1
|
Burchell-Reyes K, Paquin JF. Fluorohydrins and where to find them: recent asymmetric syntheses of β-fluoro alcohols and their derivatives. Org Biomol Chem 2025; 23:4593-4615. [PMID: 40241682 DOI: 10.1039/d5ob00330j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Fluorohydrins - or β-fluorinated alcohols - and their fluorinated group derivatives are a biologically relevant class of compounds, with applications ranging from PET tracers to cancer therapeutics. Recent efforts have unlocked asymmetric access to these related motifs through reactions of carbonyls, alkenes, organoboranes, and epoxides or transformations such as cyclizations or ring expansions. The present work provides an overview of synthetic approaches to various fluorohydrins that have been explored in the past decade, as well as selected examples of these syntheses applied to medicinal chemistry.
Collapse
Affiliation(s)
- Kelly Burchell-Reyes
- PROTEO, CCVC, Département de chimie, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Jean-François Paquin
- PROTEO, CCVC, Département de chimie, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
2
|
Alexeev MS, Strelkova TV, Ilyin MM, Nelyubina YV, Bespalov IA, Medvedev MG, Khrustalev VN, Kuznetsov NY. Amine adducts of triallylborane as highly reactive allylborating agents for Cu(I)-catalyzed allylation of chiral sulfinylimines. Org Biomol Chem 2024; 22:4680-4696. [PMID: 38716901 DOI: 10.1039/d4ob00291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The implementation of selective catalytic processes with highly active reagents is an attractive strategy that meets the modern principles of sustainable development of chemistry. In the current study, we for the first time describe the method and general principles of Cu(I)-catalyzed allylation of imines with amine adducts of allylic triorganoboranes. Triallylborane is an extremely reactive compound and cannot be used for the catalytic allylation of imines, whereas its amine adducts are ideal substrates for catalysis. The structure of the amine fragment successfully balances the safety, selectivity and stability of the allylboron reagent, allowing it to demonstrate high activity in catalytic allylation reactions, exceeding many times any known allylboranes. The obtained results are supported by quantitative kinetics data and DFT calculations. The catalytic efficacy of the system was demonstrated on model sulfinylimines (23 examples). High diastereoselectivity up to >99% was achieved, including for the gram-scale synthesis of 2-hydroxyphenyl-derivatives. Taking into account the high reactivity and unsurpassed atom-economy of amine adducts of triallylborane (AAT), they can be considered as prospective allylation reagents with Cu(I) and other appropriate metallocatalysts.
Collapse
Affiliation(s)
- Michael S Alexeev
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| | - Tatiana V Strelkova
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Michael M Ilyin
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Ivan A Bespalov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
- Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russian Federation
| | - Michael G Medvedev
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| | - Victor N Khrustalev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
- Peoples Friendship University of Russia, Miklukho-Maklay st. 6, 117198 Moscow, Russian Federation
| | - Nikolai Yu Kuznetsov
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| |
Collapse
|
3
|
Singh T, Nasireddy SR, Upreti GC, Arora S, Singh A. Photocatalytic, Intermolecular Olefin Alkylcarbofunctionalization Triggered by Haloalkyl Radicals Generated via Halogen Atom Transfer. Org Lett 2023. [PMID: 37470716 DOI: 10.1021/acs.orglett.3c01800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
A visible-light-mediated, haloalkyl-radical-initiated, three-component olefin difunctionalization is reported. The application of haloalkyl radicals generated via halogen atom abstraction by α-aminoalkyl radicals has been demonstrated for accessing a new halogenated chemical space. Overall, the alkylcarbofunctionalization of styrenes was accomplished by employing them as (poly)haloalkyl radical acceptors and subsequent C-C bond formation with quinoxalinones.
Collapse
Affiliation(s)
- Tavinder Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
| | | | - Ganesh Chandra Upreti
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
| | - Shivani Arora
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
| | - Anand Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
| |
Collapse
|
4
|
Chen X, Patel K, Marek I. Stereoselective Construction of Tertiary Homoallyl Alcohols and Ethers by Nucleophilic Substitution at Quaternary Carbon Stereocenters. Angew Chem Int Ed Engl 2023; 62:e202212425. [PMID: 36413111 PMCID: PMC10107121 DOI: 10.1002/anie.202212425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
An efficient method for the stereoselective construction of tertiary C-O bonds via a stereoinvertive nucleophilic substitution at the quaternary carbon stereocenter of cyclopropyl carbinol derivatives using water, alcohols and phenols as nucleophiles has been developed. This substitution reaction proceeds under mild conditions and tolerates several functional groups, providing a new access to the stereoselective formation of highly congested tertiary homoallyl alcohols and ethers.
