarely reported. Herein, we describe two coordination-driven self-assembled monoanthracene or dianthracene-based hexagonal metallacycles by subtle structure modification. Notably, the dianthracene-containing hexagon 1 exhibits tricolor mechanochromic and vapochromic characteristics, while the monoanthracene-containing hexagon 4 does not show obvious changes toward mechanical force. Further studies have indicated that changes in hexagon 1, especially the ulterior anthracene of hexagon 1 in the molecular stacking through intermolecular interactions toward external stimuli, are responsible for the above behavioral differences. Furthermore, the present work also demonstrates a novel light-harvesting strategy for achieving high-contrast mechanochromic fluorescence involving solid-state energy transfer from hexagon 1 to an organic carbazole derivant 6 without mechanofluorochromism or tetraphenylethylene derivant 7 exhibiting inconspicuous mechanofluorochromism.
Collapse
Affiliation(s)
- Ya Yin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Run-Hao Li
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Chang Yuan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | - Tian-Yin Shao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, PR China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, PR China
| | - Hongwei Tan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, PR China
| |
Collapse
|
28
|
Liu Z, Zhang Z, Li T, Zhao W. Three-Dimensional Diradical Metallacage with an Open-Shell Ground State. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhaoyue Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhonghui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Tao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
29
|
Zagorodko O, Melnyk T, Rogier O, Nebot VJ, Vicent MJ. Higher-order interfiber interactions in the self-assembly of benzene-1,3,5-tricarboxamide-based peptides in water. Polym Chem 2021; 12:3478-3487. [PMID: 34262624 PMCID: PMC8230583 DOI: 10.1039/d1py00304f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023]
Abstract
Mimicking the complexity of biological systems with synthetic supramolecular materials requires a deep understanding of the relationship between the structure of the molecule and its self-assembly pattern. Herein, we report a series of water-soluble benzene-1,3,5-tricarboxamide-based di- and tripeptide derivatives modified with small non-bulky terminal amine salt to induce self-assembly into twisted one-dimensional higher-order nanofibers. The morphology of nanofibers strongly depends on the nature, order, and quantity of amino acids in the short peptide fragments and vary from simple cylindrical to complex helical. From observations of several fiber-splitting events, we detected interfiber interactions that always occur in a pairwise manner, which implies that the C3 symmetry of benzene-1,3,5-tricarboxamide-based molecules in higher-order fibers becomes gradually distorted, thus facilitating hydrophobic contact interactions between fibrils. The proposed mechanism of self-assembly through hydrophobic contact allowed the successful design of a compound with pH-responsive morphology, and may find use in the future development of complex hierarchical architectures with controlled functionality.
Collapse
Affiliation(s)
| | - Tetiana Melnyk
- Polymer Therapeutics Lab. Prince Felipe Research Center Valencia Spain
| | - Olivier Rogier
- Polymer Therapeutics Lab. Prince Felipe Research Center Valencia Spain
| | - Vicent J Nebot
- Polymer Therapeutics Lab. Prince Felipe Research Center Valencia Spain
- PTS SL Valencia Spain
| | - María J Vicent
- Polymer Therapeutics Lab. Prince Felipe Research Center Valencia Spain
| |
Collapse
|
30
|
Jiao T, Qu H, Tong L, Cao X, Li H. A Self‐Assembled Homochiral Radical Cage with Paramagnetic Behaviors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Lu Tong
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
31
|
Qin P, Wu Z, Li P, Niu D, Liu M, Yin M. Triple-Modulated Chiral Inversion of Co-Assembly System Based on Alanine Amphiphile and Cyanostilbene Derivative. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18047-18055. [PMID: 33834761 DOI: 10.1021/acsami.1c03940] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The construction of chiroptical materials with controllable chirality is of special importance in biology and chemistry. Although tunable chirality can be realized in various systems, it remains a fundamental challenge to realize multimodulated chiral inversion. Herein, we report that chiral alanine derivative and fluorescent cyanostilbene derivative co-assemble to prepare supramolecular chiral systems, where twist nanofibers with totally inverted supramolecular chirality and circularly polarized luminescence are obtained through stoichiometric modulation. The supramolecular handedness can be inverted by means of altering the cooling rate and incorporating metal ions. The mechanism study reveals that the synergistic effect among hydrogen bonds, coordination interactions, and π-π stacking interactions contributes to the chirality inversion. This work establishes an effective strategy to precisely modulate supramolecular chirality in multiple ways, which shows great potential in developing smart chiroptical materials capable of achieving complex functionalities.