Collapse
Affiliation(s)
- Xu Chen
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Technion CityHaifa3200009Israel
| | - Kaushalendra Patel
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Technion CityHaifa3200009Israel
| | - Ilan Marek
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Technion CityHaifa3200009Israel
| |
Collapse
|
5
|
Xiang JC, Wang JW, Yuan P, Ma JT, Wu AX, Liao ZX. Switching Over of the Chemoselectivity: I 2-DMSO-Enabled α,α-Dichlorination of Functionalized Methyl Ketones. J Org Chem 2022; 87:15101-15113. [PMID: 36349364 DOI: 10.1021/acs.joc.2c01591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Precise control of the chemoselectivity of the halogenation of a substrate equipped with multiple nucleophilic sites is highly demanding and challenging. Most reported chlorinations of methyl ketones show poor compatibility or even exclusive selectivity toward electron-rich arene, olefin, and alkyne residues. This is attributed to the direct or in situ employment of electrophilic Cl2/Cl+ species. Here, we reported that, even bearing those competitive residues, methyl ketones can still undergo dichlorination to afford α,α-dichloroketones in a chemo-specific manner. Enabled by the I2-dimethyl sulfoxide catalytic system, in which hydrochloric acid only acts as a nucleophilic Cl- donor, this straightforward dichlorination reaction is safe and operator-friendly and has high atomic economy, giving access to structurally diverse α,α-dichloroketones in good yields and with good functional-group tolerance.
Collapse
Affiliation(s)
- Jia-Chen Xiang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jia-Wei Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Peng Yuan
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Łużny M, Kaczanowska D, Gawdzik B, Wzorek A, Pawlak A, Obmińska-Mrukowicz B, Dymarska M, Kozłowska E, Kostrzewa-Susłow E, Janeczko T. Regiospecific Hydrogenation of Bromochalcone by Unconventional Yeast Strains. Molecules 2022; 27:molecules27123681. [PMID: 35744806 PMCID: PMC9228445 DOI: 10.3390/molecules27123681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/01/2023] Open
Abstract
This research aimed to select yeast strains capable of the biotransformation of selected 2′-hydroxybromochalcones. Small-scale biotransformations were carried out using four substrates obtained by chemical synthesis (2′-hydroxy-2″-bromochalcone, 2′-hydroxy-3″-bromochalcone, 2′-hydroxy-4″-bromochalcone and 2′-hydroxy-5′-bromochalcone) and eight strains of non-conventional yeasts. Screening allowed for the determination of the substrate specificity of selected microorganisms and the selection of biocatalysts that carried out the hydrogenation of tested compounds in the most effective way. It was found that the position of the bromine atom has a crucial influence on the degree of substrate conversion by the tested yeast strains. As a result of the biotransformation of the 2′-hydroxybromochalcones, the corresponding 2′-hydroxybromodihydrochalcones were obtained. The products obtained belong to the group of compounds with high potential as precursors of sweet substances.
Collapse
Affiliation(s)
- Mateusz Łużny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Dagmara Kaczanowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland; (B.G.); (A.W.)
| | - Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland; (B.G.); (A.W.)
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Ewa Kozłowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
- Correspondence: ; Tel.: +48-713-205-195
| |
Collapse
|
7
|
Stafford NP, Cheng MJ, Dinh DN, Verboom KL, Krische MJ. Chiral α-Stereogenic Oxetanols and Azetidinols via Alcohol-Mediated Reductive Coupling of Allylic Acetates: Enantiotopic π-Facial Selection in Symmetric Ketone Addition. ACS Catal 2022; 12:6172-6179. [PMID: 37063244 PMCID: PMC10104534 DOI: 10.1021/acscatal.2c01647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iridium-tol-BINAP-catalyzed reductive coupling of allylic acetates with oxetanones and azetidinones mediated by 2-propanol provides chiral α-stereogenic oxetanols and azetidinols. As illustrated in 50 examples, complex, nitrogen-rich substituents that incorporate the top 10 N-heterocycles found in FDA-approved drugs are tolerated. In addition to 2-propanol-mediated reductive couplings, oxetanols and azetidinols may serve dually as reductant and ketone proelectrophiles in redox-neutral C-C couplings via hydrogen auto-transfer, as demonstrated by the conversion of dihydro-1a and dihydro-1b to adducts 3a and 4a, respectively. The present method delivers hitherto inaccessible chiral oxetanols and azetidinols, which are important bioisosteres.
Collapse
Affiliation(s)
- Nicholas P. Stafford
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Melinda J. Cheng
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Duong Nguyen Dinh
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Katherine L. Verboom
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Michael J. Krische
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Tang X, Su Z, Lin Q, Lin L, Dong S, Feng X. Asymmetric catalytic α‐selective allylation of ketones with allyltrifluoroborates using dual‐functional chiral
In
III
/
N
,
N
′‐dioxide complex. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoxue Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Qianchi Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
9
|
Ma WW, Yang C, Xie Q, Xu YH. Dienylation of N-benzoylhydrazones with CF 3-substituted homoallenylboronates in water. Org Biomol Chem 2022; 20:1386-1390. [PMID: 35088801 DOI: 10.1039/d1ob02335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient method for the dienylation of N-benzoylhydrazones in water has been developed. This protocol expanded the synthetic application of functionalized homoallenylboronates to provide the useful 2-aminomethyl-1,3-diene derivatives with high efficiency (up to 99% yield) and stereoselectivity without using any catalyst, additive or inert atmosphere. Furthermore, the transformation of a 2-aminomethyl-1,3-diene derivative to synthesize a functionalized pyrrolidine derivative was also explored.
Collapse
Affiliation(s)
- Wei-Wei Ma
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R China.
| | - Chao Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R China.
| | - Qiang Xie
- Department of Nuclear Medicine the First Affiliated Hospital of USTC; the Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R China.
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R China. .,State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R China
| |
Collapse
|
10
|
|
11
|
Liu S, Su YL, Sun TY, Doyle MP, Wu YD, Zhang X. Precise Introduction of the -CH nX 3-n (X = F, Cl, Br, I) Moiety to Target Molecules by a Radical Strategy: A Theoretical and Experimental Study. J Am Chem Soc 2021; 143:13195-13204. [PMID: 34374531 DOI: 10.1021/jacs.1c05208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Addition of halomethyl radicals to form bioactive molecules has recently become an efficient strategy. The reaction has a bottleneck, however, which is the effective and selective generation of the proper halomethyl •CHnX3-n radical by combining CHnX4-n with a carbon radical. Understanding the reactivity and selectivity of carbon radicals in the hydrogen atom transfer (HAT) and halogen atom transfer (XAT) reactions of CHnX4-n is key to the development of such an attractive method. With the help of the emerging data-driven strategy, DFT calculations were used to explore various correlations. For selectivity, the relative energy barriers between HAT and XAT reactions (ΔG⧧H - ΔG⧧X) correlate reasonably well with the three parameters ΔGH, ΔGX, and IP, and the correlation studies reveal that the calculated IPinver and the experimental ΔBDE can be used to conveniently predict the selectivity. Predicted selectivities are consistent with experimental determinations. This work not only provides a possibility for selecting carbon radicals with the known or easily obtained physicochemical data but also demonstrates that the informatic workflow such as generating data and identifying correlations has potential applications in mining reaction rules.
Collapse
Affiliation(s)
- Siqi Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yun-Dong Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen, 518132, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen, 518132, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
12
|
Sowaileh MF, Alshammari MD, Colby DA. Synthesis of Difluorinated Halohydrins by the Chemoselective Addition of Difluoroenolates to α-Haloketones. Org Lett 2021; 23:5098-5101. [PMID: 34124917 DOI: 10.1021/acs.orglett.1c01636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
α-Haloketones are valuable intermediates in the synthesis of pharmaceuticals and natural products because they display two electrophiles. Although chemoselective additions to each of these functional groups are known, the use of fluorinated nucleophiles has not been characterized, except for the dimerization of fluorohalomethyl ketones. Our studies demonstrate the use of difluoroenolates to create difluorinated bromohydrins and chlorohydrins from α-haloketones without any cyclization or rearrangement due to the mild conditions.