Collapse
Affiliation(s)
- Penghua Qin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhen Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Pengyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dian Niu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
32
|
Liu X, Qin Y, Zhu J, Zhao X, Cheng T, Jiang Y, Sun H, Xu L. Acid-induced tunable white light emission based on triphenylamine derivatives. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Jiao T, Qu H, Tong L, Cao X, Li H. A Self-Assembled Homochiral Radical Cage with Paramagnetic Behaviors. Angew Chem Int Ed Engl 2021; 60:9852-9858. [PMID: 33651476 DOI: 10.1002/anie.202100655] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/14/2021] [Indexed: 12/24/2022]
Abstract
Condensation of an inherently C3 -symmetric polychlorotriphenylmethyl (PTM) radical trisaldehyde with tris(2-aminoethyl)amine (TREN) yields a [4+4] tetrahedral radical cage as a racemic pair of homochiral enantiomers in 75 % isolated yield. The structure was characterized by X-ray crystallography, confirming the homochirality of each cage framework. The homochirality results from intramolecular [CH⋅⋅⋅π] and hydrogen-bonding interactions within the cage framework. The four PTM radicals in a cage undergo weak through-space coupling. Magnetic measurements demonstrated that each cage bears 3.58 spins.
Collapse
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lu Tong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
34
|
Kumar A, Saha R, Mukherjee PS. Self-assembled metallasupramolecular cages towards light harvesting systems for oxidative cyclization. Chem Sci 2021; 12:5319-5329. [PMID: 34163765 PMCID: PMC8179592 DOI: 10.1039/d1sc00097g] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
Designing artificial light harvesting systems with the ability to utilize the output energy for fruitful application in aqueous medium is an intriguing topic for the development of clean and sustainable energy. We report here facile synthesis of three prismatic molecular cages as imminent supramolecular optoelectronic materials via two-component coordination-driven self-assembly of a new tetra-imidazole donor (L) in combination with 180°/120° di-platinum(ii) acceptors. Self-assembly of 180° trans-Pt(ii) acceptors A1 and A2 with L leads to the formation of cages Pt4 L 2(1a) and Pt8 L 2(2a) respectively, while 120°-Pt(ii) acceptor A3 with L gives the Pt8 L 2(3a) metallacage. PF6 - analogues (1b, 2b and 3b) of the metallacages possess a high molar extinction coefficient and large Stokes shift. 1b-3b are weakly emissive in dilute solution but showed aggregation induced emission (AIE) in a water/MeCN mixture as well as in the solid state. AIE active 2b and 3b in aqueous (90% water/MeCN mixture) medium act as donors for fabricating artificial light harvesting systems via Förster resonance energy transfer (FRET) with organic dye rhodamine-B (RhB) with high energy efficiency and good antenna effect. The metallacages 2b and 3b represent an interesting platform to fabricate new generation supramolecular aqueous light harvesting systems with high antenna effect. Finally, the harvested energy of the LHSs (2b + RhB) and (3b + RhB) was utilized successfully for efficient visible light induced photo-oxidative cross coupling cyclization of N,N-dimethylaniline (4) with a series of N-alkyl/aryl maleimides (5) in aqueous acetonitrile with dramatic enhancement in yields compared to the reactions with RhB or cages alone.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
35
|
Wu GY, Liang C, Li H, Zhang X, Yao G, Zhu FF, Hu YX, Yin GQ, Zheng W, Lu Z. A multi-responsive supramolecular heparin-based biohybrid metallogel constructed by controlled self-assembly based on metal–ligand, host–guest and electrostatic interactions. Org Chem Front 2021. [DOI: 10.1039/d1qo00692d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of supramolecular heparin-based biohybrid metallogels with multiple stimuli-responsive behaviours was constructed through the controlled self-assembly based on three orthogonal interactions within a single system.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Chao Liang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Xianyi Zhang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Guanxin Yao
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Fan-Fan Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China
| | - Wei Zheng
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
36
|
Hu YX, Jia PP, Zhang CW, Xu XD, Niu Y, Zhao X, Xu Q, Xu L, Yang HB. A supramolecular dual-donor artificial light-harvesting system with efficient visible light-harvesting capacity. Org Chem Front 2021. [DOI: 10.1039/d1qo00771h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A supramolecular dual-donor artificial light-harvesting system with efficient visible light-harvesting capacity was constructed through the hierarchical self-assembly approach.