Collapse
Affiliation(s)
- Munia F Sowaileh
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Maali D Alshammari
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - David A Colby
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
13
|
Access to enantioenriched compounds bearing challenging tetrasubstituted stereocenters via kinetic resolution of auxiliary adjacent alcohols. Nat Commun 2021; 12:3735. [PMID: 34145256 PMCID: PMC8213810 DOI: 10.1038/s41467-021-23990-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/21/2021] [Indexed: 11/28/2022] Open
Abstract
Contemporary asymmetric catalysis faces huge challenges when prochiral substrates bear electronically and sterically unbiased substituents and when substrates show low reactivities. One of the inherent limitations of chiral catalysts and ligands is their incapability in recognizing prochiral substrates bearing similar groups. This has rendered many enantiopure substances bearing several similar substituents inaccessible. Here we report the rationale, scope, and applications of the strategy of kinetic resolution of auxiliary adjacent alcohols (KRA*) that can be used to solve the above troubles. Using this method, a large variety of optically enriched tertiary alcohols, epoxides, esters, ketones, hydroxy ketones, epoxy ketones, β-ketoesters, and tetrasubstituted methane analogs with two, three, and four spatially and electronically similar groups can be readily obtained (totally 96 examples). At the current stage, the strategy serves as the optimal solution that can complement the inability caused by direct asymmetric catalysis in getting chiral molecules with challenging fully substituted stereocenters. A large number of enantiopure substances, such as those with tetrasubstituted carbon centres bearing several similar substituents, are inaccessible due to the incapability of chiral catalysts/ligands to recognize those substrates. Here, the authors develop kinetic resolution of auxiliary adjacent alcohols (KRA*) strategy to access various optically enriched compounds with two, three or four spatially and electronically similar groups.
Collapse
|
14
|
Wang L, Zhu H, Peng T, Yang D. Conjugated ynones in catalytic enantioselective reactions. Org Biomol Chem 2021; 19:2110-2145. [PMID: 33625439 DOI: 10.1039/d0ob02521f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conjugated ynones are easily accessible feedstock and the existence of an alkyne bond endows ynones with different attractive reactivities, thus making them unique substrates for catalytic asymmetric reactions. Their compatibility under organocatalytic, metal-catalyzed as well as cooperative catalytic conditions has resulted in numerous enantioselective transformations. Importantly, conjugated ynones can act as nucleophiles or electrophiles, and serve as easily accessed synthons for different cyclization pathways. This review summarizes the recent literature examples of the catalytic reactions of conjugated ynones and related compounds such as alkyne conjugated α-ketoesters, and classifies these reaction types alongside mechanistic insights whenever possible. We aim to trigger more intensive research in the future to render the asymmetric transformation of ynones as a common and reliable tool for asymmetric synthesis.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Haiyong Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Tianyu Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
15
|
Mg/BOX complexes as efficient catalysts for the enantioselective Michael addition of malonates to β-trifluoromethyl-α,β-unsaturated ketones and their N-tosyl imines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Kavanagh SE, Gilheany DG. Harnessing the Power of the Asymmetric Grignard Synthesis of Tertiary Alcohols: Ligand Development and Improved Scope Exemplified by One-Step Gossonorol Synthesis. Org Lett 2020; 22:8198-8203. [PMID: 33074677 DOI: 10.1021/acs.orglett.0c02629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of N-substituted cyclohexyldiaminophenolic ligands for the asymmetric Grignard synthesis of tertiary alcohols is reported. The 2,5-dimethylpyrrole-decorated ligand led to improved enantioselectivities and broadened the scope of the methodology. As an exemplar, we report an unprecedented highly selective one-step synthesis of gossonorol in 93% ee, also constituting the shortest formal syntheses of natural products boivinianin B and yingzhaosu C.