Collapse
Affiliation(s)
- Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Pei-Pei Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Chang-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xing-Dong Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yanfei Niu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiaoli Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Qian Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
37
|
Jiang WL, Peng Z, Huang B, Zhao XL, Sun D, Shi X, Yang HB. TEMPO Radical-Functionalized Supramolecular Coordination Complexes with Controllable Spin–Spin Interactions. J Am Chem Soc 2020; 143:433-441. [DOI: 10.1021/jacs.0c11738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wei-Ling Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Zhiyong Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Di Sun
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
38
|
Howlader P, Mondal S, Ahmed S, Mukherjee PS. Guest-Induced Enantioselective Self-Assembly of a Pd6 Homochiral Octahedral Cage with a C3-Symmetric Pyridyl Donor. J Am Chem Soc 2020; 142:20968-20972. [DOI: 10.1021/jacs.0c11011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Surajit Mondal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shakil Ahmed
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
39
|
|
40
|
Arumugaperumal R, Shellaiah M, Srinivasadesikan V, Awasthi K, Sun KW, Lin MC, Ohta N, Chung WS. Diversiform Nanostructures Constructed from Tetraphenylethene and Pyrene-Based Acid/Base Controllable Molecular Switching Amphiphilic [2]Rotaxanes with Tunable Aggregation-Induced Static Excimers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45222-45234. [PMID: 32985177 DOI: 10.1021/acsami.0c14107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dual-emissive tetraphenylethene (TPE) and pyrene-containing amphiphilic molecules are of great interest because they can be integrated to form stimuli responsive materials with various biological applications. Herein, we report the study of mechanically interlocked molecules (MIMs) with aggregation-induced static excimer emission (AISEE) property through a series of TPE and pyrene-based amphiphilic [2]rotaxanes, where t-butylcalix[4]arene with hydrophobic nature was used as the macrocycle. Evidently, by adorning TPE and pyrene units in [2]rotaxanes P1, P2, P1-b, and P2-b, they display remarkable emission bands in 70% of water fraction (fw) in tetrahydrofuran (THF)/water mixture, which could be attributed to the restricted intramolecular rotation of phenyl groups, whereas prominent blue-shifted excimer emission of pyrene started to appear as fw reached 80% for P1 and 90% for P1-b, P2, and P2-b, which was ascribed to the favorable π-π stacking and hydrophobic interactions of the pyrene rings that enabled their static excimer formation. The well-defined distinct amphiphilic nanostructures of [2]rotaxanes including hollowspheres, mesoporous nanostructures, spheres, and network linkages can be driven smoothly depending on the molecular structures and their aggregated states in THF/water mixture. These fascinating diversiform nanostructures were mainly controlled by the skillful manner of reversible molecular shuttling of t-butylcalix[4]arene macrocycle and also the interplay of multinoncovalent interactions. To further understand the aggregation capabilities of [2]rotaxanes, the human lung fibroblasts (MRC-5) living cell incubated with either P1, P2, P1-b, or P2-b was studied and monitored by confocal laser scanning microscopy. The AISEE property was achieved at an astonishing level by integrating TPE and pyrene to MIM-based reversible molecular switching [2]rotaxanes; furthermore, distinct nanostructures, especially hollowspheres and mesoporous nanostructures, were observed, which are rarely reported in the literature but are highly desirable for future applications.
Collapse
Affiliation(s)
- Reguram Arumugaperumal
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Muthaiah Shellaiah
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Venkatesan Srinivasadesikan
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Division Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Kamlesh Awasthi
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Ming-Chang Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Nobuhiro Ohta
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Wen-Sheng Chung
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| |
Collapse
|
41
|
Howlader P, Bhandari P, Chakraborty D, Clegg JK, Mukherjee PS. Self-Assembly of a Pd8 Macrocycle and Pd12 Homochiral Tetrahedral Cages Using Poly(tetrazolate) Linkers. Inorg Chem 2020; 59:15454-15459. [DOI: 10.1021/acs.inorgchem.0c02452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jack K. Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland—St. Lucia, St. Lucia, Queensland 4072, Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
42
|
Wight CD, Xiao Q, Wagner HR, Hernandez EA, Lynch VM, Iverson BL. Mechanistic Analysis of Solid-State Colorimetric Switching: Monoalkoxynaphthalene-Naphthalimide Donor–Acceptor Dyads. J Am Chem Soc 2020; 142:17630-17643. [DOI: 10.1021/jacs.0c08137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Christopher D. Wight
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Qifan Xiao
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Holden R. Wagner
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eduardo A. Hernandez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Vincent M. Lynch
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brent L. Iverson
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
43
|
Sun Y, Chen C, Liu J, Liu L, Tuo W, Zhu H, Lu S, Li X, Stang PJ. Self-Assembly of Porphyrin-Based Metallacages into Octahedra. J Am Chem Soc 2020; 142:17903-17907. [DOI: 10.1021/jacs.0c08058] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Chongyi Chen
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jianbo Liu
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Lizhe Liu
- Jiangsu Key Laboratory for Nanotechnology and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Wei Tuo
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Huangtianzhi Zhu
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
44
|
Sun Y, Chen C, Liu J, Stang PJ. Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination. Chem Soc Rev 2020; 49:3889-3919. [PMID: 32412574 PMCID: PMC7846457 DOI: 10.1039/d0cs00038h] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coordination-driven suprastructures have attracted much interest due to their unique properties. Among these structures, platinum-based architectures have been broadly studied due to their facile preparation. The resultant two- or three-dimensional (2D or 3D) systems have many advantages over their precursors, such as improved emission tuning, sensitivity as sensors, and capture and release of guests, and they have been applied in biomedical diagnosis as well as in catalysis. Herein, we review the recent results related to platinum-based coordination-driven self-assembly (CDSA), and the text is organized to emphasizes both the synthesis of new metallacycles and metallacages and their various applications.