Collapse
Affiliation(s)
- Saranna E Kavanagh
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Declan G Gilheany
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
17
|
Yuan J, Jain P, Antilla JC. Bi(cyclopentyl)diol-Derived Boronates in Highly Enantioselective Chiral Phosphoric Acid-Catalyzed Allylation, Propargylation, and Crotylation of Aldehydes. J Org Chem 2020; 85:12988-13003. [PMID: 32960066 DOI: 10.1021/acs.joc.0c01646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we disclose the catalytic addition of bi(cyclopentyl)diol-derived boronates to aldehydes promoted by chiral phosphoric acids, allowing for the formation of enantioenriched homoallylic, propargylic, and crotylic alcohols (up to >99% enantiomeric excess (ee), diastereomeric ratio (dr) >20:1). These boronate substrates provided superior enantioselectivities, allowing for the reactions to proceed with low catalyst loading (0.5-5 mol %) and reduced reaction time (15 min at room temperature for aldehyde allylboration). A wide substrate scope was exhibited, and the novel boronates provided high enantiocontrol. Reactions with substituted allylboronates and aldehydes yielded vicinal stereogenic alcohols bearing β-tertiary or quaternary carbon centers. High enantio- and diastereoselectivities were found due to the closed six-membered chair-like transition state, with backbone modifications of the boronate and its interactions with the chiral phosphoric acid being the most likely contributing factor.
Collapse
Affiliation(s)
- Jinping Yuan
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Pankaj Jain
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Jon C Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,School of Sciences, Zhejiang Sci-Tech University, Hangzhou City, Zhejiang Province 310018, China
| |
Collapse
|
18
|
Liu C, Yap GPA, Rowland CA, Tius MA. ( Z) -Trifluoromethyl-Trisubstituted Alkenes or Isoxazolines: Divergent Pathways from the Same Allene. Org Lett 2020; 22:7208-7212. [PMID: 32876462 DOI: 10.1021/acs.orglett.0c02546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of a charge-dipole interaction involving nonbonding electron pairs on fluorine, protonation of trifluoromethyl allenes leads to tri- or tetrasubstituted alkenes with high (Z)-selectivity. Treatment of the same allenes with catalytic Au(I) initiates a reaction cascade that produces isoxazolines in high yield.
Collapse
Affiliation(s)
- Chaolun Liu
- Chemistry Department, University of Hawaii at Manoa, 2545 The Mall, Honolulu, Hawaii 96822, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, 236 Brown Laboratory, Newark, Delaware 19716, United States
| | - Casey A Rowland
- Department of Chemistry and Biochemistry, University of Delaware, 236 Brown Laboratory, Newark, Delaware 19716, United States
| | - Marcus A Tius
- Chemistry Department, University of Hawaii at Manoa, 2545 The Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
19
|
Sengoku T, Miyoshi A, Tsuda T, Inuzuka T, Sakamoto M, Takahashi M, Yoda H. Development of new catalytic enantioselective formation of methylenelactam-based N,O-spirocyclic compounds via ring opening-asymmetric reclosure of hydroxylactams. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Fager DC, Morrison RJ, Hoveyda AH. Regio- and Enantioselective Synthesis of Trifluoromethyl-Substituted Homoallylic α-Tertiary NH 2 -Amines by Reactions Facilitated by a Threonine-Based Boron-Containing Catalyst. Angew Chem Int Ed Engl 2020; 59:11448-11455. [PMID: 32219997 DOI: 10.1002/anie.202001184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/25/2020] [Indexed: 12/20/2022]
Abstract
A method for catalytic regio- and enantioselective synthesis of trifluoromethyl-substituted and aryl-, heteroaryl-, alkenyl-, and alkynyl-substituted homoallylic α-tertiary NH2 -amines is introduced. Easy-to-synthesize and robust N-silyl ketimines are converted to NH-ketimines in situ, which then react with a Z-allyl boronate. Transformations are promoted by a readily accessible l-threonine-derived aminophenol-based boryl catalyst, affording the desired products in up to 91 % yield, >98:2 α:γ selectivity, >98:2 Z:E selectivity, and >99:1 enantiomeric ratio. A commercially available aminophenol may be used, and allyl boronates, which may contain an alkyl-, a chloro-, or a bromo-substituted Z-alkene, can either be purchased or prepared by catalytic stereoretentive cross-metathesis. What is more, Z-trisubstituted allyl boronates may be used. Various chemo-, regio-, and diastereoselective transformations of the α-tertiary homoallylic NH2 -amine products highlight the utility of the approach; this includes diastereo- and regioselective epoxide formation/trichloroacetic acid cleavage to generate differentiated diol derivatives.
Collapse
Affiliation(s)
- Diana C Fager
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Ryan J Morrison
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| |
Collapse
|
21
|
Fager DC, Morrison RJ, Hoveyda AH. Regio‐ and Enantioselective Synthesis of Trifluoromethyl‐Substituted Homoallylic α‐Tertiary NH
2
‐Amines by Reactions Facilitated by a Threonine‐Based Boron‐Containing Catalyst. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Diana C. Fager
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Ryan J. Morrison
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| |
Collapse
|
22
|
Sengoku T, Maegawa R, Imamura H, Wada M, Yoda H. Zinc Hydroxide‐Catalyzed Asymmetric Allylation of Acetophenones with Amido‐Functionalized Allylboronate in Water. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tetsuya Sengoku
- Department of Applied Chemistry, Faculty of EngineeringShizuoka University 3-5-1 Johoku, Naka-ku Hamamatsu 432-8561 Japan
| | - Ryunosuke Maegawa
- Department of Applied Chemistry, Faculty of EngineeringShizuoka University 3-5-1 Johoku, Naka-ku Hamamatsu 432-8561 Japan
| | - Hiroki Imamura
- Department of Applied Chemistry, Faculty of EngineeringShizuoka University 3-5-1 Johoku, Naka-ku Hamamatsu 432-8561 Japan
| | - Mitsuo Wada
- Department of Applied Chemistry, Faculty of EngineeringShizuoka University 3-5-1 Johoku, Naka-ku Hamamatsu 432-8561 Japan
| | - Hidemi Yoda
- Department of Applied Chemistry, Faculty of EngineeringShizuoka University 3-5-1 Johoku, Naka-ku Hamamatsu 432-8561 Japan
| |
Collapse
|
23
|
Liu J, Tong X, Chen M. Allylboration of Ketones and Imines with a Highly Reactive Bifunctional Allyl Pinacolatoboronate Reagent. J Org Chem 2020; 85:5193-5202. [DOI: 10.1021/acs.joc.9b03222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Xinbo Tong
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
24
|
Morrison RJ, van der Mei FW, Romiti F, Hoveyda AH. A Catalytic Approach for Enantioselective Synthesis of Homoallylic Alcohols Bearing a Z-Alkenyl Chloride or Trifluoromethyl Group. A Concise and Protecting Group-Free Synthesis of Mycothiazole. J Am Chem Soc 2019; 142:436-447. [PMID: 31873000 DOI: 10.1021/jacs.9b11178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A protecting group-free strategy is presented for diastereo- and enantioselective routes that can be used to prepare a wide variety of Z-homoallylic alcohols with significantly higher efficiency than is otherwise feasible. The approach entails the merger of several catalytic processes and is expected to facilitate the preparation of bioactive organic molecules. More specifically, Z-chloro-substituted allylic pinacolatoboronate is first obtained through stereoretentive cross-metathesis between Z-crotyl-B(pin) (pin = pinacolato) and Z-dichloroethene, both of which are commercially available. The organoboron compound may be used in the central transformation of the entire approach, an α- and enantioselective addition to an aldehyde, catalyzed by a proton-activated, chiral aminophenol-boryl catalyst. Catalytic cross-coupling can then furnish the desired Z-homoallylic alcohol in high enantiomeric purity. The olefin metathesis step can be carried out with substrates and a Mo-based complex that can be purchased. The aminophenol compound that is needed for the second catalytic step can be prepared in multigram quantities from inexpensive starting materials. A significant assortment of homoallylic alcohols bearing a Z-F3C-substituted alkene can also be prepared with similar high efficiency and regio-, diastereo-, and enantioselectivity. What is more, trisubstituted Z-alkenyl chloride moiety can be accessed with similar efficiency albeit with somewhat lower α-selectivity and enantioselectivity. The general utility of the approach is underscored by a succinct, protecting group-free, and enantioselective total synthesis of mycothiazole, a naturally occurring anticancer agent through a sequence that contains a longest linear sequence of nine steps (12 steps total), seven of which are catalytic, generating mycothiazole in 14.5% overall yield.
Collapse
Affiliation(s)
- Ryan J Morrison
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Farid W van der Mei
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Filippo Romiti
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States.,Supramolecular Science and Engineering Institute , University of Strasbourg, CNRS , Strasbourg 67000 , France
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States.,Supramolecular Science and Engineering Institute , University of Strasbourg, CNRS , Strasbourg 67000 , France
| |
Collapse
|