Collapse
Affiliation(s)
- Yan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | | | | | | |
Collapse
|
45
|
Zhang S, Cortes W, Zhang Y. Constructing Cross-Linked Nanofibrous Scaffold via Dual-Enzyme-Instructed Hierarchical Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6261-6267. [PMID: 32418429 DOI: 10.1021/acs.langmuir.0c01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To explore the potential of step-by-step assembly in the fabrication of biological materials, we designed and synthesized two peptide-based molecules for enzyme-instructed hierarchical assembly. Upon the treatment of alkaline phosphatase, one molecule undergoes enzyme-instructed self-assembly forming uniformed nanofibers. The other one that can self-assemble into vesicles undergoes enzyme-induced transformation of self-assembly converting vesicles into irregular aggregates upon the treatment of carboxylesterase. Coadministration of two enzymes to a mixture of these two molecules in a stage-by-stage fashion leads to a physically knotted nanofibrous scaffold that is applicable as a nanostructured matrix for cell culture.
Collapse
Affiliation(s)
- Shijin Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495, Japan
| | - William Cortes
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495, Japan
| |
Collapse
|
46
|
Yang Y, Hu H, Guo Y, Xia A, Xu J, Zhang X. Supramolecular Polymeric Radicals: Highly Promoted Formation and Stabilization of Naphthalenediimide Radical Anions. Macromol Rapid Commun 2020; 41:e2000080. [DOI: 10.1002/marc.202000080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Yuchong Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hao Hu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuanyuan Guo
- The Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Andong Xia
- The Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jiang‐Fei Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
- State Key Lab of Supramolecular Structure and Materials Jilin University Changchun 130012 China
| |
Collapse
|
47
|
Howlader P, Zangrando E, Mukherjee PS. Self-Assembly of Enantiopure Pd12 Tetrahedral Homochiral Nanocages with Tetrazole Linkers and Chiral Recognition. J Am Chem Soc 2020; 142:9070-9078. [DOI: 10.1021/jacs.0c03551] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
48
|
Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A. Supramolecular self-healing materials from non-covalent cross-linking host-guest interactions. Chem Commun (Camb) 2020; 56:4381-4395. [PMID: 32249859 DOI: 10.1039/d0cc00672f] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The introduction of non-covalent bonds is effective for achieving self-healing properties because they can be controlled reversibly. One approach to introduce these bonds into supramolecular materials is use of host-guest interactions. This feature article summarizes the development of supramolecular materials constructed by non-covalent cross-linking through several approaches, such as host-guest interactions between host polymers and guest polymers, 1 : 2-type host-guest interactions, and host-guest interactions from the polymerization of host-guest inclusion complexes. Host-guest interactions show self-healing functions while also enabling stimuli-responsiveness (redox, pH, and temperature). The self-healing function of supramolecular materials is achieved by stress dispersion arising from host-guest interactions when stress is applied. Reversible bonds based on host-guest interactions have tremendous potential to expand the variety of functional materials.
Collapse
Affiliation(s)
- Garry Sinawang
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
49
|
Zhao J, Cheng L, Liu K, Zhang Z, Yu W, Yan X. Metal–organic polyhedra crosslinked supramolecular polymeric elastomers. Chem Commun (Camb) 2020; 56:8031-8034. [DOI: 10.1039/d0cc01205j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supramolecular polymeric elastomers crosslinked by metal–organic polyhedra were developed, featuring not only tunable mechanical properties but also dynamic actuation behaviors.
Collapse
Affiliation(s)
- Jun Zhao
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|